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Abstract: We prove the adiabatic theorem for quantum evolution without the traditional
gap condition. All that this adiabatic theorem needs is a (piecewise) twice differentiable
finite dimensional spectral projection. The result implies that the adiabatic theorem
holds for the ground state of atoms in quantized radiation field. The general result we
prove gives no information on the rate at which the adiabatic limit is approached. With
additional spectral information one can also estimate this rate.

1. Introduction and Motivation

The adiabatic theorem of Quantum Mechanics describes the long time behavior of solu-
tions of an initial value problem where the Hamiltonian generating the evolution depends
slowly on time. The theorem relates these solutions to spectral information of the in-
stantaneous Hamiltonian.

Traditionally, the adiabatic theorem is stated for Hamiltonians that have an eigenvalue
which is separated by a gap from the rest of the spectrum. Folk wisdom is that some
form of a gap condition is asine qua nonfor an adiabatic theorem to hold. This is based
on the following simple but at the same time rather forceful argument: The notion of
Hamiltonian that depend slowly on time makes sense provided the system in question
has a finite intrinsic time scale which determines what slow and fast mean. In quantum
mechanics the intrinsic time scale is often determined by the gaps in the spectrum (and
Planck’s constant) [14]. For example, a Harmonic oscillator with natural frequencyω,
has gaps in the spectrum whose size ish̄ω. The condition for adiabaticity is|ω̇| << ω2.
In theω → 0 limit the intrinsic time diverges anḋω 6= 0 is never adiabatic. This suggests
that one can not expect a general adiabatic theorem to hold in the absence of gaps.

It is, of course, conceivable that in the absence of a gap some other property may
determine a relevant and intrinsic time scale. For example, in the case of linearly crossing
eigenvalues, the difference in slopes of the eigenvalues at the point of crossingα =
(Ė1−Ė2), Fig. 1, determines a time scale,

√
1
α

, that takes over as the time scale associated
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with the gap diverges. An adiabatic theorem that builds on this fact goes back to Born
and Fock [15]. But, at the same time, a general adiabatic theorem in the absence of a
gap condition which does not use some other special properties, like a slope condition,
seems unlikely and on physical grounds, morally wrong.

spec(H)

s

Fig. 1.Crossing Eigenvalues in Born Fock Theory

Nevertheless, the folk wisdom is actually wrong since we shall prove a general
adiabatic theorem without a gap condition.All one really needs for the adiabatic theorem
is a finite dimensional spectral projection for the Hamiltonian that depends smoothly on
time. The role of the gap is to provide ana-priori rate at which the adiabatic limit is
approached. In the absence of a gap, there is no sucha-priori information on the rate at
which the adiabatic limit is approached and it could be arbitrarily slow.

Our approach to an adiabatic theorem without a gap condition has some of the flavor
of an operator analog of the Riemann–Lebesgue lemma [46]. If a function and also its
derivative are inL1(R) then it is an elementary exercise that its Fourier transform decays
at infinity at least as fast as an inverse power of the argument. The Riemann–Lebesgue
lemma says that, in fact, the Fourier transform of anyL1(R) function vanishes at infinity.
The loss ofa-priori information about the derivative translates to loss of information
about the rate at which the function vanishes at infinity. In this analogy differentiability is
the analog of the gap condition, and theL1(R) condition is the analog of the smoothness
condition on the spectral projection.

A gap condition is associated with spectral stability. Situations without a gap con-
dition often lead to spectral instabilities. This may suggest that an adiabatic theorem
without a gap condition may be an academic exercise in the sense that it may have no
applications and that its premise, the existence of a smooth spectral projection, is either
contrived or would be hard to establish in applications. For example, for applications to
atomic physics, where the essential spectrum is absolutely continuous, [18], embedded
eigenvalues tend to dissolve to resonances [47] so it is unlikely that the projection asso-
ciated to an embedded eigenvalue would be continuous. Indeed, we do not know of an
application toembeddedeigenvalues.

An interesting application of the adiabatic theorem without a gap condition is to
eigenvalues at threshold. A ground state at threshold is a feature of any reasonable
model Hamiltonian for atoms interacting with a radiation field. Models that do not
have this property describe unstable atoms, or stable atoms in a world that has no soft
photons. Models of atom-photon systems have the property that when the fine structure
constant,α, is small, the ground state describes the bound electrons of the atom and a
photon field close to the vacuum. Soft photons are responsible for the absence of a gap
in these models. A relatively simple yet interesting model for which the existence (and
uniqueness) of the ground state [48,1] as well as gaplessness [28] are known rigorously
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is the spin-boson Hamiltonian: The model of a two level system coupled to a radiation
field. This has also been established for a model of non-relativistic QED [1,6–9]: A
model of nonrelativistic electrons coupled to a radiation field with an ultraviolet cutoff.
Unfortunately, forreal QED [13,16], where both the electrons and photons are treated
as relativistic quantum fields, all that is rigorously known at present is on a perturbative
level. Our original motivation was to prove an adiabatic theorem for models describing
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Fig. 2.An Eigenvalue at Threshold

atom-photon interaction. We proved this for the Dicke model, which is the simplest
model of this kind, in [3]. We then realized that one could prove a much more general
adiabatic theorem without a gap condition which is not specific to models of atoms in
radiation field, but would cover these as a special case.

