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Abstract. We analyze the spectral properties and discuss the scattering theory
of operators of the form H = H0+V> H0=-A+Ex. Among our results
are the existence of wave operators, Ω±(H,H0), the nonexistence of bound
states, and a (speculative) description of resonances for certain classes of
potentials.

I. Introduction

Since 1951, when Kato [10] initiated the mathematical analysis of Schrodinger
operators of the form —Δ + V(x) [with V{x)->0 as |x|-*oo in some sense] this
class of operators has become quite well understood (see [15,17,18] for references
to original contributions). It is the purpose of this paper to initiate a study of the
class of operators which result from the above by the addition of a potential
corresponding to a constant electric field. We call such operators Stark
Hamiltonians. They are of the form

H = H0+V, H0=-Δ+Ex.

Assuming a point nucleus, the hydrogen Stark effect [6,13] is described by the
Coulomb potential V(x)= -Z/\x\.

We begin our analysis in Section II with a discussion of the operator Ho.
In most quantum mechanics books the potential Ex is treated as a perturbation
of — A + V. However, this perturbation is not small in any obvious mathematical
sense (no matter the size of E). (See, however, [18] and [25] for the theory of
spectral concentration.) Thus we find it useful to treat V as a perturbation of Ho.
It will become clear in later sections that for the classes of potentials which we
consider, many of the properties of Ho remain invariant under the addition of V.

In Section III we consider a class of potentials for which the wave operators
Ω±(H, Ho) exist. In contrast to the situation where £ = 0, the Coulomb potential
is included in this class. In fact a large class of potentials which in certain directions
approach infinity as |jc|->oo (without oscillation) is allowed.
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In Section IV we give criteria for V to be compact relative to Ho. We study
a subclass of such F's which are analytic (in a strip) in the variable parallel to E.
These potentials turn out to be especially nice. We analyze them by a method
motivated by the Balslev-Combes [4] treatment of dilatation-analytic per-
turbations of the Laplacian. We speculate on a mathematical description of
resonances provided by this technique. While the Coulomb potential does not
fall into this class, the potential produced by a nucleus of finite size with, for
example, a gaussian charge distribution does. Among other results our analysis
shows the absence of singular continuous spectrum for these potentials.

In Section V we consider a large class of potentials characterized most im-
portantly by the condition that

for X|j large enough. (Here || stands for the direction parallel to E.) We show that
for such potentials (see Section V for an exact description), H has no eigenstates.
This generalizes a result of Titchmarsh [23] who proved the absence of bound
states for the hydrogen Stark effect. His analysis makes explicit and crucial use
of the separability of the problem in parabolic coordinates. Agmon [1] has also
announced the non-existence of point spectrum for a general class of potentials.
The proof of the relevant theorem has however not appeared (but see [2] where
similar results are proved).

II. The Operator H0=-A+E-x

In this section we set E = εoex where ex is a unit vector in the x direction. We
write x = (x, x±) and — iV = (p, p±). Thus, we have H0 = p2 + p\ + &ox. We assume
for convenience that ε o > 0 .

Let HQ be the self-adjoint operation of multiplication by ql + ql + SoX on
L 2(R 3, d2q dx) and let U^ = eip3/3e° and # 1 be the unitary operation of (partial)
Fourier transformation with respect to the variables perpendicular to E. Define
17 = ̂ 17,,. We then have

Theorem 1.1. a) ( —ZJH-£ JC)|"COO(IR3) is essentially self-adjoint. We denote its closure
byH0.

b) H0 is unitarily equivalent to //0~. Explicitly

U-1. (2.1)

c) The spectrum of Ho is purely absolutely continuous with σ(H0) = (—co, oo).

Proof Let t9
c? = e9

c?(lR3) be the Schwartz space of rapidly decreasing C00 functions
and define

Note that U maps 6? onto if. By explicit calculation we have

A=UBU~1.
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Since i]Γ0~is a self-adjoint extension of B, UH^U'1 is a self-adjoint extension of A.
If C is another self-adjoint extension of A then U~1CU is a self-adjoint extension
of B. Since Sf is clearly a core for # 0 ~we have U~1CU = H0~oτ C=UH0~U~K
Thus A has one and only one self-adjoint extension, namely UHQΊJ'1. The
proof of a) and b) thus reduces to showing that (A\c^m3))~ = A which is trivial.
The proof of c) follows trivially from b) and the explicit form of H0~.

