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'

Equations for the current correlation functions for round and rectangular probeholes, taking
the finite resolution of the field emission microscope into account, are derived and discussed. The
effect of finite resolution introduces a fictitious time shift, so that the argument of the previously
derived functions t/7y —t/7y +2(A/ry)? where X is the resolution parameter for an assumed
Gaussian resolution function and r, the radius of a round probehole or the full dimension of a
rectangular slit, and 7, the previously defined relaxation time. This shift causes the current
correlation function to decay more slowly than it would for A =0 and thus makes apparent
diffusion coefficients, determined by neglecting non-zero A smaller than they in fact are. Roughly
speaking the effect can also be interpreted as causing an increase in the effective probe dimensions
by an additive amount 0.75A. It is also shown that the importance of resolution decreases linearly
with increasing emitter radius.

1. Introduction

The field emission current fluctuation method of determining the diffusion
coefficients of adsorbates on metal surfaces [1,2] has recently been extended to
the determination of diffusion anisotropy by employing a rectangular probe
region [3]. For this case the narrow dimension of the region from which
emission is obtained can be comparable to the resolution of the microscope
itself and this requires re-examination of the equations previously derived for
the current correlation function with neglect of resolution effects [1,2].

2. Analbgue of g(t)

We start by deriving an expression for the simplest case which assumes that
a fluctuation in field emission current density in an element of area d*r at r is
given by [1,2] :

8j(r, t)={(c, +27Pc,){j)8n(r, 1), (1)
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where (j) is mean current density, 8n(r, ) the density fluctuation at r at time
t and c¢; and ¢, constants related to the Fowler-Nordheim equation, which
have been defined previously [1]. P is the adsorbate dipole moment. If
resolution effects are neglected, the current fluctuation correlation function for
probed area 4 becomes

f(1) =<Ai(0)Ai(1)y /iy
=%<L a%xj(x,0) [ dsj(x, t)>

_(Cl+27P02)2 2 2. r)

———AZ—L d fo d’x’(8n(x,0)8n(x’, 1))

_ Sy(ey+27Pe,)’ ¢, ¢, exp(—|x—x'|>/4Dt)

- v fAd fod x D , (2)

where brackets denote ensemble averages,

So=((8N)*y/A4 | 3)

and ((6N )2> is the mean adsorbate number (not density) fluctuation in 4.
The factor 1/4% in the RHS of eq. (2) arises because (Ai(0)Ai(¢)) has been
divided by (i)*= (j)?4* If resolution is considered we recognize that the
current observed in d%x at x comes not only from d’x but from the entire
surface suitably weighted by the normalized resolution function RMN(x, r),
which we assume to be

RMx, r)=(1/7)%) exp[ —(x— r)2/7\2] , 4)

where A is a resolution length scale, to be discussed later.
Thus the total current density at x is

J(x)= fw:—;\; exp| - (x = r)’ /] ju(r), )

where j.(r) refers to current density emitted at r. It also follows from the
normalization of R that

(J(x)y = Ce(r)y = <) (6)

so that the average current (i) collected from A4 is

(iy = A, (™)



R. Gomer, A. Auerbach / Finite resolution and determination of diffusion coefficients 495

which must be true for spatially invariant (j) regardless of resolution. If we
now consider the current density fluctuation at x we find from egs. (1) and (4)

. [ ¢ '
8j(x) = (er+27Pe;)(j) [ W—AZ exp| = (x—r)*/N] én(r). (8)
Thus the analogue of (2) becomes
(¢, +27Pc,)’S, , , 2
fi(t)=—WL dzxj; d’x fw dzrfoo dr exp[—(x—-r) /)\2]

— |2
expl - (v =) 0] S22 /420 o

To proceed we use the identity

/_ww du exp[ —(x- u)z/aZ] exp[ —(y- u)z/bZ]

ma*b? " 2
=(¢12+b2) exp[—(x—y) /(a2+b2)], (10)
written here in one dimension. Since (r— p)?=(r, — p, ) + (r,— py)2 in two
dimensions, eq. (8) for 2D integrals is obtained by removing the square root
sign in the pre-exponential term. Integration of eq. (9) over d%r and d?#’ then
yields

(¢;+27Pc,)So [ ., ., expl—|x — x'|2/(4Dt + 22%)]
file)= e [, @], @ 7(4D1 + 20) - 1

This is precisely the previous result eq. (2) if 4Dt is everywhere replaced by
4Dt + 2N,

The physical significance of this is that finite resolution translates the
current (not number) correlation function in time as if some diffusion, i.e.
smearing out of the original delta functions, which can be thought to represent
the fluctuation at ¢ = 0 had effectively occurred prior to ¢t =0.