The adiabatic theorem without a gap condition resolves a problem regarding the
relation between the quantum mechanics with and without radiation field. If the folk
wisdom was true, and a gap condition was a necessary ingredient in the adiabatic theorem,
one would expect the adiabatic theorem to hold for a two level system, but not for the
spin-boson model. Since the spin-boson model is clearly a more accurate description
of nature than the model of a two level system, the success of the adiabatic theorem
in numerous applications where a two level model has been used, would appear like
a mystery. The fact that adiabatic theorems do not really need a gap condition means
that at least as far as the adiabatic theorem is concerned quantum mechanics without
radiation and quantum mechanics with radiation sit in the same basket. An interesting
problem that we do not resolve here is to show that not only is the adiabatic theory of
quantum mechanics (without radiation) qualitatively correct, but it is also quantitatively
accurate. For the Dicke model, some results in this direction are given in [3].

2. Formulation of the Problem and the Main Result

To formulate the problem of the adiabatic theory more precisely it is convenient, and
traditional, to replace the physical timet by the scaled times = t/τ . One is then
concerned with the solution of the initial value problem

i ψ̇τ (s) = τH(s) ψτ (s), (1)

in the limit of largeτ . H(s) is a self-adjoint Hamiltonian which depends sufficiently
smoothly ons.ψτ is a vector (in Hilbert space) valued function.We shall be more specific
about what we mean by smoothness below.H(s) evolves slowly inphysicaltime for a
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long interval of time withfinitevariation inH(s). Quantum adiabatic theorems say that
the solution of the initial value problem is characterized, in the adiabatic limitτ → ∞, by
spectral information. There is no single adiabatic theorem. Different adiabatic theorems
focus on different aspects of the problem: What is assumed aboutH(s) andḢ (s); about
properties of the projectionP(s); the notion of smoothness, and what are the optimal
error estimates, etc. All have the following structure: LetP(s) be an appropriate family
of spectral projections forH(s). Let the initial data be such thatψτ (0) ∈ RangeP (0).
Then, for an appropriate value ofγ ≥ 0,

dist
(
ψτ (s),RangeP(s)

)
≤ O

(
τ−γ ) . (2)

Forγ = 0 we take the right-hand side to meanO
(
τ−0

) = o(1).

In the present work we shall restrict ourselves to the case whereḢ (s) is compactly
supported. Then we can, without loss, takes ∈ [0,1]. Second, we shall restrict ourselves
to uniform error estimates, i.e. error estimates that hold forall scaled time.This is actually
the easier case. In adiabatic theory it is often possible to obtain much sharper results for
times outside the support oḟH(s).

Our main result is the following:

Theorem 1. Suppose thatP(s) is smooth finite rank spectral projection, for the bounded,
smooth HamiltonianH(s). Then, the evolution of the initial stateψτ (0) ∈ RangeP (0),
is such thatdist

(
ψτ (s),RangeP(s)

)
≤ o(1) for all s ∈ [0,1].

Remark 1.This is the weakest, but at the same time, the simplest, and most characteristic
of our results. As it stands, it does not even apply to the Schrödinger operator because
H(s) is assumed to be bounded. In Sect. 5 we shall state a generalization of this result
to unbounded operators. There are two reasons why we have chosen to state the weaker
result. The first is that we did not want to obscure the central issue, and what is new
in this work, behind a mask of technicalities. The second is almost ideological. The
adiabatic problem is an infrared, low energy, problem. The central issue in an adiabatic
theorem without a gap condition is to control low energy excitations. The unboundedness
of Schrödinger operators is an ultraviolet problem. This problem has well developed
analytical tools [32,45,50], and has nothing to do with the core of the infrared problem
of adiabatic evolution. Once one has an adiabatic theorem without a gap condition for
bounded operators, the extension to unbounded ones is technical.

Remark 2.We have stated the theorem with a condition of smoothness. Much less than
smoothness is needed and we shall formulate a stronger result requiring only piecewise,
twice differentiability ofP(s) in Sect. 5. One reason why we have chosen to state a
weaker result is again for simplicity, and the second is that it is likely that even the result
in Sect. 5 is not optimal.

Remark 3.The theorem, as stated, does not cover the case of eigenvalue crossings. This
is because at eigenvalue crossing the spectral projectionP(s) is not smooth (T r P (s) is
discontinuous). Eigenvalue crossings can be handled by a method due to Kato [33] and
we shall state a stronger version of the theorem that allows for finitely many crossings
in Sect. 5.
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2.1. The Results of Davies and Spohn.Davies and Spohn [19] studied the evolution of
a driven, finite dimensional quantum system coupled to a heat bath. Their prime interest
was the linear response of such a system which is closely related to the adiabatic limit.
They choose a Hamiltonian of the form

τ

(
Hq(s)+Hf +

√
1

τ
Hi

)
,

whereHq(s) is the time dependent Hamiltonian of the driven, finite dimensional, quan-
tum sub-system,Hf is the Hamiltonian of a quasi-free fermion field, andHi is the
interaction. The coupling vanishes in the adiabatic limitτ → ∞. They show that the
induced evolution of the finite dimensional sub-system is governed by a (finite dimen-
sional) Hamiltonian of the form

τHq(s)+ L(s).

Davies and Spohn then proceed to analyze the evolution of this finite dimensional system
using some of the ideas that enter into the adiabatic theory of Kato [33]. Davies and Spohn
do not prove an adiabatic theorem in the sense that the physical evolution adheres to a
spectral subspace of the coupled Hamiltonian.