We remark that the continuum "eigenfunctions" of — A-\-εox are easily
calculated using the explicit form of U^. We have

(-Δ+ sox)ψqo,Xo(x) = (ql + s0x0)ψq0ίX0(x)

where

t/W0« = e^^4'3A(4'3(x - x0)) (2.2)

and A(x) is the Airy function

N

A(x)= lim(2π)~1 J expi{(ί3/3) + xt}dt. (2.3)
JV->oo -N

It will be useful in Section III to have a simple expression for the propagator
e~ίtHo, which we now derive. We write

0- itHo _ eip
3/3ε0 β - it(pj? + εox) e~ίp3/3ε0

_e-itεox ei(p-εot)
3f3εo g~ itpέ ^-ip3/3ε0 (2 4)

_e~itεox e~it(p2 + p2) eiε0t
2ρ e~iεh3β

This has a simple interpretation in terms of the Heisenberg operators x{t) =

eitHQχe-ίtH0 a n d p(ή = eίtHope~itHo which can be calculated from (2.4):

(2.5)
p(t) = p-Et

x(t) = x + 2pt-Et

These are of course the familiar solutions to Newton's equations

dp(t)/dt =-E, dx(t)/dt = 2p(t). (2.6)

Note that Equation (2.5) in turn determines eitHo up to a multiplicative phase
factor.

III. Scattering: The Existence of Wave Operators

In this section we consider a class of potentials for which a "reasonable" scattering
theory can be developed. To emphasize the physical interpretation we also
discuss the classical situation.

We are interested in the existence of the strong limit of eίtH e~itHo as ί-> ± oo,
or what is the same thing, in the existence (for every asymptotic state feL2)
of a state ψ such that \\e~itHψ-e~itH°f\\-+0. Given a point Q = (x,p) in IR6, let1

(jCQ(ί), JPQ(O) be the solution to the free Equation (2.6) with initial data Q. In analogy
to the quantum mechanical case, in classical mechanics we are interested in the



242 J. E. Avron and I. W. Herbst

existence of an interacting orbit {xQ{t\ pQ(t)) for each asymptotic "state" Q so
that the difference between (xQ(t), pQ(t)) and (xg(0> PQUJ)) tends to zero as £->oo.
In this regard we have the following theorem.

Theorem 3.1. Let E = εoex with εo>0. Suppose F:R3->IR3 is continuously dif-
ferentiable and satisfies

a) |F(J

b) |δ/

where m, rcΞ>0, ε, δ>0. Then for each Q = (x, p) in IR6 there exists a unique solution
(x{t\ p(t)) = {xQ(t), pQ(t)) of the equations

dp(t)/dt= -E + F(x(ή), dx(t)/dt = 2p(t) (3.1)

for large time, satisfying

hm^ | 4( ί ) - xQ(t)\ + \p°Q(t) - pQ(t)\ = 0 . (3.2)

Proof. Our proof follows [8,22]. Consider the function

fit, y) = F(y + x + 2pt-εoext
2) (3.3)

and the space Sτ = {y('):y(-) is a continuous map from (7^ αo) into IR3 satisfying
\\y{')\\oΰT= sup | j ( ί ) |^ l } . We will choose T > 0 so that

t>τ J
p

t>τ

A(y(-))(t)=lds]duf(u,y{u)) (3.4)
ί s

is a strict contraction from <ST into Sτ. Choose T large enough so that (x + 2pt —
ε0ext

2)-ex< — 1, all ί^ T. From a) we have

\L,τ£ ]ds] du\f(u, y(u)
T s

and from b)

By the contraction mapping fixed point theorem there is a unique solution
yQ{')in Sτ (if T is large enough) to the equation

A(y{ )) = y{ ) . (3.5)

Defining

xQ(t) = yQ(t) + xq{t\ PQ(t) = 2-ί dxQ/dt

(3.1) and (3.2) easily follow. It is also easy to see that any solution of (3.1) satisfying
(3.2) also yields a y( ) satisfying (3.5). A local uniqueness theorem then shows that
y(t) = yQ(t) for ί > 77 This completes the proof.

