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Metallic transport of hard-core bosons
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Conductivities and Hall coefficients of two-dimensional hard-core bosons (HCB) are calculated using the
thermodynamic expansions of Kubo formulas. At temperatures above the superfluid transition, the resistivity
rises linearly and is weakly dependent on boson filling. The zeroth-order Hall coefficient diverges toward zero
and unit fillings, and reverses its sign at half filling. The correction terms, which are calculated up to fourth
(Krylov) orders, do not alter this behavior. The high temperature thermal Hall coefficient is reversed relative
to the electric Hall coefficient. We discuss relevance of HCB transport to the metallic state of short coherence
length superconductors.

DOI: 10.1103/PhysRevB.109.035117

I. INTRODUCTION

Two dimensional hard core bosons (HCB) is a paradig-
matic model of strongly interacting lattice bosons, and short
coherence-length superconductors. HCB have modeled 4He
superfluid films [1], cold optical-lattice bosons between
Mott insulator phases [2,3], low-capacitance Josephson junc-
tion arrays [4,5], and the superconducting fluctuations of
cuprates [6,7].

HCB density-temperature (n − T ) phase diagram has been
well explored by numerical simulations of the spin-half quan-
tum XY model, using sign-free quantum Monte Carlo (QMC)
averaging [8–10]. Below the Berezinskii [11], Kosterlitz, and
Thouless [12] (BKT) temperature TBKT(n), which is max-
imized at n = 1

2 , HCB exhibit zero resistance and a finite
superfluid stiffness, which can be explained by the classical
XY model. In a narrow regime of short-range phase correla-
tions above TBKT(n), Halperin and Nelson (HN) [13] showed
that the resistivity rises due to proliferation of free vortices.
In order to apply HN theory for the HCB resistivity, we need
to know the “normal metal” resistivity, which is defined at a
temperature where the free vortices separation is reduced to
the lattice constant scale.

However, the “normal metal” phase of HCB has received
much less attention. This may be attributed to the inability
of Boltzmann’s equation to properly account for hard core
interactions and lattice Umklapp scattering, especially near
half filling where the mean free path would be estimated as
less than a lattice constant.

The alternative is to directly compute real-frequency Kubo
formulas, which faces severe numerical challenges. Exact di-
agonalizations for the eigenstates (Lehmann) representation
are exponentially costly in lattice size. Analytic continuation
of QMC data to real frequencies is ill posed at frequencies
lower than the temperature [14], which requires the use of
proxies for the dc limit [15].

On the other hand, thermodynamic approaches to
Kubo formulas [16,17] enjoy the advantage of calculating

equilibrium expectation values and static susceptibilities.
These are amenable to well-established statistical-mechanics
tools. For example, high temperature expansion, variational
wavefunctions, and imaginary-time QMC avoid the high
memory cost of exact diagonalizations, and the numerical
pitfalls of analytic continuation.

In this paper we apply two thermodynamic approaches
to the HCB model. (i) A continued fraction (CF) expansion
[18] combined with a variational extrapolation of recurrents
[19,20]. (ii) New thermodynamic summation formulas of Hall
and thermal Hall coefficients [21,22]. These formulas were
previously applied to narrow-gap semimetals [23], and to
the Hubbard [24] and t-J models [25] of strongly interacting
electrons.

Our main results are as follows. As shown in Fig. 1, HCB
resistivity rises with a linear slope whose value is insensitive
to the density even down to 5% filling. This density indepen-
dence is linked to a cancellation between the kinetic energy
and the current relaxation time.

In Fig. 2 we plot the density-dependent Hall coefficient,
whose sign is reversed at half filling relative to the Galilean
result of continuum bosons. The correction terms of the ther-
modynamic formula are calculated up to fourth order and
shown to be relatively unimportant. We also obtain the thermal
Hall coefficient, which is opposite in sign to the Hall effect,
reflecting a “cooling” effect of the Hall current near half
filling.

This paper is organized as follows. In Sec. II the HCB
model is defined. Section III reviews the continued fraction
expansion of the conductivity and the Gaussian extrapola-
tion of its recurrents. Section IV describes the zeroth Hall
coefficient term evaluated by a high-temperature expansion
and extended to low temperatures by QMC. Section IV A
describes the calculation of the correction term up to fourth or-
der. This calculation is crucially important for estimating the
accuracy of the zeroth term. Section VI calculates the thermal
Hall coefficient. We conclude with a summary and discussion
of relevancy of our results to experiments, with particular
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FIG. 1. Resistivity versus temperature of HCB for several den-
sities 0 < n < 1

2 . (Rxx is symmetric for n → 1 − n). At high
temperatures (solid lines) Rxx is calculated by Gaussian extrapolation
of five lowest order recurrents, see Fig. 4. The resistivities vanish
exponentially (dashed lines) toward the superconducting transition at
TBKT � 2.8tn(1 − n), following Halperin and Nelson’s (HN) theory,
Eq. (28).

emphasis on normal phase transport of short coherence-length
superconductors such as cuprates. Experiments in cold atoms
trapped in an optical lattice are also proposed.

