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ABSTRACT

" Using the Kondo Boson - 1/N expansion, we solve for the Fermi liquid properties of the
Anderson lattice at low temperatures. The Kondo limit of this model is shown to necessarily
induce large mass enhancements m*/m>1, and generate a low lying energy scale
Tx o (m*/m)™, which dominates the dynamics of this heavy Fermi liquid. In particular, our
calculation leads to the following predictions: (1) The spec1ﬁc heat Cy T o T/TK with correc-
tions ACy=(T/Tx)*log(T/Tx) (2) The zero temperature spin susceptibility x o 1Tg, and (3) the
resistivity p o (T/Tx)®. We analyze recent pressure dependent Cy, x and p/T? measurements on
UPt, to confirm the scaling of these quantities with a single strongly pressure dependent energy
scale. The universality of these relations is supported by evidence of systematic trends
throughout the entire class of heavy fermion compounds.

The class of heavy electron materials poses a new challenge for condensed matter theor-
ists, where traditional "tools of the trade" seem unable to provide a link between the underlying
microscopic physics and the Fermi liquid phenomena seen in experiments'. Strong two-body
interactions U between valence electrons, are present at the rare-earth sites. When U is large
these cannot simply be treated by standard perturbative expansions, and complications reminis-
cent of those of the Kondo impurity problem arise.

It is the purpose of this paper to explain the origin of Fermi liquid properties in the
heavy fermion compounds. We use a simple microscopic model, and predict universal
features which are common to most of the materials for which large mass enhancement m*/m
values are observed. We derive a consistent Fermi liquid theory for heavy fermions from the
Anderson lattice model (AL). Although no unambigous ab-initio calculation of the parameters
of the AL has yet been provided, it is based on an intuitive real-space picture which seems to
capture the important underlying physics. This model is the translationally invariant generali-
zation of the Anderson impurity model which has successfully been used to explain the Kondo
effect.

The Anderson lattice (AL) hamiltonian in second quantized notation is given by:
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where ¢, and ef° are the conduction and dispersionless valence band energies respectively. The
label i denotes the Wannier state at site r;. The N-fold degeneracy of both bands is labelled by
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m, ImS(N-1)12. V is the local hybridization matrix element which in this simplified version
is taken to be independent of kyn. The large local Coulomb repulsion is parametrized by U.
The band structure ¢, defines the bare density of states p., and the fermi surface at g=p,. The
bare chemical potential p, is determined by the total (valence plus conduction) electron density

Ho
N.=[dep.(e) .

«_ In the case of large U, i.e Uzep, yo, we can proceed by introducing the Kondo-Boson
(KB) fields of Coleman at each lattice site?, and replacing the 4-fermion term by a constraint
on the total f-electron and KB occupation. This results in the following path integral represen-
tation of the AL partition function:(k=1,8=1/T)
' B
ZAL = ID M‘bc'cf ‘f exp [—{d‘t (LAL(t)+lﬂl (f,;f,,,.+%b,'b,—Qo)) , (23)
im

where,
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Here, c;, and f;, are grassman variables, and b; are the KB complex fields. The integrations
over the Lagrange multiplier fields A, (t) impose the local constraints of ne+ny, = Qo at all times
and sites, where n4 denotes the number operator of particle . Q, is kept as a fixed parameter
(instead of Qo = I/N) in order to define a true N-independent mean field theory.

The mean field theory N=co of the AL has already been amply discussed in the literature®.
It bears close resemblence to the Hartree approximation in other many-body problems such as
the Coulomb gas and the Hubbard model. As a variational estimate of the ground state, the
same theory has been also derived using other approaches such as a generalized Gutzwiller
approximation of Rice and Ueda®, for which the relation to the KB theory has been recently
explored®. In essence, the Bose fields are replaced by their expectation values and an effective
single particle band theory is obtained. The mean field parameters ro=<b> and gr=ef+i <>,
represent the effective c-f hybridization and renormalized f-level respectively. They determine
the two renormalized bands, which are separated by a gap at ¢;. In heavy fermion systems we
are mterested in a specific limit of the AL model, the Kondo limit, where J=p,V¥(e,-€f)«1.
The mean field variational equations extremize the free energy with respect to 7o and €. In the
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Fig. 1: The spherical band AL model, mean field N=- level.
The dashed line in the bare conduction band density of states.
The solid lines is the renormalized mean field band structure.
Shaded area is the occupied Fermi sea at zero temperature.
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Kondo limit the density of states enhancement at the Fermi level is m*/m o exp(1/J)>1, and
the characteristic energy scale of the renormalized band structure Tx o pgexp(-1/7). Also the
AL model reduces to the Coqgblin-Schrieffer (Kondo, for N=2) lattice since the f-charge
fluctuations are greatly suppressed. For large m*/m, the Kondo lattice temperature Tx emerges
as the smallest energy scale in the Fermi liquid and thus dominates its low temperature proper-
ties. In Fig. 1 we plot the density of states for a heavy fermion system with a spherical con-
duction band. The large peak of the renormalized density of states at the Fermi level is a
direct consequence of the local f-charge constraint, and it confirms the idea (supported by the
"dense Kondo system" approaches’) that the individual Kondo resonances overlap and form a
narrow band of mostly f-character.