Remarks, a) The fact that the forces are allowed to grow in some directions (and
are essentially arbitrary for x>0) means that in general global solutions to (3.1)
will not exist for arbitrary initial conditions. In quantum mechanics this should
have as a consequence that (-Δ +E'X + V(x))lc<x>(JR3) is not in general essentially
self-adjoint [17].



Spectral and Scattering Theory 243

b) Clearly one can arrange F(x) to satisfy the conditions a) and b) of the theorem
and still have unbounded orbits which are not asymptotic to any free orbit.
In quantum mechanics one should then expect that the wave operators Ω+ (H, Ho)
are not complete.

We now go on to the quantum case.

Theorem 3.2. Suppose V is a real measurable function on R 3 satisfying
a) (1 + jc2)~NVeL2(Wi3) for some JV>0.
b) For every c > 0 there exists a ί o > 0 with

]dtΓ3/2( J d3x\V{x-εot\xJ\2V12 <oo. (3.6)
to \ | * l ^ c ί /

Let H be any self-adjoint extension of

εo>0.

Then the wave operators Ω+(H, Ho)= s-lim e

ίtH

e~
itHo exist.

t-»±oo

Corollary 3.3. Under the same conditions as Theorem 3.2, σ a c (#) = ( —oo, oo).

Before proving Theorem 3.2 we note the following sufficient condition for
the existence of Ω± (compare with Theorem 3.1).

Lemma 3.4. Suppose V = Vί + V2 where
a) V^L2

b) (l + χ2yNV2eL2 for some N and for xS-0

\V2(x)\^c(l + \x±\Y(l + M Γ 1 / 2 ( " + 1 + ε ) for some n^O, ε > 0 .

Then V satisfies the requirements of Theorem 3.2 and Ω+(H, Ho) exist.

Proof of Theorem 3.2. It is enough to prove convergence of Ω(t) = eitHe~itHo on
the dense set Q)= {φ:φeCJ(IR3)}. By standard arguments one need only prove

convergence of the integral j — Ω(t)ψ
ίo I

dt for some ί o > 0 . Using the fact that

a n ( j t h e e a s i i y proved fa ct that H\^ = (H0 + V)\^ we can

differentiate eιtH so that we need only prove integrability of

fψ(t)=\\V(x)e-*H°ψ\\ (3.7)

for ί ^ ί o From Equation (2.4) we have

where ψt = eitAψ. The behavior of ψt(x) for large t is well known [5,19]. From the
explicit form of the kernel of eitA one has WψtW^^cΓ312. We give a short proof
of the factYhat for |JC| ̂ c ί (where c depends on ψ)

l + x2 + t2ΓN. (3.9)
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Suppose supp <p Q {p: \p\ <R}. We have then for |x| >2Rt

/2 J e-ίip2t-px)ip(p)d3p
/ 2/Nί^- ί ( p 2 ί-p Λ )[(3/5/c)(|jc|-2/c0"1]N^)^3p (3.10)

where k=p x/\x\. Thus

|y,(*)|£cw Σ ί i(N-2Λί)-w- |ίlφ ( W- |>(p)|d3p (3.11)
i = 0

where y ^ ί φ Γ ^ P y ψ . Thus if \x\>(2R + ε)t, (3.11) gives

and thus (3.9) follows.

To show that fψ is integrable on [£0, oo) we use (3.9) to show that

for c>2R, χcί(jc) = 1 if |JC| ̂ cί, and zero otherwise. While

| | F ( x - ε 0 ί 2 , x^XaΨtW ύdt' 3 ' 2 | | F ( x - ε 0 ί 2 , xjχct\\

which yields exactly the integral (3.6).

IV. Relatively Compact and Analytic Potentials

We begin this section with a discussion of relatively compact perturbation of
— A + G(x) where G is a quite general multiplication operator.

Definition 4.1. Z/o(IR3) is the set of all Z?(ΊR3) functions with compact support,
is the set of all functions / such that f=f1+f2 with fγeLq and f2eLGO.

3) is the set of all/such that for e a c h ε > 0 , / = / l ε + / 2 ε with/ l ε

Theorem 4.2, Suppose G and V are real multiplication operators such that
a) for some α>0Ge~α | x |GL p(lR 3)

\
where either p x + q *=2/3 and 2<p,q or p = 2 and q>6 or q = 2 and p>6.
Then if Ho is some self-adjoint extension of ( —^ + G)fc«>(]R3)? V(H0 + i)~ι is
compact.