3. A Panorama of Adiabatic Theorems

In this section we recall some of the basic adiabatic theorems: Adiabatic theorems with
a gap condition, for crossing eigenvalues, adiabatic theorems beyond all orders, and
adiabatic theorems for scattering. We examine how these relate to the adiabatic theorem
without a gap condition.

3.1. Adiabatic Theorems with a Gap condition.The first satisfactory formulation and
rigorous proof of an adiabatic theorem in the then new quantum mechanics was given
in 1928 by Born and Fock [15]. They were motivated by a point of view advocated
by Ehrenfest [20], which identified classical adiabatic invariants as the observables that
get quantized. The theorem they proved was geared to show that quantum numbers are
preserved by adiabatic deformations.

Born and Fock proved an adiabatic theorem for Hamiltonian operators,H(s), with
simple discrete spectrum. They showed that in Eq. (2) one can takeγ ≥ 1. Their proof
covers Hamiltonians like the one dimensional Harmonic oscillator, but not the Hydrogen
atom, which has absolutely continuous spectrum at positive energies, and eigenvalues
with multiplicities at negative energies.

In 1958 Kato [33] initiated a new strategy for proving adiabatic theorems. He intro-
duced a notion of adiabatic evolution which is purely geometric. It is associated with a
natural connection in the bundle of spectral subspaces. Kato’s method was to compare
the geometric evolution with the evolution generated byH(s) and to show that in the
adiabatic limit the two coincide. Using this idea, Kato was able to relax the condition that
H(s) had simple discrete spectrum. He showed that the adiabatic theorem holds when
P(s) is afinite dimensionalspectral projection associated with anisolated eigenvalue.
No assumption on the spectral type ofH(s) restricted toRangeP⊥(s) need be made,
Fig. 3.
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Fig. 3.Spectrum in Kato’s Theory

Kato’s results cover the case of Schrödinger operator for the Hydrogen atom. However
it does not cover Schrödinger operators that arise for instance in the study of condensed
matter physics, where there is no discrete spectrum at all. Kato’s results were extended
in [5,42], toP(s) that need not be associated with an eigenvalue, and whose rank could
also be infinite. In particular, the initial data could lie in a subspace corresponding to an
energy band provided it is separated by a gap from the rest of the spectrum.

3.2. Adiabatic Theorems beyond All Orders.There are interesting and more delicate
adiabatic theorems that apply provided one considers Eq. (2) for timess that lie outside
the support ofḢ (s).Assuming a gap condition and smoothness (or analyticity) ofH(s) it
has been shown [23,24,11,35,43] that the adiabatic theorem Eq. (2) holds withγ = ∞.
Stronger results hold in the analytic case [39,31,29,11].

3.3. Adiabatic Theorems with Eigenvalue Crossings.Born and Fock also studied the
adiabatic theorem for crossing eigenvalues where the spectral projections have smooth
continuations through the crossing point [15]. Born and Fock showed that if crossing
is of orderm (linear crossing ism = 1) then Eq. (2) holds withγ = 1/(m + 1). This
problem was later studied in much detail in [22] and [27].

Kato [33] also considered the adiabatic theorems for crossing eigenvalues. He did not
make any explicit assumptions about how the eigenvalues behave near crossings. The
only assumption he did make was thatP(s) could be continued through the crossings,
and that there are finitely many crossings. Under these conditions he showed that Eq. (2)
holds withγ = 0.

3.4. Adiabatic Theorems without a Gap Condition.We are aware of one example of an
adiabatic theorem without a gap condition for operators that have essential spectrum.
This is a result of [4] for rank one perturbations of dense point spectra. The rate of
approach to the adiabatic limit isγ = 1 in Eq. (2).

3.5. Adiabatic Theorems for the Scattering Matrix.Adiabatic scattering theory relates
the time dependent scattering matrix to the time independent scattering matrix. Results
in this direction are described in [41,39]. These have very little to do with the kind of
adiabatic theorems we consider here. In scattering theory a time scale is determined by
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the initial data: The scattered particle spends a finite amount of time in the region of
interaction, and in the limit that the interaction varies slowly, it does not see the variation
in the Hamiltonian. The adiabatic theorems we are interested in consider a particle that
spends a long time in the region of interaction.

4. The Adiabatic Theorem and a Commutator Equation

In this section we shall describe the proof of Theorem 1. To simplify the presentation,
we shall stay away from making optimal assertions. In Sect. 5 we shall strengthen the
result dropping most of the simplifying assumptions.

The center of this section, and the heart of the adiabatic theorem, is the commutator
equation, Eq. (7). It is an operator valued equation for twoboundedoperatorsX andY . If
one setsY = 0 one gets a commutator equation that goes back to Kato. The commutator
equation withY = 0 has a bounded solutionX provided there is gap. If there is no gap
the equation may, in some cases, have a bounded solution, but in general it will not. The
basic idea behind the adiabatic theorem without a gap condition is that one can always
solve this equation withX bounded andY bounded and small. The smallerY the larger
is the norm ofX in general, but this is all right, as we shall see.