The results of the mean field theory thus allow us to understand the large mass enhance-
ments as observed in the specific heat and susceptibility. However the Wilson ratio at this level
is unity and the resistivity vanishes at all temperatures since no interactions between quasiparti-
cles have yet been included.

In order to obtain information about the interactions it is necessary to allow for fluctua-
tions in the bose fields. This was carried out by the authors using a functional integral formal-
ism® and applying the Read and Newns’ radial gauge transformation on the Bose fields. The
analogous calculation in the cartesian coordinates has been carried out by Millis and Lee®, who
arrived independently at the same results. The steepest descents evaluation of the free energy
amounts to a 1/N expansion, with which we have extracted the leading orders in the vertex
function and quasiparticle self energy. Interactions are mediated by an RPA-like Kondo boson
propagator which represents simultaneous fluctuations of the c-f hybridization matrix elements
and the renormalized f-level energies. We have obtained the Landau scattering amplitudes
{A7“} following the microscopic prescription of Ref.9. Here, "s" and "a" denote the general-
ized symmetric and antisymmetric channels respectively. We find that the /=0,1 parameters are
(up to relative corrections of O (N, m*/m™):

-1.000 0.08 . . e =12
A8=T+T(Qo/uo) ; A§ =1.000 :A1=A1=T(Qo/uo) ‘ 3
_ Also, it follows that the susceptibility and specific heat are renormalized such that
x = x°(1+dm* Im-A3+0 (1IN?) , @)

d simililarly: )
and simfifany AV (148m* Im+0 (UN) . ®)
These are known Fermi liquid identities related to spin and charge conservation. m*/m is
given in terms of the derivatives of the O(1/N) self energy.

In addition to the correction to ¥, there exists a specific heat correction AC, analogous to
the paramagnon T*log7 contribution in liquid *He. Our analysis followed Ref. 10, where the
Kondo boson propagator replaced the RPA susceptibility that mediates the spin fluctuations.
We found:

., [T — T )
ACV =8T log [T?] + 0((T/TK)3) . d=a [T—] N (6)
K K

where a is a positive number close to unity. The contributions to C, from higher powers of
temperature are dominated by the variation of the mean field parameters ro€s, and p, with °
characteristic energy scale Ty.

Using this approach we were also able to estimate the T2 coefficient of the low tempera-
ture resistivity p=AT2. We follow the analogous paramagnon calculation'!. The result is:
P=ATH O ;A= puy (T, a
where ., = h/(e%k,N?) = 100-300uQcm and where A is a Fermi surface geometric factor of
order unity.
Our results in Egs. (4), (5), (6) and (7), can best be summarized by the simple propor-
tionality relations which are obtained between vy, %, A and 8.
ray; Aay ; day . ®

The pressure dependence is a useful probe to the relations (8). In UPts, y can vary under pres-
sure by 40%. As shown in Fig. 2, our predictions appear to be well confirmed by experiments.
This analysis of the data raises doubts about the validity of paramagnon models, for which
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Fig. 2. Scaling of thermodynamic and transport coefficients
with pressure dependent . (For the latter see Ref. 12). x are
from Ref. 13, resistivity from Ref. 14. The symbols + and x
correspond respectively to the coeffient 8 of T°InT term in Cy
and the coefficient € of T term in C, (from Ref. 12). The
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Fig. 3: Scaling of %, 8, and A=t,T* with pressure dependent ¥
in liquid *He. Data taken from Ref. 15. Here, 1, is the quasi-
particle lifetime as measured by the viscosity. In contrast to
Fig. 2., it is evident that the rclations (8) are not applicabie to
this Fermi liquid, in which ferromagnetic spin fluctuations are

solid lines are theoretical results summarized in Eq. (8). assumed to be important,
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Fig. 4. Universal ratios in the heavy Fermion compounds.
x/y data are from Ref. 1 and A = p/T? data are from Ref. 16.
The solid lines are theoretical results summarized in Eq. (8).

relations (8) are not expected to be valid as happens in liquid *He. In fact, large deviations
from these relations are found for the analogous experimental measurements in *He. These are
plotted in Fig. 3. Also, as demonstrated in Fig. 4., universal relations between v, 4 and A for
many different heavy fermions seem to correlate remarkably well with Eq. (8), We can there-
fore use the data to rule out theories which invoke different energy scales for y* and e.g. A72,
For example the so called "single Kondo" and the "intersite coherence” temperatures were used
to characterize these quantities respectively in several heavy fermion materials. However such
theories would be hard pressed to explain Fig. 4, where the coefficients in materials with com-
pletely different chemical composition and lattice structure seem to obey the same relations.

There is widespread evidence for antiferromagnetic correlations!’, in the heavy fermion
materials, Because these fluctuations sometimes lead to spin density wave instabilities, this
raises questions about the relation between the two instabilities and their implications on the
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symmetry of the order parameter. The present O(1/N) level of course is insufficient to provide
answers related to multiple scattering of quasiparticles which thus requires an infinite resumma-
tion scheme. We are currently investigating such schemes in relation to both channels of insta-
bility. The analogy to theories of itinerant antiferromagnetism suggests that the KB interaction,
with sufficient Fermi surface nesting, is sufficient to produce such an instability. To provide a
detailed understanding of different materials it is necessary of course to generalize the spherical
band AL model and include a realistic band structure with the correct crystal symmetries.
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