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Superconductivity and Quantum Spin Disorder in Cuprates
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A fundamental connection between superconductivity and quantum spin fluctuations in under
cuprates is revealed. A variational calculation shows thatCooper pair hopping strongly reduces the
local magnetizationm0. This effect pertains to recent neutron scattering and muon spin rota
measurements in whichm0 varies weakly with hole doping in the poorly conducting regime, but dro
precipitously above the onset of superconductivity.
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When holes are introduced into the copper oxide plan
of high Tc cuprates, spin and charge correlations chan
dramatically. Thelocal magnetizationm0, measured by
muon spin rotation [1] and elastic neutron scattering [2
on, e.g., La22xSrxCuO4 reveals a qualitative difference
between the insulating and superconducting phases:m0
is rather insensitive to doping in the poorly conductin
regime0 # x # 0.06, but drops precipitously above the
onset of superconductivity atx . 0.06, becoming unde-
tectable at optimal dopingx � 0.15. Theoretically, holes
can causedilution and frustration [3] in the Heisenberg
antiferromagnet, which create spin textures: either ra
dom (“spin glass”) or with ordering wave vector away
from �p, p� (sometimes called “stripes”) [4]. However,
the apparent reduction of local magnetization by the o
set of superconductivity is a novel and poorly understoo
effect. Theory must go beyond purely magnetic mode
and involve the superconducting degrees of freedom.

We find that this problem is amenable to a variationa
approach, using hole-doped resonating valence bon
(RVB) states, originally suggested by Anderson for th
spin correlations of highTc cuprates [5–7].

These RVB states are excellent trial states for dope
Mott insulators, with large Hubbard repulsionU: (i) Con-
figurations with doubly occupied sites are excluded
(ii) Marshall’s sign criterion for the magnetic energy [8] is
satisfied, and Heisenberg antiferromagnetism at zero do
ing is accurately recovered. (iii) For doped systems, sp
and charge correlations are parametrized independen
without explicit spin or gauge symmetry breaking.

These are important advantages over commonly us
spin density wave, Hartree-Fock, and BCS wave fun
tions for the antiferromagnet, metal, and superconductin
phases, respectively. RVB states permit anunbiased de-
termination of ground state spin and charge correlatio
appropriate for the cuprates.

A phenomenological low energy effective Hamiltonian
is used, with two major components: Heisenberg intera
tion for spins, and single or Cooper pair hopping kineti
energy for fermion holes.

Our key results are as follows: (i) For the magnetic en
ergy alone, the local magnetizationm0 is weakly depen-
dent on doping concentration. This holds independently o
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interhole correlations for either randomly localized or ex
tended states. (ii) In contrast to (i),m0 is strongly reduced
by the kinetic energy ofCooper pair hopping, which cor-
relates the reduction ofm0 with the rise of superconducting
stiffness, and hence [9] the transition temperatureTc.

Our results agree with the experimentally reporte
correlation betweenm0 and Tc [1,2]. This relation
appears to beweakly dependent on the precise hole
density. A brief discussion concludes the paper.

Wave functions.—The hole-doped RVB states are com
pactly defined by

C�u, y; x� � PG�x�c̄�u, y� ,

c̄�u, y� � exp

√X
ij

���yijf
y
i f

y
j

1 uij�a
y
i b

y
j 2 b

y
i a

y
j ���

!
j0� , (1)

PG�x� � d
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n
f
i 2 xL2

!

3
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i

d�nai 1 nbi 1 n
f
i 2 1� ,

where a
y
i , b

y
i and f

y
i are Schwinger bosons and hole

fermions, respectively [10],i � 1, . . . ,L2 is a site index
on the square lattice, andPG�x� is the Gutzwiller projec-
tion onto states with no double occupancies. As a res
of the projection,C can be written as a sum over bond
configurations of singlets and hole pairs which cover th
lattice as depicted in Fig. 1.

FIG. 1. A bond configuration in the doped RVB state
C�u, y�. Solid (empty) circles represent spins (holes) wit
bond correlationsuij (ykl).
© 1999 The American Physical Society
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u�rij� and y�rij� are independent spin and hole bond
parameters, respectively. uij $ 0 connects i on sublattice
A to j [ B, respectively, which ensures Marshall’ s sign.

The expectation value of an observable O is computed
by a sum over loop coverings:

	O� �
X

g,Lg

WL,gOL,g ,

WL,g �
1

	C�u, y� jC�u, y��
(2)

3 det
ij[g

2jyijj
Y

l[Lg

√
2

Y
�i,j�[l

uij

!
.

Lg denotes a list of directed loops 
la� which cover
the lattice except for subset g of xL2 hole sites. W
are positive Boltzmann weights, with which the Monte
Carlo Metropolis step is defined following Refs. [6,7].
Ergodicity and convergence of our program was checked
against precise transfer matrix results [11].

