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The projected SO(5) theory [pSO(5)] is used to resolve the puzzle of two distinct energy gaps in high
Tc superconductor-normal-superconductor junctions. Counter to the conventional theory of multiple
Andreev reflections (MAR), the differential resistance peaks are associated with the antiferromagnetic
resonance observed in neutron scattering, and not with Cooper pair breaking. The pSO(5) and MAR
theories differ by the expected tunneling charges at the peaks. We propose that shot noise experiments
could discriminate against the conventional interpretation.

PACS numbers: 74.20.Mn
In current transport through high Tc superconductor
junctions, there seem to be two energy scales [1]. The
upper energy is seen in tunneling conductance [2], and
is identified with the “pseudogap” Dp which appears in
magnetic resonance [3] and photoemmission [4]. A lower
gap, which scales differently with hole doping, manifests
as peaks in the differential resistance of superconductor-
normal-superconductor (SNS) Josephson junctions [5].
These peaks have been interpreted using the conven-
tional theory of multiple Andreev reflections, following
Klapwijk, Blonder, and Tinkham (KBT) [6].

KBT theory treats two conventional superconductors
with a single s-wave BCS quasiparticle gap D, separated
by a free electron metal. Electrons traversing the metal are
Andreev reflected back as holes, gaining energy increments
eV at each traversal (as depicted in Fig. 1). Peaks in the
differential resistance appear at voltages 2D�ne, and are
due to the �E 2 D�21�2 singularity in the quasiparticles’
density of states. However, in cuprate SNS junctions, such
as YBa2-Cu3-O6.6-YBa2-Cu2.55-Fe0.45-Oy-YBa2-Cu3-O6.6
examined by Nesher and Koren [5], application of KBT
theory is problematic. A naive fit to KBT expression
faces the two gaps puzzle, i.e., an “Andreev gap” is of the
order of D � 16 meV, while the tunneling gap is about
three times 33 larger [7], and scales differently with Tc.
Without perfect alignment of the interfaces, it is hard to
understand the observed sharpness of peaks [5] since the
d-wave gap is modulated for different directions. More-
over, the barrier is by no means a “normal” metal devoid
of interactions: it is an underdoped cuprate with antifer-
romagnetic correlations and strong pairing interactions as
evidenced by a large proximity effect [8].

The purpose of this Letter is to provide an alterna-
tive explanation for the differential resistance peaks se-
ries [5], which takes into account the strong correlations
in the pseudogap regime. Our analysis resolves the two
energy scales puzzle. We employ the projected SO(5)
[pSO(5)] model [9], which is a strong coupling effective
Hamiltonian. It describes the dynamics and interactions of
four primary bosonic modes of cuprates: preformed hole
pairs and massive spin one magnons.
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A differential resistance peaks series is found at bias
voltages Vn � Ds��en�, n � 1, 2, . . . where Ds is the an-
tiferromagnetic resonance energy. This resonance has been
directly measured by inelastic neutron scattering. The
peaks are thus associated with emission of magnon pairs
at the resonance threshold, and not with pair breaking, as
in KBT theory. We note that other predictions to observe
magnons (also called p modes) in various cuprate junc-
tions were made [10,11], but await experimental confir-
mation. We propose that measurement of the excess shot
noise below the peaks could discriminate against the KBT
interpretation. pSO(5) theory predicts tunneling charge
2ne below the nth peak, while KBT theory expects charge
ne. We shall discuss this proposed experiment at the end
of the paper.

Degrees of freedom.—At energies below the pseudogap
Dp , preformed hole pairs (with internal d-wave symme-
try), describe the primary charge degrees of freedom in
the underdoped regime [12]. The hole pairs are bosons,
and their phase fluctuations are controlled by the two di-
mensional superconducting stiffness rc, as measured by
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FIG. 1. KBT theory: Differential resistance peaks of n � 6
(left diagram), and n � 5 (right diagram), involve a cascade of
n Andreev reflected charges traversing the normal metal. Sin-
gular dissipation is due to emission of quasiparticles above the
s-wave gap. Filled (empty) circles denote electrons (holes) in
the normal barrier.
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the London penetration depth. At Tc, the pairs Bose con-
dense and long range phase coherence is established. This
scenario can explain [13] the empirical relations Tc ~ rc,
which have been observed in cuprates [12] at low doping
concentrations. The other low energy charge excitations
are fermionic quasiparticles near the d-wave nodes. These
have a smooth density of states which decreases below Dp .

Additional bosonic excitations below the pseudogap en-
ergy scale, are antiferromagnetic spin fluctuations, i.e.,
magnons. Massive spin one magnons have been observed
in inelastic neutron scattering [14] in YBa2-Cu3-O61d.
They manifest as a sharp resonance in the spin correla-
tion function Saa0 , which near the antiferromagnetic wave
vector q � �p has the form

Saa0�v, q� � s0
daa0

v2 2 c2�q 2 �p�2 2 D2
s

. (1)

Here c is the spin wave velocity, and s0 is a normalization
factor. The doping dependent resonance energy Ds�d�
increases [14] between Ds�0.5� � 25 meV (with Tc �
52 K) and Ds�1� � 40 meV (with Tc � 92 K) [14].