Corollary 4.3. Let Ho and V be as in Theorem 4.2. Then
a) H - (Ho + V) \®{Ho) is self-adjoint
b) σ e s s e n t i a l (#) = <7essential (Ho).

Given Theorem 4.2, the corollary follows from standard results [11].

Proof of Theorem 4.2. Our proof is a bit subtle because the domain of Ho is not
specified. Let λ = 2(α+l) 2 and define the operator Kh for heL%, e~a^GeLp by
giving its kernel:

(4.1)
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Note that the middle term is just the kernel of ( — Δ + iλy1. The operator Kh is
Hilbert-Schmidt. Explicitly

έ ^ (4.2)

by Sobolev's inequality if p~1 + q~ί =2/3, p,q>2 and by Holder's inequality if
q = 2, p> 6 or p = 2, q > 6. We will show that for VeL%, the operator V(H0 + iλ)~*
is Hilbert-Schmidt. This is enough to prove the theorem. To accomplish this we
first show that for

ι = h(-Δ + iλy1-K^Hv + iλy1. (4.3)

It is easily shown that H0\m_A)nΘ{G)=—Δ + G. We will use this fact in what
follows. Suppose ψeL%. Then since ( — Δ — iK)~1ψeΘ(G)r\3)( — Δ) [as a glance
at the kernel of (— Δ — iλ) ~ι shows] we have

= (H0-ίλy1(-Δ + G-iλ-G)(-Δ-iλy1ψ (4.4)

=(-Δ-ίλyίψ-{H0-iλy1G(-Δ-ay1ψ.

Thus if φelίnL 0 0

(H0-ay1hφ=(-Δ-ίλyίhφ-(H0-ίλyίκ*φ. (4.5)

Since all the relevant operators appearing in Equation (4.5) are bounded, (4.5)
extends to all φeL2. The adjoint of the corresponding operator equation is (4.3).
We now proceed by a limiting process. Let hN{x)=V{x) if |7(x)|^iV and zero
otherwise. Note hNeL$ so that (4.3) holds. Then since hn(-Δ + iλy1φ-+V(-Δ +
ίλy'φ and Khn(H0 + iλy1φ-+Kv(H0 + iλy1φ we see that (H0 + iX)'^eS(V)
and (4.3) holds with h replaced by V. This completes the proof because Equation
(4.3) displays V(H0 + iλ)~ι as a sum of two Hilbert-Schmidt operators.

We now return to our Stark Hamiltonians and consider a class of potentials
for which an analysis of the spectrum is particularly easy. Our methods are
motivated by the work of Balslev and Combes [4] on dilatation-analytic perturba-
tions of — Δ. This class of perturbations is inappropriate for the study of Stark
Hamiltonians so we introduce the following:

Definition 4.4. Suppose V is a multiplication operator such that for almost every
x1? V(z, JCJJ is analytic in a strip |Imz|<β with β>0 and independent of xL. Let
Ho = - Δ + εox. V is said to be H0-translation analytic if [with Vz(x) = V(x + z9. xj]

Ϊ)~1 is a compact analytic-operator valued function of z in the strip.

Lemma 4.5. Suppose V(z, x±) is analytic in the strip \lmz\ <β for almost every x±.
Suppose V^HQ + iy1 is uniformly bounded on compacts of the strip. Then
VziHe + iy1 is an analytic operator-valued function of z for |Imz|<jS.

The proof of Lemma 4.5 is an easy application of the Cauchy integral formula
and Fubini's theorem which show that if the circle {z:\z-zo|_r} is contained in
the strip, then

{φ9 VZ(HO + 0"1v) = (2π0"1 § dz'{φ, Vz,(H0 + iy
\z'-zo\=r
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Definition 4.6. If A is a closed operator, we define tfdiscreteW) a s the s e t °f a ^ λ0

such that λ0 is an isolated point of σ(A) and Pλo= — (Iπi)'1 $ (Λ-λ)~1dλ
μ-Ao|=ε

is a finite dimensional projection. We define σessentiai(^4) = σ(^4)\σdiscrete(^)
We remark that if A is not self-adjoint, there are definitions of σessentiai(^) in

the literature which differ from ours [11]. We note without proof that if A is
self-adjoint and B(A + i)~1 is compact, (B need not be symmetric) then (A + B)\mA)

is closed and σessentiai (Λ) = σe s s e n t i a l (A + B) [ 18].