In this sectionH(s) is a family of bounded self-adjoint Hamiltonians that depends
smoothly ons so thatḢ (s) is supported in the interval[0,1]. H(s) generates unitary
evolution as the solution of the initial value problem:

i U̇τ (s) = τH(s)Uτ (s), Uτ (0) = 1, s ∈ [0,1]. (3)

We assume, without loss, thatH(s) has eigenvalue 0 and this eigenvalue has finite
multiplicity. For this eigenvalue we formulate and prove our main result.

We recall the notion of adiabatic evolution [33,5]. LetUA(s) be the solution of the
initial value problem:

i U̇A(s) = τ

(
H(s)+ i

τ
[Ṗ (s), P (s)]

)
UA(s), UA(0) = 1, s ∈ [0,1]. (4)

It is known that this unitary evolution has the intertwining property [5]:

UA(s) P (0) = P(s)UA(s). (5)

That is,UA(s) mapsRange P (0) ontoRange P (s). In particular, the solution of the
initial value problem

i ψ̇(s) = τ

(
H(s)+ i

τ
[Ṗ (s), P (s)]

)
ψ(s), ψ(0) ∈ RangeP (0), (6)

has the property thatψ(s) ∈ RangeP (s). We shall show that the Hamiltonian evolution,
Uτ (s), is close to the adiabatic evolutionUA(s).

We first formulate the basic lemma:

Lemma 1. LetP(s), s ∈ [0,1], be a differentiable family of spectral projections for
the self-adjoint HamiltonianH(s)with (operator) norm‖Ṗ (s)‖ < ∞. Suppose that the
commutator equation

[Ṗ (s), P (s)] = [H(s),X(s)] + Y (s) (7)
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has operator valued solutions,X(s) andY (s) withX(s), Ẋ(s) andY (s) bounded. Then

‖(Uτ (s)− UA(s)) P (0)‖ ≤

maxs∈[0,1]




2‖X(s) P (s)‖+
∥∥∥∥∥

˙(
X(s) P (s)

)
P(s)

∥∥∥∥∥
τ

+ ‖Y (s) P (s)‖


 . (8)

The commutator equation, Eq. (7), can be viewed as a definition ofY (s). The issue is
not to find a solution to this equation, but rather to find solutions that makeY small. In
the case that there is a gap1 separating the eigenvalue from the rest of the spectrum, a
solution of the commutator equation is

X(s) = 1

2πi

∫
0

R(z, s) Ṗ (s)R(z, s) dz, Y (s) = 0. (9)

Here0 is a circle in the complex plane, centered at the eigenvalue, and of radius1/2,
Fig. 4.R(z, s) = (H(s)− z)−1 is the resolvent at scaled times. In this case the rate at
which the adiabatic limit is obtained, is seen from Eq. (8) to be 1/τ .

Fig. 4.A contour0 in the Complex Plane

The strategy for proving the adiabatic theorem without a gap condition is to show
that one can pickY so that its norm is arbitrarily small, possibly at the expense of large
norm forX andẊ. So long as the norm ofX andẊ is finite, it can be compensated by
takingτ large. This means that one can make the right-hand side of Eq. (8) arbitrarily
small. The price paid is that there is, generally speaking, no information about the rate
at which the adiabatic limit is obtained.

Proof. Let W(s) = U†
τ (s)UA(s) be the wave operator comparing the adiabatic and

Hamiltonian evolution. Since

‖Uτ (s)− UA(s)‖ =
∥∥∥Uτ (s)(1 −W(s)

)∥∥∥ = ‖1 −W(s)‖, (10)
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we need to boundW(s)− 1. From the definition of the adiabatic evolution, the commu-
tator equation, and the equation of motion

Ẇ (s) = U†
τ (s)

([Ṗ (s), P (s)]) UA(s)
= U†

τ (s)
([Ṗ (s), P (s)]) Uτ (s)W(s)

= U†
τ (s)

(
[H(s),X(s)] + Y (s)

)
Uτ (s)W(s) (11)

= − i

τ

(
U̇†
τ (s)X(s)Uτ (s)+ U†

τ (s)X(s)U̇τ (s)
)
W(s)

+U†
τ (s)Y (s)UA(s)

= − i

τ

( ˙
(U

†
τ (s)X(s)Uτ (s))− U†

τ (s)Ẋ(s)Uτ (s)
)
W(s)

+U†
τ (s)Y (s)UA(s)

= − i

τ

{ ˙(
U

†
τ (s)X(s)Uτ (s)W(s)

)
− U†

τ (s)X(s)Uτ (s) Ẇ (s)

− U†
τ (s)Ẋ(s)Uτ (s)W(s)

}
+ U†

τ Y (s)UA(s)

= − i

τ

{ ˙(
U

†
τ (s)X(s)UA(s)

)
− U†

τ (s)X(s) [Ṗ (s), P (s)]UA(s)

− U†
τ (s)Ẋ(s)UA(s)

}
+ U†

τ (s)Y (s)UA(s).

The lemma then follows by integration sinceW(s) is unitary withW(0) = 1. ut
Let us describe a solution of the commutator equation which is motivated by the solution
Eq. (9) in the case of a gap. In order to have explicit error estimates and also in order
to make the presentation simple and as elementary as possible, we choose a Gaussian
regularizer.