For a round probehole of radius r, the normalized time 7[1]

T=1t/7, ’ (12)
with

=r3/4D, ' (13)
therefore goes over into

=1/m+2(A/r)%, (14)
while for a rectangular probe of dimensions 2a X 2b along the x and y axes
W =1/t +3(\a), =1/1,+}(\/b)’ (15)
with

1.=a’/D, 7,=b*/D. (16)
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It is trivial to extend the result to anisotropic diffusion for a rectangular probe.
One obtains in the approximation of eq. (11)

(Cl + 27TPC‘2 )ZSO

fi(t)= Ve ¢1(Ty,)¢1('rx,)’ (17)
with ¢, defined previously [3] and egs. (16) replaced by
r.=a*/D,,, 7,=b/D,, (18)

for a probe 2a X 2b oriented as before, assuming x and y to be principal axes
so that

D, O
- ( ) (19)

3. General case

Eq. (1) assumes in essence that local work function is determined by local
density. More precisely, however, we should write [1,2]

8;(r)=c,8n(r)+c,0¢(r), (20)

where

bo(r)= [ d fd 0n(3). (21)
le=yi+a]

The integrand in eq. (21) represents the contribution to the potential at a
distance d above the point r on the surface from a point dipole at y on the
surface. The dipole is so defined that 2#P(n) rather than 47P(n) represents
the average work function increment of a layer of (n) dipoles per unit area.
The distance d=5 A enters because in field emission the potential at this
distance is most relevant [1]. This more exact representation of 8¢ introduces
non-local effects and leads to three functions g;, g,, g; and the form (if
resolution is neglected)

: 2
£.(1) = (So/4%) [ i1 (1) + (27Pe,) g (1) + 2¢10,27P 3(1)] (@)
as shown previously [1] We must now find the analogue of eq. (22), by writing

f,(t)———%<f d2f exp[ (x—7r) /)\2]
X[,8n(r, 0) +c,8¢(r, 0)]

XL d%'j;% exp[—(x’—r’)z/)\Z][CISn(r’, t)+cd0(r, t)]> (23)
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and then using eq. (21) in eq. (23). The result will also be of the form (22), with
the first term giving (Syc;/A4%)g,(7") with 7’ given by eq. (14) for a circular
probe. The integrals occurring in the analogues of g, and g; are not tractable
and would have to be handled numerically. From the expression of 8¢(r), eq.
(21), one can see that the non-local effects have a length scale of order d, which
is much smaller than other lengths in this problem, namely the resolution A
and the radius r,. Thus it introduces changes in g, which would be similar to
the effect of finite resolution A; we therefore approximate the integrand in eq.
(21) by a Gaussian form which permits the “contraction” described by eq. (10).
We write

(P/a*)[(r-y)'/a*+1] " = (P/d?) exp| - (r—y)’/24?]. (24)

The factor 2 in the exponent ensures that the integrals over infinity of both
sides of eq. (24) considered as functions of p = r — y give the same value, 27P.
The integrations can now be carried out as before and we obtain

1) = [((3N)?y /4] [ 31 () + @Pey g0 () + 210, 20Pgy (+77)

+0(d/A)’ +0(d/r,)| (25)
for a circular probe of radius r, with '
v =t/7+2\/n)", (26a)
" =1/1+ 2(A/ry)" + 4(d /), (26b)
" =1/1+ 2N /ry)’ + 2(d/r, ). (26¢c)
g,(7’) is given explicitly by