The Gutzwiller approximation (GA) amounts to drop-
ping the projector P �x� in state (1) and setting C ! c̄ ,
after adjusting the overall normalization of u and y to
satisfy the global constraints 	nai 1 nbi � � �1 2 x�, and
	nfi � � x. c̄ is a Fock state of decoupled spins and holes,
with easily computable correlations [12,13].

For the spin correlations we use power law decaying
functions up�r� � 1�rp . The single variational parame-
ter p determines the long range spin correlations and local
magnetization [14]. [Other forms for u�r�, with qualita-
tively similar results, will be described elsewhere [13].]

We discuss four cases of interhole correlations:

y
g
ins�rij� �

Ω
1 �i, j� [ g ,
0 �i, j� ” g ,

ymet�r� � 1�L2
X

k[S

ymet�k�e2ik?r , (3)

ya�r� �
X
ĥ

ca�ĥ�dr,ĥ , a � s, d ,

where jymet�k�j � 1, ĥ are nearest neighbor vectors on
the square lattice, cs � 1, and cd � ĥ2

x 2 ĥ2
y .

y
g
ins puts the xL2 holes on random sites. This state

describes an insulator with disordered localized charges.
ymet has filled Fermi pockets S, containing xL2 occupied
k states centered around �6p�2, 6p�2� in the Brillouin
zone [15]. It describes weakly interacting holes in a
“metallic” state. In real space, ymet�rij� decays slowly
as �r23�2. Correlations in this state were previously
computed by Bonesteel and Wilkins [7]. ys and yd
describe tightly bound hole pairs in relative s- and d-wave
symmetry, respectively.

Order parameters.—The local magnetization m0�L� is
defined by m2

0 � 1�L2
P
j	SiSj�pe2i�p ,p�rij . In Fig. 2(a),

m2
0�p� for C�up , y; x � 0.1� is plotted for various

choices of y. The GA (solid line) seems to work well
for m0�p�. Finite size scaling in Fig. 2(b) indicates
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FIG. 2. (a) The local magnetization squared of doped RVB
wave functions C�up , y� versus the variational power p,
defined by the bond parameters up�r� � 1�rp . Lattice size
is 40 3 40, and hole concentration is 10%. Results agree
well with the Gutzwiller approximation (solid line). The hole
bond parameters y are defined in Eq. (3). Note that m2

0 is
weakly dependent on y; the data for y � ys overlap that of yd .
(b) Finite size scaling of m0�L� for p � 3.3 which indicates
vanishing local magnetization at L ! `.

vanishing long range order m0 ! 0 at pc � 3.3, which
lowers the bound given previously by Ref. [6]: at pc # 5.
The GA at L ! ` suggests that pc # 3 [13].

The superconducting singlet order parameters are

D
s,d
i �

X
ĥ

cs,d�ĥ�Di,i1ĥ ,

Dij � f
y
i f

y
j �aibj 2 biaj��

p
2 .

(4)

By gauge invariance imposed by the Gutzwiller projector,
	Ds,d� � 0. However, C�u, ys�d�; x . 0� describe true
s- (d)-wave superconductors as seen by the (off-diagonal)
long range order in Ds,d [13].

In contrast, the insulator states C�u, yins, x� and the
metallic states C�u, ymet, x� have no long range supercon-
ducting order of either symmetry [13].

Effective Hamiltonians.—Magnetic order is driven by
the diluted Heisenberg model [14],

H J � J
X
	ij�

Si ? Sj�1 2 f
y
i fi� �1 2 f

y
j fj� , (5)

where, e.g., Sx 1 iSy � ayb. In Fig. 3 the expecta-
tion value Emag�p� � 	H J� is plotted as a function of
m2

0�p� for x � 0.1 and various choices of y from (3).
Within numerical errors all states minimize H J at around
pmin � 2.7, which by Fig. 2(a) yields local magnetiza-
tion of m2

0 � 0.08 � m2
0�0� �1 2 2x�, where m0�0� agrees

with the ground state local magnetization of the undoped
Heisenberg model [16]. We have found that pmin � 2.7
appears to be independent of x for 0 # x # 0.15. Thus
we conclude that, aside from the trivial kinematical
4849
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FIG. 3. The magnetic energy Emag (5) and Cooper pair
hopping energy Eph (7) versus local magnetization squared
m2

0, used as a variational parameter. The density of holes
is 0.1 and lattice size is L � 40. The magnetic energy is
minimized at m2

0 � 0.08, consistent with a diluted quantum
Heisenberg antiferromagnet, and is weakly dependent on inter-
hole correlations. The points of Emag�ys� overlaps Emag�yd�.
In contrast, Cooper pair hopping prefers vanishing m0 at
L ! `.

constraints, the hole density and correlations have little
effect on the magnetic energy at low doping.