II. HARD-CORE BOSONS MODEL

The HCB creation and density operators at site i are
ã†

i , ni, respectively, which obey [ni, ã†
j ] = δi j ã

†
i . The HCB

constraint (ã†
i )2 = 0 is faithfully represented by spin-half op-

erators ã†
i → S+

i , ni − 1
2 → Sz

i (setting h̄ → 1). On a square
lattice with unit lattice constant, and total area A, we consider
the gauged Hamiltonian of HCB

H = −t

⎛
⎝∑

〈i j〉
e−i q

c Ai j S+
i S−

j + h.c

⎞
⎠ − μ

∑
i

Sz
i , (1)

where μ is the chemical potential and q/c is the boson charge
over velocity of light. Ai j = − ri+r j

4 × B · ri j introduces a uni-
form magnetic field B ‖ z. The HCB charge polarizations,
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FIG. 2. Density-dependent Hall coefficient RH(n) of HCB on a
square lattice at high temperature. R(0)

H , Rcorr
H are defined in Eqs. (21)

and (24). Convergence up to fourth-order corrections is shown by
the yellow and green curves. The Hall sign change at half filling is a
consequence of the hard-core interactions on the lattice.

TABLE I. Normalized conductivity moments μ̄2k = μ2k/χcsr as
functions of density n at leading order in β.

2k μ̄2k/(βt2k )

2 16n(1 − n)
4 64n(1 − n)n(3 + 4n − 4n2)
6 32n(1 − n)(177 + 356n − 356n2)
8 128n(1 − n)(1979 + 7520n − 10432n2 + 7040n3 − 6560n4 +

3648n5 − 1216n6)
10 128n(1 − n)(119200 + 856443n − 1386927n2 + 1358488n3 −

1459972n4 + 1040272n5 − 519088n6 + 147712n7 − 36928n8)

currents, and magnetization operators are respectively repre-
sented by

P = q
∑

i

riS
z
i , j = i[H, P] =

∑
〈i j〉

ji j,

jαi j = −iqt (S+
i S−

j − S−
i S+

j )
(
rα

j − rα
i

)
,

M = 1

4c

∑
〈i j〉

(ri + r j ) × ji j . (2)

Here ri denotes the position of site i. The density-dependent
TBKT(n) for HCB on the square lattice [9,26,27] is

TBKT(n) � 2.8tn(1 − n). (3)

III. DC RESISTIVITY

The dc longitudinal conductivity is given by the CF
expansion-

σ dc
xx = χcsr lim

ε→0+
Im

1

−iε + �2
1

−iε+ �2
2

. . .

(4)

where χcsr is the conductivity sum rule (CSR),

χcsr = 1

A
Im〈[Px, jx]〉 (5)

and �k, k = 1, . . . , kmax are the calculated recurrents. The
recurrents are obtained from the conductivity moments, which
are calculated as thermodynamic expectation values

μ2k = − 1

A
Re〈[ jx,

2k−1︷ ︸︸ ︷
[H, [H, . . . [H , jx]]] . . .]〉, (6)

jx is the uniform current in the x direction defined in Eq. (2).
The CSR and the μ2k are expanded in powers of inverse

temperature β as described in Appendix A. The CSR up to
order β3 is given by

χcsr = βq2t2n(1 − n)

×
(

2 + (βt )2

3
(1 − n)2(−3 + 10n(1 − n)))

)
. (7)

The five lowest normalized moments μ̄2k = μ2k/χcsr are
shown in Table I. They involve traces over many operators
which are evaluated by symbolic multiplication, as explained
in Appendix C.The recurrents �k in Eq. (4) are obtained from
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FIG. 3. Density dependence of the five lowest recurrents. The
behavior of �1 in Eq. (11) is largely responsible for the weak density
dependence of the resistivity slopes in Fig. 1.

the normalized moments by using matrix equation [19]

μ2k = χcsr (L
2k )00, (8)

where the tridiagonal Liouvillian matrix is defined as

Li j[�] =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 �1 0 0 0 . . .

�1 0 �2 0 0 . . .