Theorem 4.Ί. Suppose V is H0-translatίon analytic in the strip |Imz|</?. Let H =
-A + εox+V,εo>0. Then
a) The point spectrum of H does not have a finite point of accumulation;
b ) <7sing.cont.(#) = </>>'

c) σ a b s . c o n t .(#) = (-oo, oo).
The family of operators Hz = — A + εo(x + z) + Vz is an analytic family of type A
in the sense of Koto [11] and has the following spectral properties

(ί) êssential (Hz) = R + ίε0 (Imz)
(ϋ) σdiscrete(//z) £ {λ: Imλe [0, ε0 Imz)}

(iii) The singularities of (Hz — λ)~1 in the variable λ which occur in the region
Imλe [0, εolmz) are poles with finite rank residues whose locations are independent
ofz.

Remarks, a) The poles oϊ(Hz — λ)~ί off the real axis are candidates for resonances.
A similar situation occurs in the Balslev-Combes analysis and there (for a subclass
of dilatation analytic potentials) Simon proved [21] that the locations of these
poles coincided with those of poles in the scattering amplitude as a function of
complex energy. One is hampered in the Stark effect because a useful independent
definition of resonance does not seem to exist.

b) The theorem does not cover V(x)=—Z/\x\ but does cover for example
V(x)= $(ρ(y)/\x-y\)d3y where ρ(y)= -Z(2πσ 2 )~ 3 / 2 e x p { - ^ 2 / σ 2 } which as
σ-»0 approaches — Zδ(y). It is conceivable that the "resonance" positions converge
as σ->0 to those associated with the Stark effect.

Proof of Theorem 4.7. Because Vz is compact relative to Ho, we have

^essential (Hz) = ^essential (H0 + Vz) + So Z = IR + 18O (Imz) (4.6)

if |Imz| < β. The discrete spectrum of Hz is our next problem. Suppose λo(z) is an
eigenvalue of Hz, λoeσάiSCrQtQ(Hz). Then since {Hz} is (by Kato's definition [11])
an analytic family of operators (of type A) λ0 is analytic in z (except for certain
special values ofz in a discrete set). Since UaHzU~ ί = Hz+(X, where (Uβf)(x, x±) =
f(x + β,x±) and is thus unitary (for real α), we have λo(z + aι) = λo(z) in a region
of analyticity of λ0 and thus λ0 = constant. [Note also that λo(z) is a continuous
function of z and thus cannot jump at the above-mentioned special values of z.]
Suppose λ0 is an eigenvalue of Hz and λ0 is outside the set [0, ε0 Imz]. Consider
the projection

PM^r1 § dλ
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where r is small enough so that no other eigenvalues or essential spectrum is
contained within or on the circle r=\λ — λo\. Then Pz is analytic in z and at Imz=0
must be zero since Hz is self-adjoint for Imz = 0. But since dimension (Pz) =
constant, Pz = 0 and thus λ0 is not an eigenvalue. This proves (i) through (iii).

Let 2= {ψeL2: Ua\p is entire in α}, and suppose ε>0. Consider for ψeΘ, the
expression (with λ real)

(ψ,(H-λ + ίεyίψ) = (UΰLψΛHa-λ + ίεyίU0Lψ). (4.7)

Equation (4.7) holds for α real but can also be continued to 0<Imα</?. Thus if
the interval [a, b] contains no poles of (Ha — z)~1 on the real axis (for Imα>0)
we have

sup \(ψ,(H — λ + iε)~1ψ)\<oo .
λe[a,b]

l ^ ε > 0

By a standard theorem [18], this implies the spectrum of H in [α, b] is purely
absolutely continuous. Since the poles of (Ha — z)~γ are discrete for Imα>0,
a) and b) of the theorem follow. This combined with the fact that σ e s s e n t i a l(iί) =
( - oo, oo) [i.e. Eq. (4.6)] proves part c).

V. Non Existence of Bound States

In this section we prove that for a large class of potentials, V, the Stark Hamiltonian
has no eigenvalues. Intuitively, this follows from a tunnelling argument [13].
However, to illustrate the subtlety of the problem we shall first show that an
operator, closely related to the hydrogen Stark Hamiltonian, does have eigen-
values.