Definition 1. Let g and e denote the Gaussian and Error functions1, and8 be the
special function defined below:

g(ω) = e−πω2
, e(ω) =

∫ ω

−∞
ds g(s), 8(ω) = θ(ω)− e(ω), (12)

θ is the usual step function which vanishes for negative argument. Also, let us denote
the scaling of a function by

g1(ω) = g(1ω), (13)

and the multiplication operator by the argument by

(ωg)(ω) = ω g(ω). (14)

An elementary lemma is:

1 The error function we use differs by a factor and shift from canonical error function.
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Lemma 2. 8 has finiteL1 norm and finite moments. In particular:

‖8‖1 = 1

π
, ‖ω8‖1 = 1

4π
. (15)

Under scaling,1 > 0:

‖81‖1 = 1

π1
, ‖ω81‖1 = 1

4π12 . (16)

We assume, without loss, that the spectral projectionP(s) is associated with the eigen-
value zero.

Lemma 3. LetP(s) be a smooth spectral projection forH(s) associated with the eigen-
value zero. Let0 be an infinitesimal contour around the origin in the complex plane.2

Then the commutator equation has the solution

X1(s) = A+ A†, A = P(s) Ṗ (s)R(0, s)

(
1 − g

(
H(s)

1

))
;

Y1(s) = −g
(
H(s)

1

)
Ṗ (s)P (s)+ P(s)Ṗ (s)g

(
H(s)

1

)
, (17)

where

‖X1(s)P (s)‖ ≤ 2‖Ṗ (s)P (s)‖
1

, (18)

∥∥∥ ˙(
X1(s)P (s)

)∥∥∥ ≤ 2(‖P̈ (s)‖ + ‖Ṗ 2(s))‖
1

+ π ‖Ṗ (s)‖ ‖Ḣ‖
12 . (19)

Proof. We start with a formal calculation. Let

F1(s) = g
(
H(s)
1

)
− P(s) ,

X1(s) = 1
2πi

∫
0
dz (1 − F1(s)) R(z, s) Ṗ (s)R(z, s) (1 − F1(s)). (20)

SinceṖ (s) = P(s)Ṗ (s) + Ṗ (s)P (s), X1(s) can be written as a sum of two adjoint
terms, one of them is

1

2πi

∫
0
dz (1 − F1(s)) R(z, s) P (s)Ṗ (s)R(z, s) (1 − F1(s))

= 1

2πi
(1 − F1(s)) P Ṗ (s)

(∫
0

dz
R(z, s)

z

)
(1 − F1(s))

= P(s)Ṗ (s)R(0, s)(1 − P(s)) (1 − F1(s))

= P(s)Ṗ (s)R(0, s)(1 − P(s)− F1(s))

= P(s)Ṗ (s)R(0, s)

(
1 − g

(
H(s)

1

))
= A. (21)

2 The choice of Gaussian is not optimal. It would be more convenient to choose a regularizer which is
a better approximant to a characteristic function and the reader may want to think of a Gaussian which is
flattened at the top.
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We have used

P(s) F1(s) = F1(s) P (s) =
(
g(0)− 1

)
P(s) = 0. (22)

Using this integral representation ofX1(s) we now findY1(s). By our choice ofF1(s)
we have[F1(s),H(s)] = 0. Hence,

[X1(s),H(s)]
= 1

2πi

∫
0

[
(1 − F1(s)) R(z, s) Ṗ (s)R(z, s) (1 − F1(s)),H(s)− z

]
dz

= 1

2πi

∫
0

dz (1 − F1(s))
[
R(z, s) , Ṗ (s)

]
(1 − F1(s))

= (1 − F1(s))
[
P(s), Ṗ (s)

]
(1 − F1(s))

= [P(s), Ṗ (s)] −
{
F1(s), [P(s), Ṗ (s)]

}
+ F1(s)[P(s), Ṗ (s)]F1(s)

= [P(s), Ṗ (s)] + F1(s)Ṗ (s)P (s)− P(s)Ṗ (s)F1(s). (23)

So a solution of the commutator equation is

Y1(s) = −g
(
H(s)

1

)
Ṗ (s)P (s)+ P(s)Ṗ (s)g

(
H(s)

1

)
. (24)

It remains to estimate the norms ofX andẊ. Using the fact the Gaussian is its own
Fourier transform,

g

(
H(s)

1

)
= 1

∫
R

g(1 t) exp[2πitH(s)]dt, (25)

one checks that with our choice of8

R(0, s)

(
1 − g

(
H(s)

1

))
= 2πi

∫
R

8(t1) exp[2πitH(s)] dt. (26)

Hence ∥∥∥∥R(0, s)
(

1 − g

(
H(s)

1

))∥∥∥∥ ≤ 2π ‖81 ‖1 = 2

1
. (27)

Using the equation forX(s) this estimate proves the bound onX(s). To get a bound on
˙(

X1(s)P (s)
)
, use the Duhammel formula,

˙(
exp(2πitH(s))

)
= 2πi t

∫ 1

0
dz e2πiztH(s) Ḣ (s) e2πi(1−z)tH(s). (28)

Collecting the various terms give the claimed estimate.ut
As Lemma 3 shows, as1 shrinks, the norms ofX(s) andẊ(s)may, and in general, will,
grow. This, however is of no concern, as long as the norms remain finite, for one can
always compensate for this growth by choosingτ large enough. The good thing about
shrinking1 is that this can be used to make the norm ofY1 small. Hence, we can always
make the right-hand side of Eq. (8) arbitrarily small.
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Lemma 4. Suppose thatH(s) is smooth with a zero eigenvalue with spectral projec-

tion P(s) smooth and of finite rank. Letg
(
H(s)
1

)
be as above. Then‖Y1(s) P (s)‖ =

‖g
(
H(s)
1

)
Ṗ (s)P (s)‖ → 0 uniformly as1 shrinks to zero.