0 �2 0 �3 0 . . .

0 0 �3 0 �4 . . .

0 0 0 �4 0 . . .

0
...

...
...

... . . .

⎞
⎟⎟⎟⎟⎟⎟⎠. (9)

Taking even powers of L and evaluating their (00) matrix
elements yields relations between μ2k and the preceding re-
currents �1, . . . �k , which are symbolically solved to obtain

�2
1 = μ̄2,

�2
2 = μ̄4

μ̄2
− μ̄2,

�2
3 = μ̄2

4 − μ̄2μ̄6

μ̄3
2 − μ̄2μ̄4

,

�2
4 = μ̄2

(
μ̄3

4 + μ̄2
6 + μ̄2

2μ̄8 − μ̄4(2μ̄2μ̄6 + μ̄8)
)

(μ̄2
2 − μ̄4)

(
μ̄2μ̄6 − μ̄2

4

) ,

�2
5 = μ̄4 − μ̄2

2

μ̄2
4 − μ̄2μ̄6

× μ̄10
(
μ̄2μ̄6 − μ̄2

4

) − μ̄3
6 + 2μ̄4μ̄6μ̄8−μ̄2μ̄

2
8

μ̄3
4 + μ̄2

6 + μ̄2
2μ̄8 − μ̄4(2μ̄2μ̄6 + μ̄8)

. (10)

In Fig. 3, the recurrents of Eqs. (10) are plotted for densities
0 < n < 1.

For the square lattice, the leading high-temperature terms
are χcsr ∝ β, and �k = O(β0). Thus conductivity goes as β,
and the resistivity is asymptotically linear.

In Fig. 4 the five lowest recurrents are depicted on a log-
linear plot, for densities varying from 5%–50%. We note that
the first recurrent is

�2
1 = 16n(1 − n)t2. (11)
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0.25

0.05
0.1

Gaussian extrapolation

FIG. 4. High-temperature conductivity recurrents of HCB. Solid
circles are calculated recurrents, dashed line describes the Gaussian
extrapolation based on the third to the fifth calculated recurrents at
density n = 0.3.

We also notice in Figs. 3 and 4 that �k>1 exhibit a weaker
density dependence.

A. Gaussian termination function

Having calculated the recurrents �1,�2 . . . �kmax , the CF
in Eq. (4) depends on the imaginary part of an unknown
termination function G′′

kmax+1 = limε→0 ImGkmax+1(iε),

σ dc
xx = χcsr

1
�2

1
...

�2
kmax

G′′
kmax+1 (0+ )

. (12)

The variational extrapolation of recurrents (VER) method de-
termines Gkmax+1 as follows.

For the HCB model at n = 0.5, VER yielded good
agreement [19] between the extrapolated high-temperature
conductivity and the Kubo formula computed by exact diago-
nalization. The choice of a Gaussian variational function

F (ω) =
√

π

�
exp

(
− ω2

�2

)
(13)

proved adequate. Its variational recurrents are

�̄2
k = k

�2

2
. (14)

In Fig. 4 we show a good fit of the dashed line to the computed
recurrents �3,�4,�5, for the variational choice

�2 = 2

3
�2

3. (15)

The corresponding termination function Ḡ′′
6 is determined by

ImF̄ (ω → 0+) = �̄2
2�̄

2
4

�̄2
1�̄

2
3�̄

2
5G′′

6

=
√

3π

2

1

�3
. (16)

Hence,

Ḡ′′
6 = 8

5

√
2

3π

1

�3
. (17)

Thus we obtain

σ dc
xx � χcsr (n)

�2
1(n)

×
√

3π

2
× 5�2

2�
2
4

8�2
5�3

. (18)
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Physically, χcsr measures the HCB kinetic energy and
�2

1/�2 describes the current dissipation rate. The factors of
n(1 − n) cancel out between χcsr and �2

1. This can explain the
approximate density independence of the conductivity found
by Gaussian extrapolation in Sec. III A and shown in Fig. 1.

We ignore the weak density dependence of the leading
order in β, we invert σ dc

xx to obtain the high temperature
resistivity

Rxx � 3.3
h

q2

T

t
. (19)

Here we have not calculated the next order β3 correction of
σ dc

xx as a function of density. We note that Ref. [19] found for
n = 0.5 a relative correction −0.75( t

T )2, which at T = 4TBKT

is less than 10%.