Let J^m denote the (closed) subspace of square integrable functions with
angular momentum m in the direction of the homogeneous field. J^m is an invariant
subspace for the hydrogen Stark Hamiltonian H. Hm is the restriction H\#>
When implemented in parabolic coordinates, Jfm and Hm are [6,13]

z is the charge of the nucleus, ε0 the homogeneous field. This operator was analyzed
by Titchmarsh [23] who showed that it has no eigenvalues. However, the dif-
ferential equation (Hm-E)ψ=0 has for some real E non-trivial solutions ψ
with a finite tensor product norm:

\\ψ\\2=] dξ] dη\ψ(ξ9η)\2<co .
o o

Indeed, the unitary operator U on L2(0, oo) defined by
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transforms the formal differential operators

to

Much is known about the spectral properties of differential operators of this
type [7]. In particular, when Am and Bm are properly defined as self-adjoint
operators on the half-line, their essential spectra are empty. For Am this agrees
with naive intuition. For Bm this is somewhat surprising and is related to the
finite travel time to infinity of the corresponding classical particles. It follows that
Hm — E has non-trivial eigenfunctions in the (linear) tensor product space (at
least for some z).

Non-existence of eigenvalues for the Stark Hamiltonian was first proved by
Titchmarsh for the hydrogen Stark effect [23]. His proof is quite involved and
relies on the special symmetry (the separability in parabolic coordinates) of the
problem. The non-existence of eigenvalues for a wide class of potentials was
announced by Agmon [1]. Although he subsequently published similar theorems
[2], a proof of the relevant result (Theorem 8 of [1]) has not, to our knowledge,
appeared in the literature.

In the spectral theory of Schrδdinger operators, two techniques have been
developed to prove absence of eigenvalues. One, due to Weidmann and La vine,
was invented to handle (multiparticle) repulsive potentials and is technically
based on the existence of an operator which has a positive commutator with H
[14,24]. The second, due to Kato [12], was introduced to prove absence of positive
eigenvalues and is based on the analysis of a rather artificial-looking object [9,20].
It so turns out that Kato's ideas can be extended to Stark Hamiltonians to prove
absence of eigenvalues for a large class of potentials, V. Unfortunately, the proof
is involved. On the other hand, techniques of positive commutators handle only
special classes of potentials. We shall start by mentioning two results of this type
because their extreme formal simplicity contrasts nicely with the general analysis
(via Kato's method) to be presented subsequently. [No attempt at rigor will be
made in (a) and (b) below.]

(a) Repulsive cores: Let ρ = |*±l> *±eIR2 (*± is in the plane perpendicular to
the homogeneous field) and δV/dρ^O in some suitable (distributional) sense.
Let Ua be the dilation

and ψe 3>(p2) n Θ(p2 + V — s0x) satisfying

Hψ = (p2 + V — εox)ψ = Eψ .

Then ψ = 0. In fact

0 = (Uaψ,[yaHU;1-H]ψ)
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and

)= -(ψ, l2pl-ρdV/dρ]ψ) = 0

imply ψ = 0.
(b) A continuously differentiable function V(x) is a classically non-binding

potential if ΞneIR" such that VnV(x) is of fixed sign. Let Ua be the unitary translation
in the n direction, V classically non-binding, and ψe@(p2)n@(p2 + V)

(p2+V)ψ = Eψ.

Mimicking the argument in (a) one finds (Ψ, VnVψ) = Q. Hence ψ = 0 on the support
of VnV. For V satisfying the hypotheses of a unique continuation theorem, ψ = 0
(Theorem 5.2).

We shall now turn to the general analysis. In the following it is convenient to
choose the field in the positive x direction, i.e.

H0=-Δ-x (x = {x,xj).