Remark 4.We owe the proof below to Michael Aizenman.

Proof. For the sake of simplicity suppose thatP(s) is a one-dimensional projection
with P(s)ψ(s) = ψ(s),ψ is normalized to 1. Letϕ = Ṗ (s)ψ . Then, usingP(s)ϕ(s) =
P(s)Ṗ (s)ψ(s) = P(s)Ṗ (s)P (s)ψ(s) = 0, we obtain

‖g
(
H(s)

1

)
Ṗ (s)P (s)‖2 = ‖g

(
H(s)

1

)
Ṗ (s)ψ(s)‖2 = ‖g

(
H(s)

1

)
ϕ(s)‖2 =〈

ϕ |g2
(
H(s)

1

)
|ϕ
〉

=
∫
σ(H(s))

g2(x/1)dµϕ(x), (29)

whereµϕ denotes the spectral measure. Now,g
(
x
1

)
is bounded by one, and goes mono-

tonically to zero for allx 6= 0, andg(0) = 1. Hence

lim
1→0

∫
σ(H(s))

g2(x/1)dµϕ(x) = µϕ(0) = 0. (30)

It follows that there is a sequence of1 that makesY1(s) arbitrarily small. ut
This completes the proof of Theorem 1.

The physical interpretation of the adiabatic theorem without a gap condition is that
although the adiabatic theorem “always” holds, it does so for different physical mecha-
nisms. In the case that there is a gap in the spectrum the adiabatic theorem holds because
the eigenstate is protected by a gap from tunneling out of the spectral subspace. In the
case that there is no gap and the spectrum near the relevant eigenvalue is essential, the
adiabatic theorem holds because essential spectrum is associated with states that are
supported near spatial infinity. There is little tunneling to these states because of small
overlap with the wave function corresponding to an eigenvalue which is supported away
from infinity.

5. Fine Print

In this section we extend the adiabatic theorem without a gap condition to unbounded
self-adjoint operators; replace the smoothness condition by a condition on differentia-
bility and allow eigenvalue crossing. These extensions are technical in character and rely
on existing machinery.

5.1. Unbounded Hamiltonians.The first, and perhaps the main, difficulty with un-
bounded operatorsH(s) is the existence of solutions to the initial value problem, Eq. (1).
For bounded operators the existence is a consequence of the Dyson formula, see e.g.
Theorem X.59 in [45]. For unbounded operators existence is more subtle so we chose a
class for which this is the case:

Definition 2. A family of (possibly unbounded) self-adjoint HamiltoniansH(s) is ad-
missible if
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1. H(s) have the common domain in Hilbert space for alls ∈ [0,1].
2. H(s) is bounded from below by3.
3. R(i, s) is bounded and differentiable andH(s)Ṙ(i, s) is bounded.

It is a consequence of our definition of admissibility thatA(t) = (H(t) − 3 + 1) is
a strictly positive operator. Moreover, it is follows from property (1) by a closed graph
theorem thatA(t)A(s)−1 is bounded. Since, fort − s small,‖(t − s)−1(A(t)A(s)−1 −
I )‖ = ‖A(s)Ȧ(s)−1‖ + o(|t − s|), the last expression is bounded due to property (3).
The existence of the unitary evolution for an admissible family of Hamiltonians follows
now from ([45], Theorem X.70):

Theorem 2. LetX be a Banach space and letI be an open interval inR. For eacht ∈ I ,
letA(t) be the generator of a contraction semigroup onX so that0 ∈ ρ(A(t)) and

1. TheA(t) have the common domainD.
2. For eachφ ∈ X, (t − s)−1(A(t)A(s)−1 − I )φ is uniformly strongly continuous and

uniformly bounded ins andt for t 6= s lying in any fixed compact subinterval ofI .
3. For eachφ ∈ X, C(t)φ ≡ lim t→s(t − s)−1(A(t)A(s)−1 − I )φ exists uniformly for
t in each compact subinterval andC(t) is bounded and strongly continuous int .

Then unitary evolution exists uniformly ins.

Then we can prove the following result.

Theorem 3. Suppose thatP(s) is finite rank spectral projection, which is at least twice
differentiable (as a bounded operator), for an admissible familyH(s). Then, the evo-
lution of the initial stateψ(0) ∈ RangeP (0), according to Eq. (1), is such that for all

s ∈ [0,1], dist
(
ψτ (s),RangeP(s)

)
≤ o(1).