IV. HALL COEFFICIENT

The Hall coefficient is a finite, experimentally measurable
transport coefficient for metals with a nonvanishing longi-
tudinal conductivity. The Hall coefficient formula [22] is
separated into two contributions:

RH = σ−2
xx

dσxy

dB

∣∣∣∣
B=0

= R(0)
H + Rcorr

H . (20)

The zeroth term is given by

R(0)
H = χcmc

χ2
csr

. (21)

χcsr, the integrated longitudinal conductivity, was expanded
at high temperature in Eq. (7). The current-magnetization-
current (CMC) susceptibility χcmc measures the effect of the
Lorentz force on the currents, as shown below. R(0)

H reproduces
Boltzmann’s equation result for energy-dependent scattering
time [23]. Rcorr

H includes the higher-order corrections due to
disorder, hard-core interactions, and lattice Umklapp scatter-
ing. For HCB, Rcorr

H will be partially evaluated in Section IV A.
χcmc is expanded up to order (βt )2:

χcmc = 2( jy, [M, jx])

= 4
β2q3t4

c
(1 − 2n)n(1 − n)(1 − (βt )2(1 − 3n(1 − n))).

(22)

Note that χcsr (χcmc) is “particle-hole” symmetric (antisym-
metric) under n → 1 − n. Thus, we obtain

R(0)
H = 1

qc

(
2n − 1

n(n − 1)
+ 2

3
(βt )2

(
n − 1

2

))
. (23)

We note that at low density, the Hall coefficient recovers
the continuum Galilean invariant result R(0)

H → (nqc)−1. Near
half filling, RH ∼ −8(n − 1

2 )/(qc) reflecting the effects of
lattice Umklapp and hard-core scattering.

Equation (23) was extended to lower temperatures numeri-
cally by a path-integral-based QMC for bosonic lattice models
[28] which are devoid of a sign problem. We studied 24 × 24
size lattices, which was sufficiently large for expectation val-
ues at temperatures higher than TBKT. The number of Monte
Carlo sweeps was ∼5 × 106. β was subdivided into inter-
vals ε = β/Nε, Nε = 10. Off-diagonal operators (e.g., S+

i S−
j ,

T [t]

n = 0.15

n = 0.25

R
H

[(
qc

)−
1
]

n = 0.45

TBKT(n)

FIG. 5. Metallic Hall resistivity of HCB. High-temperature
asymptotes R(0)

H of Eq. (23) (solid lines), and lower-temperature
extension by QMC calculations (circles). Dashed lines interpolate
between R(0)

H (T ) and HN theory near TBKT(n), see Sec. V.

S+
i Sz

jS
−
k ) were calculated using using worm-type updates. In

Fig. 5, the solid lines are the analytical results of Eq. (23),
while the QMC data are depicted by open circles. We see that
the Hall coefficients above the HN regime rapidly saturate to
their high-temperature limit.

A. The correction term

The correction term in Eq. (20) contains a sum of suscep-
tibilities of Krylov operators:

Rcorr
H = 1

χcsr

∞∑
i, j=0

RiRj (1 − δi,0δ j,0)M ′′
2i,2 j,

M2i,2 j = Im(〈2i; y|M|2 j; x〉 − 〈2i; x|M|2 j; y〉),

Ri>1 =
i∏

r=1

(
−�2r−1

�2r

)
, R0 = 1. (24)

The conductivity recurrents �n are evaluated in Fig. 3.
The unnormalized matrix elements M ′′

nm of Eq. (24) involve
susceptibilities of the form

M̃ ′′
nm = (Ln jy, [M,Lm jx]). (25)

Unnormalized hyperstates can be expanded in terms of the
orthonormal Krylov bases by the Gram-Schmidt matrix K :

Ln jα =
k∑

k′=0

Kn,k′ |k′, α〉, (26)

where 〈k, α|k′, α′〉 = δkk′δαα′ . The factors Ri involve a finite
number of recurrents �1, . . . �2i, which also determine K−1

up to the same order.
The simplicity of the Hamiltonian permits a calculation of

up to fourth-order corrections,

RiRjM
′′
2i,2 j, i, j = 0, 2, 4. (27)

The magnetization matrix elements involved traces of up to
∼107 operator products. The hypermagnetization matrix ele-
ments are M ′′

nm, which are listed in Table II of Appendix B.
Since the Hall coefficient is finite for a metal, the summa-

tion over all the higher-order corrections must converge. The
corrections to R(0)

H up to fourth order are depicted in Fig. 2. We
see that these corrections do not qualitatively change the ze-
roth term’s behavior, especially near the densities n = 0, 1, 1

2 ,
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TABLE II. Charge hypermagnetization matrix elements
(unnormalized) at T = ∞.

a b χcsrM̃ab/(β2q3t (a+b+4) )