2
4 —ri 1 2 2. _ a2
gi(r) =7 7 [, &0, & exp(=lo—p'1/7), (27)

and so on. Here p = x/r;, p’ = x’ /r,. By analogous procedures one obtains for
anisotropic D

fi=[(8N )y /47] abl(t/f;)[ 3oy(7) + (27Pc;) o1 (7")

+2¢,0,27Po, (1, )] (28)
with
7 =1/1,+3(A\/b)", (29a)
. =1/1,+}(\/a), | (29b)
o =t/7,+ ¥ (A/a) + (d/a)’ (29¢)

T =t/Tx+%(A/a)2+%(d/a)2’ (29d)
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with ¢,(7)) and ¢,(7)) given by

1(7)) = f f dx o] - (x ;/)2/471, (30a)
e

and so on. The integral in eq. (25) has been previously computed numerically
[1] and the integral in eqgs. (30) can be obtained analytically [1].

It is interesting to look at the structure of eqs. (25) and (28). The effect of
having to sum once over dipoles in order to obtain the analogue of g; or ¢,
introduces an additional (non-dimensional) “time” 2(d/r,)* or 3(d/a)? and
the double sum over dipoles introduces twice these shifts into the analogues of
g, or ¢,. This result can again be understood by the previous argument: Some
fuzzing out is introduced into the current fluctuation correlation function and
manifests itself as apparent diffusion even when real time ¢ =0. It is also
obvious from the form of egs. (26) and (29) that all the shifts become
decreasingly important as real time increases. Qualitatively these features can
be seen in the plots of g, and g; versus 7 in ref. [1] (where 7 as used in the
present paper is labelled ¢) for various values of z=d/ry,. As T increases the
curves approach fairly closely to that for z =0, i.e. g,. Thus the approximation
of the integrals over the dipole potential, eq. (21) by a Gaussian is justified. In
the presence of the main shift, 2(A /,)? or its analogue for the rectangular case
the effect on g of the shifts resulting from the dipole integrations is small and
will not depend strongly on the exact form of the approximation for eq. (22).
Approximately then when (A/r))? < (d/ry)? (or (A/a)? <(d/a)?) it is ap-
propriate to use the old forms of the correlation function which neglect
resolution, while when the inequality is reversed the new forms can be used
virtually with neglect of the (d/r,)? or (d/a)? contributions so that a single
function, g;(/7, + 2(A\/1,)?) or ¢,(t/7. + 3(A/a)*) can be used.

4. Resolution

The resolution of a field emission microscope is determined mainly by the
fact that emitted electrons have a finite component of transverse momentum
which is conserved in tunneling [4]). The most probable displacement of an
electron originating at some point on the emitter from the position it would
have on the screen if it had zero transverse velocity, divided by the magnifica-
tion M is roughly the quantity A. Thus we can take to first approximation [4]

A=13%x10"*B(r/ka¢'/?)"”* cm, (31)
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where = 1.5 is a compression factor, r, the emitter radius, a = 0.8-0.9 an
image correction, ¢ the emitter work function and k = 3.5 [5], a quantity
occurring in the field voltage proportionality

F=V/k. (32)
The radius (or other relevant dimension) of the probed region is given by
ro="r,/M=rBr/x, (33)

where x is tip to screen, i.e. tip to probehole distance, and r, probehole
dimension.
Consequently,

(A/r)" =2.54 %1073 /r2r,, (34)

assuming ¢ = 5.0 eV. Thus the importance of including resolution decreases
linearly with increasing tip radius. For typical values of 7, = 0.075 cm, x = 3.5
em, (A/ry)?=5.6 X107 /r,. For r,= 3 X 10~ c¢m for instance (A/r,)* = 0.19.