H = H0 + V, with Vsatisfying the following regularity conditions:

A. V=V1 + V2,V1eL2(R3\V1(x) = 0iϊx^R
72eL°°(IR3), for some R>0.

B. There is an x0 > 0 so that for x ̂  x0

the operator Vx defined on L2(R2) by

Vxψ(xi)=V(x)ψ(x±)

is bounded and strongly differentiable in x with a derivative Vx satisfying

IIF H^C, if

There are two distinct results which taken together guarantee the absence of
eigenvalues. The first says that a particle cannot remain indefinitely in regions of
space where there is a net force pushing it out to infinity. This is the subject of
the following theorem:

Theoiem 5.1. Suppose V satisfies A, B and in addition for x^x0, Vx^l—δ, for
some δ>0.If(H~ E)ψ = 0 and ψe @(H) then ψ(x) = 0 for all x ̂  xo

The second result says that for certain F's a quantum mechanical particle
will always "tunnel" through classically forbidden regions. (It will thus "leak out"
to regions of space when the force accelerates it to infinity.) This is a well known
result from the theory of partial differential equations [3]. Unfortunately the
requirements on V are rather strong (perhaps unrealistically so).

Theorem 5.2. Suppose S is a closed set of measure zero with IR3\S connected.
Suppose W is a function bounded on compacts of 1R3\5. If ψel}(1R3)n{φ:fφe
Q)( — Δ) for each fe Q?(IR2)} and Aψ=Wψ as distributions, then if ψ vanishes on
an open subset o/IR3, ψ = 0.
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As a corollary we thus have

Theorem 5.3. Suppose V satisfies the assumptions of Theorem 5.1 and in addition
is bounded on compacts of JR3\S, S a closed set of measure zero which does not
disconnect R 3 . Then H = H0 + V has no eigenvalues.

Before proceeding with a proof of Theorem 5.1 we need a technical result:

Proposition 5.4. Suppose V satisfies A, B. Let H = H0+V.

a) // / : R 3 - > C and (x2 + l ) 1 / 2 ( Ί / | + Σ\djf\) + \Δf\ is bounded then

b) If geCgQR1) with suppgQ{x:x^x0} then

A proof of Proposition 5.4 is sketched in Appendix A.

Proof of Theorem 5Λ. Suppose Hψ = Eψ. Without loss of generality we can assume
that ψ is real-valued. The restriction of ψ, ψx, to a fixed value of x has certain
regularity properties by virtue of Proposition 5.4:

(i) ψx is a twice continuously differentiable L2(IR2) valued function of x.
(ii) Let Pj= — iV: and pl = p2+pl Then ψxe@{pj) andpjψxis a continuously

differentiable [L2(IR2) valued] function of x.
(iii)

f X ' W Σ \\PjΨx\\2+\\ψ'x\\2)<oo. (5.1)
xo \j = 2 I

Here the prime indicates differentiation with respect to x. Statements (i) and (ii)
follow from the easily proved inequalities.

(p2

1 + iYφ\la> 1/4

and from part (b) of the proposition. Statement (iii) follows from the fact that

\\Pj(x2 +1)'WpAH + i r 1 ^ co

which in turn follows from (a) of the proposition. These results are needed to
justify the manipulations to be carried out below.

The central idea in the positive commutator technique for proving absence
of eigenvalues is the search for a dynamical variable that increases in time. Our
approach is, in some sense, a special, local version of this idea. One starts from the
observation that for xΞ>xo> Λ e expectation value, in the plane perpendicular to
the field, of the force in the x-direction is non-negative. Let f:[x0, oo)-»JR be
given by

/(x) = < V x , (1 - V^ψx}^δ(ψx, φ x>§:0 , (5.2)

where
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/ is integrable on [x0, GO), hence we consider the expectation of the force acting
on the "part of the particle" to the right of x:

J f(y)dy = G(x) + c0 (5.4)
X

where

2 l . (5.5)

Equation (5.4) follows from the Schrδdinger Equation (5.3). A function similar
to G was originally introduced by Kato [12]. We will henceforth analyze the
quantity G and other similar quantities (it will shortly be shown that the quantity
c0 in (5.4) is zero). Our procedure will be to show that if y3<2δ then

αo> j dxe*x{\\ψ'J2 + (ψχ9plψxy+x<M>x9ψx>}. (5.6)
xo

This will lead to a contradiction unless ψx = 0 for x > x 0 .
First note that if G is negative at some x1 ^ x 0 , then by (5.4) and (5.2) \G(x)\ ̂

|G(X!)|>O for all x ^ . If G is positive for all x ^ x 0 but Jim G(x)>0, then |G(x)|^

lim G(y)>0 all x^:x 0. In either case (5.1) implies
y-+ oo

00 00

oo= I \G(x)\x~ιdx^ ί x^dx{\\ψ'x\\2 + (ψx,piΨxy
xo xo

+<ψxΛ\vx\+χ+\E\)ψxy}<co9

a contradiction. We have thus shown

G(x)^0, limG(x) = 0. (5.7)