0 0 −m(1 − m2)
0 2 − 1

2 m(1 − m2)2

0 4 − 1
2 (56m + 181m3 − 194m5 + 69m7)

2 0 −m(1 − m2)2

2 2 1
2 (36m − 53m3 − 2m5 + 19m7)

2 4 1
2 (1871m − 2638m3 − 1017m5 + 2464m7 − 680m9)

4 0 m(1 − m2)3

4 2 1
2 (1307m − 2476m3 + 969m5 + 262m7 − 62m9)

4 4 1
2 (115281m − 240247m3 + 109284m5 + 39594m7 −

22457m9 − 1455m11)

although they converge slower around intermediate densities
n = 0.25, 0.75.

In conclusion, R(0)
H appears to be a qualitatively correct

approximation at high temperatures, T > t .
In the lower-temperature regime R(0)

H , as evaluated by
QMC, appears to be blind to the onset of long-range phase
correlations and vortex fluctuations as described by HN the-
ory. This implies that that the correction term should grow
in magnitude as T → TBKT, and approach Rcorr

H → −R(0)
H , to

comply with the onset of superconductivity.

V. MATCHING HALPERIN-NELSON THEORY

Halperin and Nelson (HN) described a narrow fluctuation
region just above the two-dimensional superconducting transi-
tion at TBKT. In that regime, the resistivity tensor is dominated
by the exponentially small density of free vortices which
vanishes TBKT. At higher temperatures, the vortex density
increases such that they cease to be well-defined degrees of
freedom. According to HN theory [13],

RHN
αβ � 2.7Rn

αβ (T )

(
ξ+
ξc

)−2

= 2.7Rn
αβ (T ) exp

(
−2b

(
TBKT

T − TBKT

) 1
2

)
. (28)

ξ+ is the BKT correlation length, and ξc is of the order of the
HCB lattice constant and b � 1.

For the HCB model, the “normal state” resistivities Rn
xx(T )

and Rn
yx(T ) are taken from our Eqs. (19), (23), respectively.

We use these values to plot the crossovers from HN theory
Eq. (28) to higher temperatures as dashed lines in Figs. 1
and 5.

VI. THERMAL HALL COEFFICIENT

The heat currents are defined using the energy polarization
PE, and charge current j:

jQ = i[H, PE] − μ

q
j,

PE =
∑
〈i j〉

xi + x j

2
hi j,

hi j = −t (S+
i S−

j + S−
i S+

j ). (29)

R
(0

)
T

H
qt c

5t
4t

T = 3t

FIG. 6. Thermal Hall coefficient of HCB versus density at three
high temperatures.

The zeroth thermal Hall coefficient is given by [22]

R(0)
TH = χQ

cmc

β
(
χ

Q
csr

)2 , (30)

where the heat current susceptibilities [29] are decom-
posed into energy-energy (EE) currents, energy-charge (EC),
and the previously introduced charge-charge susceptibilities
χcmc, χcsr:

χQ
csr = (

jx
Q

∣∣ jx
Q

) = χ ee
csr − 2μ

q
χ ec

csr +
(

μ

q

)2

χcsr,

χQ
cmc = 2

(
jy
Q|M| jx

Q

) = χ ee
cmc − 2μ

q
χ ec

cmc +
(

μ

q

)2

χcmc.

(31)

The energy-energy susceptibilities are

χ ee
csr = βt4n(6 − 14n + 16n2 − 8n3),

χ ee
cmc = qβ2t6

c
(24n − 112n2 + 208n3 − 200n4 + 80n5).

(32)

The energy-charge susceptibilities are

χ ec
csr = 3qβ2t4

2
(2n − 1)(1 − (2n − 1)2),

χ ec
cmc = −q2βt4

2
(1 − (2n − 1)4). (33)

At high temperatures, the chemical potential μ is given by

eβμ = n

1 − n
⇒ μ(β ) = β−1 log

(
n

1 − n

)
. (34)

In Fig. 6 we plot the zeroth thermal Hall coefficient defined
in Eq. (30) for three high temperatures. Rcorr

TH and higher order
in β corrections are not included here.

Since μ ∼ 4β−1(n − 1
2 ), by Eq. (33), the leading contribu-

tion at high temperature near half filling is coming from the
contribution of

−2
μ

q
χ ec

cmc ∝ −(
n − 1

2

)
. (35)

The other O(β0) term goes as μ2χcmc ∼ (n − 1
2 )3, which is

subdominant near half filling. Therefore RTH near half filling
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ends up having the opposite sign to the charge Hall coefficient.
This (a priori unexpected) result can be viewed as a “cooling”
effect of the charge Hall current on the transverse temperature
difference.