5. Effect of resolution on measured values of D

The experimentally accessible quantity is f;(¢)/f,(0) versus log ¢ where ¢ is
real time. Thus the correct value of 7, and hence D will be obtained if this
curve is compared with

g (/% + 20 /1)) /& (200 /%)),

plotted versus log(?/7), i.e. log 7. The value of D,,,. so obtained is always
larger than that of D,,, found by comparing f,(¢)/f,(0) versus log ¢t with
g:(7") versus log 7’. This latter comparison will not give a perfect fit over the
entire range of 7’ values but gives reasonable agreement for 7’ < 5-10, as
illustrated in fig. 1 for the one-dimensional case for 3(A/a)%=2.47. For this
example ¢z /7, = 0.7 corresponds to 7’ = 0.1 or since

D= a¥/n,=a¥/(1/0.7) | (35)
and
Dypparem = a2/7 = a/(1/0.1), (36)
D"m,‘/Dappelrem =(0.7/01=17. (37)

This result can also be interpreted by saying that the effect of resolution is to
increase the effective probe dimension so that using eq. (36), which corre-
sponds to comparing the experimental curves with the theoretical curve based
on A =0, requires increasing the effective value of r, or a. In the particular
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Fig. 1. Comparison of ¢,(¢/7, + 2()\/a) ) versus log(t/‘r +3(A/a)?) (solid line) (i.e. (1)
versus log 1) with ¢,(¢ /7, + 2(J\/a) )/$1(3(A /a)?) versus log(t /), (O), for 2(A/a)* =2.47.
The curves have been displaced horizontally for best fit, which occurs when r=1/1, = 7(t/7,
2()\ /a) ). Also shown is a comparison of the solid line with the unnormalized ¢,(¢/7,
+ 3(A/a)?) versus t /7, curve, (X), matched at very large values of ¢/7,; this is accomphshed
here by letting the 7 and 7’ scales coincide. At small values of ¢/7,, ¢,(t/7, +3(A/a)?)
corresponds to ¢,(2.47) = 0.34.

example chosen, which was based on @ = 13.5 A and A = 30 A, g =a+0.75\.
Virtually the same correction applies to circular probes.

The above can also be understood in a slightly different way, by noting that
it is equivalent to comparing g,(1/7+ 2(A/r5)?)/81(2N/1y)?) versus t/7,
with g,(¢/7%) versus t/*r0 The latter is the same as g;(7’) versus 7’ since the
name of the argument is immaterial. At 1 =0, g,(7/7) =1 but g,(2(A/r,)?*) <
1. Since gl(t/'r0 + 2()\/r0) ) &1(t/7%) as t/1, increases, the decay of g,(¢/7,
+2(A/rd)/8:1(2(A/1,)?) for 0 < /7, must be less than that of gl(t/'ro) versus
t/7, in the same interval. But g,(t/7 + 2(A/ry)?)/g:(2(A/1)*) =£,(1)/£.(0)
and consequently an attempt to find D,;, by comparing f;(¢)/f;(0) versus log ¢
with g,(¢/7) versus log(#/7,), i.e. ignoring the effect of A, gives a value which
is too small. The same argument applies to the one-dimensional case.

Roughly speaking then the effect of finite resolution can be taken into
account by correcting the effective probe dimensions by adding = 0.75A. This
correction is also approximately valid for finding ((8N)?) as can be seen from
eq. (23) or (26).

If A is calculated from eq. (29) the correction to both D and (6N )?)) can
be made accurately as outlined above. In principle it is also possible to
estimate A /r, experimentally if meaningful measurements can be carried out to
times so long that /7y = t /7, + 2(A/ry)*. The £,(¢)/f,(0) versus log ¢ curve can
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then be matched at very long ¢ to g;(7") versus log 7, and this gives 7,. If the
curves are then compared without additional shifting at small values of ¢ where
the g(7’) curve lies appreciably below f;(¢)/f;(0) we have

£(0)/0)=g1(+) /81 (2(A/n)?), (38)
so that
£1(2(A/10)") = &1(v) /(f:(1) /£:(0)) (39)

and (A/ry)? can be found from g;(x) versus x.

For a rectangular probe f;(¢)/f;(0) becomes a function of 7, and 7, at long
times and this procedure does not work, but more involved fitting procedures
could be used.
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Note added in proof

R. Morin (private communication) has evaluated eq. (23) for arbitrary d in
the circular case by Fourier transformation. In the limit of d/A < 1 his general
result reduces to ours, eq. (25).
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