(This means that co = O.) Introducing the function g(x) = (ψx, ψx}, (5.2) then gives

G{x)^δ] dyg{y). (5.8)
X

Note also that

(5.9)

Since g is a non-negative integrable function it is easy to see that g'(x) ^ 0, lim #(x) =

lim gf(x) = 0.
X-+O0

g(x)= f dyt J dy2g"(y2) (5.10)
x yi

and by Fubini's theorem (5.10) implies

00 00

f g(y)dy= ί ^ - * ) 2 ( 2 | | t / > ; i l 2 + G(y)). (5.11)
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Equation (5.8) then gives

J (5.12)

00

Using g"(x)^2G(x)^2δ j dyg{y) and Equation (5.10) results in the inequality
X

g(x)^δ]dy(y-x)2g(y). (5.13)
X

Note that from Equation (5.12), G also satisfies this inequality. We next show that
any non-negative (finite valued) function, /z, satisfying (5.13) also satisfies

] dxeγxh(x)<oo y3<2δ. (5.14)
χo

We first multiply both sides of Equation (5.13) by (y — xf and integrate to find

oo oo

cn= J dy(nri{y-xo)nh(y)^2δ J dy{{n + 3)ϊ)-1{y-xoγ
+3h{y)=2δcn+3 (5.15)

where cn is finite for all n by induction. Equation (5.15) gives c3n+j^(2δ)~nCp
7=0,1,2sothatforγ 3 <2^

co oo / 2

I dye^-χo)h{y)= Σ A n ^ Σ c,,y

This proves Equation (5.14). Also note that from Equation (5.12)

J ^ | | t p ; | | 2 d x < o o y3<2(5. (5.16)
xo

Thus we have proved Equation (5.6). We complete the proof by showing that
Equation (5.6) is impossible unless ψx=0 for x>x0:

Let φx = φxε = ψxQxp(λx1~ε) and note that φx satisfies the equation

(5.17)

where

Wx^WxMε^λε(l-ε)χ-ί-^λ2(ί-s)2χ-2ε. (5.18)

We next introduce the function

G λ , ε (x) Ξ - | |#J 2 +<φx, (pl + Vx-(x + E)-Wx)φx> (5.19)

and compute

G'ι/x)= -4A(1 -β)χ- | | ^ I I 2 + <Φχ, ( - 1 + ί ϊ - Wϊ)φx> (5.20)

where

(5.21)
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Suppose ψXί +0, for some xx^x0. Choose λ0 so large that G λ o ε(x 1)<0 for all
ε in the interval (0,1/2). Choose εo>0 so small that

-W>^&0<δl2. (5.22)

Then since — W^ is a decreasing function of x

φ x > ^ 0 all x^x,.

Thus GAθϊβo(x)<Gλo;βo(x1)<0 all x > x 1 . In particular GλθiEo(x) is not integrable
on [x0, oo) in contradiction to Equation (5.6). This proves Theorem 5.1.
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(I.W.H.) at the Physics Department of the University of New Mexico. The interest and useful comments
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Appendix. Operator Bounds

We first consider the operator {p2+ l)f(H + ϊ)~\ Using [ > 2 , / ] = Σ2Pjfj + Af>

fj= —idjf it is easy to derive

^ + Z . (Al)

On the other hand

+ ίy1+gj(H0 + ίy1. (A2)

We also have

||(ifo + 0(ff + 0~Ίl<oo (A3)

so that the first term of (Al) is bounded because of (A2), while the second term is
bounded because || V(H-f i)~x || < oo.

To prove part (b) it is enough by (A3) to show that

IIPi^ + i m ^ + O'H^o + O " 1 ! ^ ^ ) . (A4)

We use (Al) and note that

is bounded by part (a) of the proposition. The expressions

and

are bounded by (A2).
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Note Added in Proof

We would also like to mention the recent results of P. Rejto and K. Sinha (Helv. Phys. Acta 49,389—413
(1976)) who prove the absolute continuity of the spectrum of a class of one-dimensional Stark-like
Hamiltonians.