The projected SO(5) theory.—The large onsite Hubbard
repulsion between electrons is imposed by an a priori
projection of doubly occupied states from the Hilbert
space [15].

The undoped vacuum j0� is a half-filled Mott insulator in
a quantum spin liquid state. The pSO(5) vacuum possesses
short range antiferromagnetic correlations. A translation-
ally invariant realization of j0� on the microscopic square
lattice, is the short range resonating valence bonds state
[16,17]. Out of this undoped vacuum, b

y
h create charge

2e bosons (hole pairs) with internal d-wave symmetry
under rotations, and by

a , a � x, y, z create a triplet of an-
tiferromagnetic, spin one magnons. The lattice pSO(5)
Hamiltonian is

H pSO�5� � H charge 1 H spin 1 H int 1 H Coul
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where :� �: denotes normal ordering, and na
i � �by

ia 1

bia��
p

2 is the Néel spin field. H int describes short
range interactions between bosons, and H Coul describes
the long range Coulomb interactions. Hferm describes cou-
pling to the nodal (fermionic) quasiparticles, which con-
tribute to a large, but smooth, conductance background.
Here we will concentrate on the conductance singularities,
and will not compute the fermionic background.

The mean field approximation to Eq. (2) is straightfor-
ward [9]. It amounts to replacing b

y
gi ! �by

gi�, g � h, a,
and minimizing H charge 1 H spin 1 H int with respect
to �by

gi�. There is a first order transition between the
two primary mean field phases on the square lattice at
m � mc, where

mc �
1
2

�ec 2 es� 2 �Jc 2 2Js� , (3)

mc is of the order of the Hubbard interaction scale. At
m , mc we have an undoped Mott insulator with no hole
pair bosons, and where the magnons Bose-condense. The
condensate supports a finite staggered magnetization

j�na�j2 �

µ
2Js 2

1
2

es

∂ ¡
W , m , mc . (4)

There are two linear spin wave modes v � cjqj, where
c �

p
2 Js�h̄ is the semiclassical spinwave velocity of the

Heisenberg antiferromagnet. At m . mc the ground state
becomes doped with hole pairs which Bose-condense into
a superconducting phase with an order parameter

j�by
i �j2 � �m 2 mc 1 2Js 2 es�2��W , m . mc .

(5)

Long range interactions in H Coul frustrate the first order
transition and create intermediate (possibly incommensu-
rate) phases [9], which we shall not discuss here.

The mean field phase stiffness is given by rc � Jc�by
i �2,

and therefore Eq. (5) explains why rc increases with
chemical potential (and doping) in the underdoped su-
perconducting regime, as observed experimentally [12].
Analysis of the linear quantum fluctuations about mean
field theory determines the magnon dispersion, i.e., the
poles of Eq. (1). The mean field magnon gap is found
to be

Ds � 2
q

�m 2 mc� �m 2 mc 1 4Js� , (6)

which by Eq. (5) implies that D2
s ~ rc, Tc. Thus the

pSO(5) mean field theory can explain the systematic in-
crease of Ds with Tc which is observed by Fong et al. [14].

The cuprate SNS junction.—We consider a junction,
where the barrier (N) has no superconducting or magnetic
order �by

h � � 0, �na� � 0. We derive on general grounds
the form of the effective tunneling Hamiltonian between
superconductors as follows. An integration of the barrier’s
charged bosons bh out of the path integral results in an ef-
fective action S tun which couples the charges of the two
superconductors. S tun�bhL , bhR , ba� explicitly depends on
the hole pairs bosons on the left and right interfaces, and
on the magnons in the barrier. By charge conservation, an
expansion of S tun as a power series leaves only terms with
an equal number of bh’s and b

y
h ’s. By spin conservation,

the magnon terms are singlets and hence at least bilinear
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in na . This expansion leads to a series of tunneling terms.
For the Andreev peaks we retain only the leading order
terms (in by, b) which are

H tun-mag � 2
X
n

�An 1 Ay
n�

An �
X

y1...y2n ,x,x0

Tnb
y
hL,1 . . . b

y
hL,nbhRn11 . . . bhR ,2n

3

"X
a

na�x�na�x0�

#
. (7)

Ay
n describes a simultaneous tunneling of n hole pairs

from the left to the right superconductor, coupled to a
magnon pair excitation. Tn is the tunneling vertex func-
tion, which depends on the bosons’ positions.