Proof. Tracing the steps in Theorem 1 one sees that it is enough to check that the
operatorsX(s), Ẋ(s) andY (s) are bounded uniformly ins. Now, by Eq. (17),X1
andY1 are made of bounded operators such asP , Ṗ andR. Moreover,X1 is also
differentiable as a bounded operator by our assumption thatP is twice differentiable,
and by the admissibility condition that guarantees thatR is differentiable as a bounded
operator. By the functional calculusg(H(s)) is also differentiable as a bounded operator.
The only change is in the explicit estimate on the norm ofẊ1 in terms of1, which is
replaced by

∥∥∥ ˙(
X1(s)P (s)

)∥∥∥ ≤ 2(‖P̈ (s)‖ + ‖Ṗ 2(s))‖
1

+ π ‖Ṗ (s)(H(s)+ i)‖ ‖R(s, i) Ḣ‖
12 , (31)

which is bounded for admissibleH(s). ut

5.2. Piecewise Differentiability and Eigenvalue Crossing .If at some time 0< s0 < 1
crossing of eigenvalues occurs, then the spectral projection associated with one of the
eigenvalues,P(s), is discontinuous ats0 since its rank jumps. Suppose thatP(s), s 6= s0
is a spectral projection whose limit from the right and left coincide ats0. In this case
we can use an argument of Kato [33] that shows that global continuity together with
piecewise smoothness is good enough.
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Kato’s argument goes as follows: Choose a smallε. The physical evolution follows
the adiabatic evolution up to an arbitrarily small error on the interval[0, s0 − ε]. On the
short interval[s0−ε, s0+ε] the physical evolution takesRangeP (s0−ε) close to itself.
SinceP(s) is continuous ats0, by assumption, this is equivalent to the statement that the
physical evolution takesRangeP (s0 − ε) close toRangeP (s0 + ε), with an error that
can be made arbitrarily small withε. The physical evolution now follows the adiabatic
evolution up to an arbitrarily small error on the interval[s0 + ε,1]. Summarizing we
have:

Theorem 4. Suppose thatP(s), s 6= s0 ∈ [0,1], is a finite rank spectral projection
which is piecewise twice differentiable (as a bounded operator) and is everywhere con-
tinuous on[0,1]. Then the initial dataψτ ∈ RangeP (0) evolve according to Eq. (1) so

thatdist
(
ψτ (s),RangeP(s)

)
≤ o(1) for all s ∈ [0,1].

6. The Rate of Approach to the Adiabatic Limit

The general adiabatic theorems we have formulated give no information on the rate
at which the adiabatic limit is approached. In fact, from the results of Born and Fock
and Kato about eigenvalue crossings, it is clear that in the absence of a gap, the rate
can be arbitrarily slow. To get interesting results on the rate at which the adiabatic
limit is approached necessarily involves additional spectral information. In particular,
if the bound state is either embedded or at the threshold of essential spectrum, with
good behavior of the spectral measure at nearby energy, one expects to do better. An
illustration of such estimates is given below.

Recall [36] that a (Borel) measureµ is called (uniformly)α-Hölder continuous,
α ∈ [0,1], if there is a constantC such that for every interval1 with |1| < 1, 3

µ(1) < C|1|α. (32)

The interest in such measures comes from the fact [36,17,26] that they carry dynamical
information andα-continuous measures are the limits ofα-Hölder continuous measures.
Knowing something about the Hausdorff dimension of the spectrum [36] then translates
to information about the rate of approach of the adiabatic limit.

Corollary 1. If the spectral measureµϕ(1), isα-Hölder continuous then the adiabatic
limit is approached at least at rateγ = α

2+α . In the case of a family of Hamiltonians

related by unitaries,H(s) = V (s)HV †(s), with V̇ V † bounded and differentiable the
rate is at leastγ = α

1+α .

Proof. Let us note, first of all, that if the spectral measureµϕ(1), isα-Hölder continuous
then rhs of (30) is bounded bỹC|1|α. Indeed,

∫
σ(H(s))

g2(x/1)dµϕ(x) <

∞∑
n=0

g2(n)(

∫ (n+1)1

n1

dµϕ(x)+
∫ −n1

−(n+1)1
dµϕ(x))

< C|1|α
∞∑

n=−∞
g2(n) = C̃|1|α. (33)

3 | · | denote Lebesgue measure.
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Collecting the various error estimates one gets for the right hand side of Eq. (8) the upper
bound

A

1τ
+ B

12τ
+ C̃|1|α. (34)

A,B andC are constants. For the case of the family of Hamiltonians related by unitaries,
by Eq.(39) below,B = 0. Optimizing the choice of1 gives the result.ut

6.1. Unitary Families.By unitary families we mean the special case where the family
H(s) has the form

H(s) = V (s)HV †(s), (35)

with V (s) unitary. There are two points that we want to make about unitary families. The
first is that such families are interesting in the context of adiabatic dynamics from the
perspective of applications. The second is that there is some simplification that occurs
for such families.

In a moving frame, the Schrödinger equation, Eq. (1), forψτ = V φτ takes the form:

iφ̇τ = τ

(
H + i

τ
V †(s)V̇ (s)

)
φτ . (36)

This leads to time independent Hamiltonian in the very special case:V (s) = eisσ ,
with σ self-adjoint (fixed) operator. The general case of unitary families, even in the
rotating frame, leads to a time dependent problem, albeit one with a weak time dependent
perturbation. As this perturbation is allowed to act for a long time, there is no obvious
simplification in the rotating frame.

Unitary families often enter in applications. See for example, M. Berry’s model of a
spin half in a magnetic field [11]

H(s) = B(s) · σ,
whereσ is a vector of Pauli matrices, andB(s) a vector inR

3 of unit length. This is
a unitary family, which has all the intricacies of adiabatic theory associated with e.g.
Zener tunneling [29].

Now we come to the simplification. In the case of unitary families one can improve
the estimate of the norm oḟX, which affects the estimate of the rateγ .