A single hole hopping in the antiferromagnetic back-
ground has been shown by semiclassical arguments
[10,17] to be effectively restricted at low energies to
hopping between sites on the same sublattice: Next we
consider the single hole hopping process

H t0 �
X

	ik�[A,B

t0ikf
y
i fk�ayk ai 1 b

y
k bi� , (6)

where i, k are removed by two adjacent lattice steps, and
t0 . 0. Unconstrained, the single hole ground state of
Ht0 has momentum on the edge of the magnetic Brillouin
zone, in agreement with exact diagonalization of t 2 J
clusters [18]. Previous investigations have found that
intersublattice hopping (the t term in the t 2 J model), is
a high energy processes in the antiferromagnetic (AFM)
correlated state [10,17]. We thus expect the same to hold
even in RVB spin liquids with strong short range AFM
correlations but no long range order. The primary effects
at low doping may be to shift the ordering wave vector.

The single hole hopping (6) prefers the metallic state
y � ymet over the superconductor y � ys, yd [13]. It
also prefers longer range u�r� and thus actually enhances
magnetic order at low doping. This is a type of a Nagaoka
effect, where mobile holes separately polarize each of the
sublattices ferromagnetically.

Now we consider Cooper pairs hopping terms

H J 0 � 2J 0
√X
ijk

D
y
ijDik 1

X
	ij�,ĩj̃

D
y
ijDĩj̃

!
. (7)
4850
The first term is derived from the large U Hubbard
model to order J 0 � t2�U [10]. It includes a rotation
of the singlet pair, which prefers yd over ys. The
second term is a parallel translation of singlets. It prefers
superconductivity with y � yd over metallic states with
y � ymet [19].

In Fig. 3 the ground state energy Eph of (7) is plotted
for y � yd , x � 0.1, and L � 40. For y � ys, Eph . 0.
The variational energy is minimized at p � 3.35, which by
the finite size scaling of Fig. 2(b) indicates vanishingm0 at
large L. Note the striking difference between the minima
of Emag and Eph. Thus, Cooper pair hopping drives the
ground state toward a spin liquid phase.

A simple explanation is that pairs can hop with greater
overlap when parallel bonds have maximum singlet com-
ponents. When u�r� is longer ranged, triplet contributions
are larger, which inhibits pair delocalization. Incidentally,
the Gutzwiller approximation fails to predict this effect
since it decouples the local correlations between spins and
hole pairs.

Since H J 0 is the effective model which drives super-
conductivity it produces phase stiffness, which in the con-
tinuum approximation is given by

H J 0 �
V0

2

Z
d2x�=fi�2. (8)

The stiffness constant V0 can be determined varia-
tionally from the RVB states by imposing a uniform
gauge field twist on the bond parameters yi,j !
yi,j exp�i�xi 1 xj�f�2L� and measuring Eph�f� to find
V0 � d2Eph�df2.

Following Ref. [9], at low doping for the square lattice
V0 is roughly equal to Tc.

In Fig. 4 we show our main result: The staggered
magnetization m0 for H J 1 H J 0 is plotted against
the superconducting to magnetic stiffness ratio V0�J for
different doping concentrations x � 0.05, 0.1, 0.15.

Two primary observations are made: (i) The local mag-
netization is sharply reduced at relatively low supercon-
ducting stiffness (and Tc�J). (ii) The relation between
m0 and V0�J appears to be weakly dependent on the pre-
cise hole concentration.

Because of finite size uncertainty, m0 in Fig. 4 is an
upper bound on the thermodynamic local magnetization.
The GA extrapolation suggests thatm0 may actually vanish
already at V0�J $ 0.2. This is in qualitative agreement
with the doping dependent of the local magnetization
measured by Refs. [1,2], which diminishes rapidly above
the onset of superconductivity.

In a quantized theory of stripes [20], mechanisms for
diminishing m0 assume anisotropic magnetic couplings, or
fluctuating antiphase domain walls. A direct connection
between superconductivity and m0 is not obvious in these
approaches.

In a recent projected SO(5) theory [21], spins and
hole-pair dynamics have been considered with excluded
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FIG. 4. The relation between thermodynamic local magneti-
zation mL�`

0 and superconducting phase stiffness V0 (related to
Tc; see text). J is the Heisenberg exchange energy. The points
are considered upper bounds on m0, which may even vanish for
V0�J $ 0.2.

double occupancies. A variational relation is obtained
between superconducting stiffness and the magnetic order
parameter, which resembles the results of this paper.
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