The energy transfer mechanism is depicted dia-
grammatically in Fig. 2. We do not compute Tn’s which
depend on the details of the barrier and the interfaces. A
“good” N barrier is defined to have sizable Tn, if multiple
pair tunneling terms are to be observed. This requires a thin
barrier with slowly decaying spin and charge correlations
[8]. It is important to note that multiple pair tunneling,
i.e., the differential resistance peaks at n . 1, depends
on strong anharmonic interactions between the hole
pairs and magnons. These interactions are an essential
part of the pSO(5) theory as modeled by H int in Eq. (2).

The junction’s conductance is calculated in the stan-
dard fashion [18]: The bias voltage V transforms the left
bosons bhL ! ei2eVtbhL , which yields time dependent op-
erators An�t�. The current is calculated by second order
perturbation theory in H tun-mag yielding
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FIG. 2. pSO(5) theory for Andreev peaks in cuprate SNS junc-
tions: Three hole pairs cotunneling from left to right, generate
a pair of magnons. At the antiferromagnetic resonance thresh-
old 6eV � 2Ds, this process contributes to the n � 3 peak of
the differential resistance. The diagram contains lowest order
contributions of hole pairs-magnon interactions to the tunneling
vertex T3.
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0
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(8)

For singular contributions Ising, we ignore superconducting
condensate fluctuations b

y
h 2 �by

h �, which have a smooth
spectrum. Similarly, we ignore the frequency dependence
of Tn�v�. Setting b

y
R ! �by

h � and b
y
L ! ei2eVt�by

h �
leads to

Ising �
X
n

2ne
X

jqx j#p�d,jqy j#p�W

�by
h �4njTn�q�j2

3 �
X
v

S�q, iv 1 2neV 1 i01�S�2q, iv� ,

(9)

where the barrier dimensions are d 3 W (see Fig. 2), andP
v is a Matsubara sum.
For a nearly antiferromagnetic “N” barrier, Tn�x 2 x0�

in (7) decays slowly with the distance between magnons.
Thus for a narrow barrier d ø W , the magnons are ex-
cited at qy � 0, and the momentum sum reduces to a one
dimensional sum over qx . At zero temperature we obtain
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n
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h �4njTn�0�j2

3 s2
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Z dqx
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X
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tn
u�neV 2 Ds�

D
3�2
s

p
neV 2 Ds

. (10)

The last expression emphasizes the singular form of
Ising�V , Ds� at the peaks. For a large background con-
ductance dI�dV ¿ dIsing�dV , the inverse square root
singularities in Ising create peaks in the differential
resistance dV�dI at voltages

Vn � Ds��ne�, n � 1, 2, . . . , Qn � 2ne , (11)

where Qn is the excess tunneling charge below the nth
peak. Note that Qn changes in increments of 2e. The
differential resistance peak series is depicted in Fig. 3, for
weak broadening of the singularities and an arbitrary set
of coefficients tn.

Discussion and proposed experiment.—We have seen
that magnon pair creation induces peaks in the differ-
ential resistance which are similar in appearance to the
Andreev peaks of the KBT mechanism. The crucial dif-
ference is that here the singular dissipative process does
not involve Cooper pair breaking, but low energy antifer-
romagnetic excitations. In the KBT mechanism, a single
sharp gaplike feature can be obtained in a d wave super-
conductor only by precise alignment of the a-b axes of the
two superconductors. Here, one only requires the junc-
tion to be flat in the transverse direction, such that qy
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FIG. 3. pSO(5) Andreev peaks: Eq. (10) is plotted for a
choice of tn�D3�2

s � 22n1024, n # 5, and a background con-
ductance of unity. Below the nth peak, the excess tunneling
charge is 2ne, rather than BTK’s ne.

is conserved and the charge pairs are coupled mostly to
the one dimensional singularity of the magnon density of
states. This requirement is less stringent for weakly dis-
persive magnons near the resonance. In KBT theory for
two identical superconductors, the peaks appear at voltages
VKBT

n � 2D�ne, n � 1, 2, . . . which are the upper thresh-
old for tunneling of charges Qn � ne. Thus, KBT al-
lows both an even and odd number of electron charges
to participate in the multiple Andreev reflection process,
as depicted in Fig. 1, while the pSO(5) theory expects
only pair charges Qn � 2ne. Observation of Andreev re-
flection enhanced shot noise S�V � has been reported by
Dieleman et al. [19] in a conventional SNS junction. They
have measured the tunneling charge via the relation [20]
S � 2QnI�Vn�. We propose that a similar measurement
in YBCO junctions could provide a decisive discrimina-
tion between the processes of Figs. 1 and 2. The goal is to
measure the charge increments Qn 2 Qn21 at the peak po-
sitions Vn and see whether they are of magnitude 2e rather
than e. The measurement would probably involve a care-
ful subtraction of the large but smooth background quasi-
particle contribution to the current and the noise spectrum.
We eagerly look forward to results of such experiments.
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