In the case of a unitary family

P(s) = V (s)PV †(s), Ṗ (s) = [V̇ (s)V †(s), P (s)]. (37)

Hence, applying Eq. (37) toX1(s) = A(s)+A†(s), whereA,A† are given by Eq. (17),
we derive

A(s) = V (s)P [V †(s)V̇ (s), P ]R(0,0)
(

1 − g

(
H

1

))
V †(s). (38)

Therefore,

Ȧ(s) = [V̇ (s)V †(s), A(s)] + V (s)P [ ˙V †(s)V̇ (s), P ]R(0,0) ·
·
(

1 − g

(
H

1

))
V †(s). (39)

This identity is the reason why, for unitary families, one gets an improved rate with
γ = α

α+1.
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6.2. Friedrichs Models.Hölder continuity of the spectral measure gave an estimate
of the rateγ = α

α+2 ≤ 1
3, in the general case andγ = α

α+1 ≤ 1
2 in the case of

unitary families. Presumably, neither is optimal, since we used the additional spectral
information only to estimate the norm ofY1, but not to improve the estimate onX1 and
Ẋ1. As a consequence, the best rate we get isγ = 1

2. It is intriguing that for classical
ergodic systems the approach to the adiabatic limit in theclassical adiabatic theorem
is with rateγ = 1

2 [44]. This does not imply that the rate of approach to the adiabatic
limit must be slow compared to the rate with a gap. In this subsection we shall consider
a class of models, patterned after Friedrichs [21], where a more precise estimate ofγ

can be made and whereγ can also take the value 1 in the absence of a gap.
Let us consider the family of unitarily related HamiltoniansH(s) = V (s)HV †(s).

At any given time,s, there exists a representation of the Hilbert space such thatHs =
C ⊕ L2(Rd , dµ(k)) with inf (support µ) > −∞ andµ(0) = 0. A vector9 ∈ H is
normalized by

9 =
(

ω

ψ(k)

)
, ‖9‖2 = |ω|2 +

∫
Rd

|ψ(k)|2dµ(k), ω ∈ C. (40)

The (Friedrichs) HamiltonianH(s) in this representation acts onHs like so:

H(s)9 =
(

0 0
0 k

) (
ω

|ψ〉
)

=
(

0
|k ψ〉

)
. (41)

The projectionP(s) has a form

P(s) =
(

1 0
0 0

)
, (42)

and the formal (reduced) resolventR(s) is given by

R(s) =
(

0 0
0 k−1

)
. (43)

The time dependence of this unitary family can be encoded in the rate of change of two
operators, namely

Ṗ (s) =
(

0 〈fs |
|fs〉 0

)
(44)

and

(1 − P(s)) ˙(V̇ (s)V †(s))P (s) =
(

0 0
|gs〉 0

)
. (45)

Suppose thaṫV (s)V †(s) is bounded, has a bounded derivative, and∫
BI

|fs |2 dµ(k) ≤ O(|I |2α),
∫
BI

|gs |2 dµ(k) ≤ O(|I |2α), α ≥ 0, (46)

whereBI stands for a ball of radiusI .
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Proposition 1. For the Friedrichs model described above, the evolution of the state
that starts as the bound stateψτ (0) ∈ RangeP (0), is such that it remains close to the
instantaneous bound state and

dist
(
ψτ (s),RangeP(s)

)
≤



O
( 1
τ

)
, α > 1;

O
(

logτ
τ

)
, α = 1;

O
(
τ−α) , α < 1,

(47)

for all s ∈ [0,1].
Proof. Formally

X = RṖ + ṖR =

0

〈
fs
k

∣∣∣∣∣∣fsk 〉 0


 (48)

solves the commutator equation

[X,H ] = [P, Ṗ ]. (49)

Now choose

Xε = RεṖ + ṖRε =

0

〈
fsχ(k>ε)

k

∣∣∣∣∣∣fsχ(k>ε)k

〉
0


 , (50)

whereRε = R(s)χ(k > ε) and pickYε according to Eq. (7),

Yε = [P, Ṗ ] − [Xε,H ]
=
(

0 〈fsχ(k < ε)|
|fsχ(k < ε)〉 0

)
. (51)

Then

‖Yε‖ ≤ O

(∫ ε

0
|fs |2 dµ(k)

)
≈ ε2α. (52)

Since ∫
Rd/Bε

|f |2
k2 dµ(k) ≤

{
O(ε2(α−1)) if α 6= 1
−O(logε) if α = 1

(53)

we get the appropriate estimate of‖Xε‖. What remains is to estimate the norm of˙(XεP (s))P (s):

˙(XεP (s))P (s) = RεP̈ (s)P (s)+ ṘεṖ (s)P (s)

= BRεṖ (s)P (s)− RεṖ (s)BP (s)+ RεḂP (s)

= BXεP (s)−XεBP (s)+ Rε(1 − P(s))ḂP (s), (54)

whereB = V̇ (s)V †(s). Making use of (46) we obtain that

‖XεP (s)‖ , ‖ẊεP (s)‖ ≤
{
O
(
ε2(α−1)

)
if α 6= 1

−O (logε) if α = 1
. (55)
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So, providedα > 1, we get the adiabatic theorem withY = 0 and with a rate 1/τ . When
α < 1 we optimize which gives

‖XεP (s)‖ + ‖ẊεP (s)‖
τ

+ ‖Yε‖ ≤


O
(
εα−1

τ

)
+O (εα) if α < 1

−O
(

logε
τ

)
+O(εα) if α = 1

. (56)

ut
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