VII. DISCUSSION AND SUMMARY

The resistivity, Hall, and thermal Hall coefficients were
calculated for the metallic phase of HCB at temperatures
above the HN superconducting fluctuations regime.

Near half filling, HCB cannot be reasonably approximated
by weakly interacting quasiparticles. The model includes
quantum mechanical effects of lattice periodicity combined
with strong local constraints of no-double occupancies. The
resulting conductivities can be classified as “non-Fermi liq-
uid” metallic transport. The strong interactions strongly affect
the moments of conductivity and the resulting magnitude of
the linearly increasing resistivity.

The sign reversal of the Hall coefficient at half filling is
also understood as an effect of strong repulsive interactions.
HCB differ from continuum bosons, which are not expected
to reverse their Hall sign as a function of filling [30].

Incidentally, we note that HCB and the t-J model of elec-
trons [25] are somewhat similar in their proximity to Mott
insulators. The Hall sign of the t-J model also diverges toward
the Mott phase, and exhibits a sign reversal relative to weakly
interacting quasiparticles.

Experiments.—HCB may be realized in low-capacitance
gated Josephson arrays at incommensurate fillings [31]. Mea-
surements of temperature and density-dependent resistivity
and Hall coefficient could be compared to Figs. 1, 5, and 6,
respectively.

The phase diagram of layered superconducting cuprates
has been described by the classical (highly anisotropic) lay-
ered XY model [7,32]. This description is supported by
Uemura’s empirical relations between between superfluid
stiffness and Tc [33,34]. It is therefore natural to study Eq. (1)
in order to understand dynamical responses slightly above Tc.

Systematic studies [35,36] have found an empirical pro-
portionality between the resistivity slopes of optimally doped
cuprates, and the inverse zero-temperature superconducting
stiffness. It is quite natural for HCB, which are governed
by the single energy scale t governing both quantities. The
linearly rising resistivity in Fig. 1 suggests that one should
consider that a significant part of the transport current, slightly
above Tc, may be effectively carried by HCB that describe
preformed (tightly bound) Cooper pairs. This may resolve
some of the “bad metal” conundrums in which the large
magnitude of resistivity seems inconsistent with well defined
Fermi liquid quasiparticles.

Finally, cold bosonic atoms trapped on optical lattices can
serve as platforms for measuring HCB conductivities using
time-dependent potentials. A Hall effect can be induced by
artificial gauge fields [37–39]. We hope our results will moti-
vate such experiments.
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APPENDIX A: HIGH-TEMPERATURE EXPANSIONS
OF SUSCEPTIBILITIES

We use the XY model representation, Eq. (1), to derive
the following high-temperature results. In the grand canonical
ensemble, the mean magnetization for the XY model m =
2n − 1, where 0 � n � 1 is the HCB density per site, can be
imposed at infinite temperature by a product density matrix
ρ0(δ), with a fugacity parameter δ:

ρ0(δ) =
∏

i

(
1 + δ

2
|↑〉〈↑| + 1 − δ

2
|↓〉〈↓|

)
, (A1)

where the average magnetization at infinite temperature is

m(0) = 〈
2Sz

i

〉
β=0 ≡ δ. (A2)

Expectation values are

Trρ0Sx
i = 0,

Trρ0Sy
i = 0,

Trρ0Sz
i = 1

2
δ. (A3)

At finite temperature, we expand the average magnetiza-
tion m(δ) to second order in β:

m = Trρ0(δ)e−βH 2Sz
i

Trρ0(δ0)e−βH
= δ + β2

2
Trρ0(δ)H2

(
2Sz

i − δ
)

= δ − β2δ(1 − δ2) + O(β4). (A4)

Equation (A4) allows us to evaluate the magnetization depen-
dence of a δ-dependent susceptibility by

χ (δ, β ) = χ (m + β2δ(1 − δ2), β ). (A5)

The coefficients in the high-temperature expansion of the
susceptibilities are found using a numerical symbolic multi-
plication method, described in Appendix C. Here, we outline
the scheme by two simplest examples: the CSR and CMC,
defined in Eq. (7) and Eq. (22), respectively.

1. CSR

The CSR is given by averaging the single-bond operator,
shown in Fig. 7. The first two leading orders in (βt ) of the
CSR are defined as

χ̄csr = q2βt2χ̄ (1)
csr + q2β3t4χ̄ (3)

csr + . . . . (A6)
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FIG. 7. Operators which are averaged over in the CSR and CMC.
Line denotes a bond operator [S+

i S−
j + (i ↔ j)] and the circle de-

notes a site operator Sz
i , respectively.

where

χ̄ (1)
csr = 1

2 (1 − m2). (A7)

The graphs contributing to the order β3 CSR are shown in
Fig. 8. The result (using symbolic multiplication) is

χ̄ (3)
csr (δ) = β3

24
(−1 + 20δ2 − 19δ4). (A8)

Upon transforming this using Eq. (A5), one gets

χ (3)
csr (m) = lim

δ→m

{
χ (3)

csr (δ) − (
∂δχ

(1)
csr

)
δ(1 − δ2)

}
= 1

24 (−1 − 4m2 + 5m4). (A9)

Finally, if one substitutes m = 2(n − 1
2 ) in Eq. (A7) and

Eq. (A8) in Eq. (A6), we obtain Eq. (7).

2. CMC

The CMC is given by averaging the plaquette operator,
shown in Fig. 7.

χcmc = −2q3t2
〈
Oyx

123

〉
= 2q3t2

〈(
(S+

1 S−
3 + S−

1 S+
3 )Sz

2

)〉
, (A10)

where we have used C4 symmetry to equate four identical
contributions to the expectation value. The leading order χ (2)

cmc
requires tracing Oyx

123 times two Hamiltonian bonds in a con-
nected cluster inside a plaquette. The calculation yields

χ (2)
cmc = −Trρ0(βH )2Oyx

123

= − (βt )2

2
m(1 − m2). (A11)

The order β4 contribution to CMC is obtained to be

χ (4)
cmc(δ) = (βt )4

24
(15δ − 42δ3 + 27δ5). (A12)

FIG. 8. Graphs of operators which contribute to CSR at O(β3).

Oyx
123

FIG. 9. Minimal connected cluster for the calculation of χ (4)
cmc,

which must include four powers of H whose bonds connect to the
sites of Oyx

123 and contribute to a nonvanishing trace.

The minimal cluster chosen for this computation is shown in
Fig. 9. Transforming the expression using Eq. (A5) yields

χ (4)
cmc(m) = lim

δ→m

{
χ (4)

cmc(δ) − (
∂δχ

(2)
cmc

)
δ(1 − δ2)

}
= (βt )4m

8
(1 − m2)(1 + 3m2). (A13)

Again, combining Eq. (A11) and Eq. (A12), replacing m =
2(n − 1

2 ) in Eq. (A10) we obtain Eq. (22).

3. Thermal susceptibilities

The thermal currents are defined in Eq. (29). In the CMC
susceptibilities used in Eq. (31) we use the electric magnetiza-
tion M as defined in Eq. (2). The chemical potential μ at high
temperatures is related to the density by solving the single-site
problem (neglecting the βH term), which yields Eq. (34):

n = eβμ

1 + eβμ
⇒ μ(β ) = β−1 log

(
n

1 − n

)
. (A14)

The new susceptibilities required to determine the thermal
Hall coefficient (χ ee

csr, χ
ee
cmc, χ

ec
csr, and χ ec

cmc) were all evaluated
using the methods explained in Appendix C. The energy cur-
rent itself turns out to be a combination of three-site operators,
containing next-nearest-neighbor currents decorated with Sz

operators at nearest-neighbor locations. Hence, the resulting
susceptibilities turn out to be more complicated and have
different β dependencies to leading order compared to the
charge case. One finds the following expressions:

χ ee
csr = βt4

(
1 − m2

2
− m4

2

)
,

χ ee
cmc = qβ2t6

c

(−7m

2
+ m3 + 5m5

2

)
,

χ ec
csr = 3qβt4

2
m(1 − m2),

χ ec
cmc = −q2βt4

2
(1 − m4). (A15)

035117-7



BHATTACHARYYA, DE, GAZIT, AND AUERBACH PHYSICAL REVIEW B 109, 035117 (2024)

Now, at low β (high temperatures), Eq. (31) shows that χQ
csr

is dominated by ( μ

q )2χcsr (the charge CSR term), which is

O(1/β ) and both −2( μ

q )χ ec
cmc and ( μ

q )2χcmc contributions are

important [O(1)] in χQ
cmc.

However, one also observes that the susceptibilities (as
well as μ) have different density dependencies near half fill-
ing. For instance, μ, χ ec

csr, χ ee
cmc, and χcmc cross zero at n = 1

2
by particle-hole symmetry/antisymmetry, while the thermo-
electric CMC (χ ec

cmc) is a very flat function of n near half
filling. Hence, the sign of the thermal Hall coefficient is de-
termined by χ ec

cmc and turns out to be opposite to the charge
case near n = 1

2 .

APPENDIX B: COMPUTING THE CORRECTION TERM

The normalized matrix elements of Eq. (24) require ex-
panding the operators L2k jα in the Krylov basis |k; α〉 [22].
Using

Lk jα =
∑

k′
|k′; α〉〈k′; α|Lk|0; α〉 = χcsr

∑
k′

Kk,k′ |k′; α〉,

(B1)

where Kk′,k = (Lk )k′,0 are functions of a finite number of re-
currents �1, . . . �k′�k . Using

|k, α〉 = K−1
k,k′Lk′ |0〉 (B2)

we can transform any normalized matrix element of the hy-
permagnetization into unnormalized matrix elements

M̃n′m′ = (0, y|Ln′MLm′ |0, x), (B3)

which are easier to calculate, using

M ′′
n,m =

∑
n′�n

∑
m′�m

K−1
n,n′K−1

m,m′M̃ ′′
n′,m′ . (B4)

The latter are computed using the methods described in Ap-
pendix C are quoted in Table II.

APPENDIX C: AUTOMATED EVALUATION
OF OPERATOR TRACES

High-order moments μ2k, k = 0 . . . 5, recurrents �k<5, and
hypermagnetization matrix elements M̃nm, nm � 4 require
traces over a large number of site-operator products on square
lattice. We’ve used symbolic multiplication to perform these
traces.

The clusters are formed by commuting bond operators
of the Hamiltonian or magnetization with the root current
operator jα〈i j〉 on a single bond 〈i j〉 (utilizing translational
symmetry). The result of Ln jαi is a sum of multisite products
of operators Oi1 (r1) · Oi2 (r2) · ... · OiN (rN ), which is treated as
a new “hyperstate” with a complex amplitude that is stored
separately.

The rapid (factorial) growth of the number of such operator
products limited extending our calculations beyond n = 4. At
fourth order we calculated traces over ∼107 operators.

The new hyperstates are generated using the site-local op-
erator multiplication table

σiσ j = δi j + iεi jkσk, (C1)

where σi’s are usual Pauli spin matrices. We performed the
calculations on a 24 × 24 square grid, which ensured that
even the largest operator products were contained within the
lattice. After constructing the operators, we multiplied them
with powers of the Hamiltonian (also a collection of bond op-
erators) to ensure that they had a nonvanishing trace. Most of
the resulting hyperstates have zero trace, owing to unmatched
Pauli matrices

Tr
(
σ x

i

) = Tr
(
σ

y
i

) = 0. (C2)

The computation was reduced by eliminating operators with
unmatched σ x’s or σ y’s. Moreover, we combined equal op-
erator products at intermediate stages, to retain only distinct
hyperstates. This sorting becomes time consuming at about
106 operators. Finally, we evaluated the traces over the re-

maining density (σ z) factors

Tr
(
σ z

i

) = δ = m|β=0, (C3)

as given in Appendix A.

APPENDIX D: QMC CALCULATION
OF THE HALL COEFFICIENT

In this short section, we provide a few details of the QMC
calculation, used to generate the lower-temperature results for
R(0)

H , as depicted in Fig. 5. We’ve used the DSQSS package
[28] for this purpose. This package employs a path-integral-
based Monte Carlo scheme for bosons and quantum spin
systems, devoid of a sign problem. More specifically, it uses
the directed-loop algorithm (DLA) [40]. In DLA, one adds
a pair of “worm heads” at two randomly chosen space-time
points within the simulation. These represent insertions of off-
diagonal operators (like Sx). Thereafter, one of these is kept
fixed (called the “tail”), while the other “propagates” obeying
detailed balance rules. In course of propagation, the head
scatters off “vertices,” which are two-spin operators specific
to the Hamiltonian in question. Finally, one terminates the
propagation when the head meets the tail. The “closed loop”
configurations thus obtained contribute to the free energy.
The statistics obtained from the worm propagation moves
(while the loop is open), corresponding to a fixed space-time
separation of the worm head and tail, directly provide an
estimate for the two-point off-diagonal correlation functions
[like < S+

i (τ )S−
j (0) >]. We used the equal-time (τ = 0) re-

sults for our purpose. For the operators shown in Fig. 7, one
can directly use this result (for nearest-neighbor separation) to
calculate the CSR, while for the CMC, one has to “re-weight”
the measurements (for next-nearest-neighbor separation) by
the Sz value of the spin at the nearest-neighbor location. We
achieved this by slightly modifying the correlation function
measurement part of the source code.
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