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Adiabatic Theorems for Dense Point Spectra*
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Abstract. We prove adiabatic theorems in situations where the Hamiltonian
has dense point spectrum. The gap condition of the standard adiabatic theorems
is replaced by an appropriate condition on the ineffectiveness of resonances.

1. Introduction

The prototype Adiabatic Theorem in quantum mechanics asserts that for operators
with discrete spectra, in the adiabatic limit, the physical evolution takes an
instantaneous eigenstate at t = 0 to the corresponding instantaneous eigenstate at
a later time [3,8]. More generally [1], with no assumptions about the nature of
the instantaneous spectrum, but provided it has a gap for all times, the physical
evolution in the adiabatic limit respects the splitting of the Hubert space into
spectral subspaces: A state in the subspace below the gap at t = 0 will evolve to a
state that lies in the corresponding subspace below the corresponding gap at time
t. While there are various kinds of adiabatic theorems that deal with the two
settings above, (i.e. discrete spectra or gap conditions [1-3,6,8-11]), there are no
results for situations that have no gaps, in particular in cases that involve dense
point spectra. Our purpose here is to describe such results.

There is actually a good physical reason for the gap condition. A time-dependent
Hamiltonian H(t/τ) with time scale τ, can be thought of as describing a quantum
system in an external time-dependent field, that for the sake of discussion we call
photons. The photon field is switched on in the distant past and switched off in
the distant future and in the limit τ -* oo contains only soft photons with frequencies
characterized by 1/τ. These cannot excite the system when it has gaps and that is
why the evolution respects the spectral structure even on long time scales of order
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τ 1 . In the absence of gaps no photons are soft. With dense point spectrum, if nearby
eigenvalues correspond to eigenfunctions that are far apart then soft photons are
again ineffective because matrix elements for the transition of states nearby in
energy tend to be small.

We shall describe two adiabatic theorems for dense point spectra. The theorem
of Sect. 4 is the analog of the case of discrete spectra since the spectral bundle is
one dimensional. It applies to a setting where the instantaneous eigenvalues depend
smoothly on time and the eigenvectors stay localized in some kind of configuration
space. The theorem of Sect. 3 is the analog of the gap situation and applies in its
simplest form to certain finite rank perturbations of dense point spectra where, in
general, no continuously varying eigenvalue λ(t) can be defined. Here the spectral
bundle is infinite dimensional, since we choose the fibre to be the spectral subspace
of H(t/τ) corresponding to a fixed interval of the real axis. The nonresonant
condition is discussed in Sect. 3, and as we shall see, it endows infinitesimal gaps
with the relevant properties of finite gaps.

2. A General Adiabatic Theorem

We shall now summarize the results of [1], in a slightly different formulation better
adapted to our purposes. The need for reformulation, of course, is that the spectral
gap of [1] is not present here. However, the proof of [1] goes through without
essential change if we simply replace the gap condition by two of its consequences:
existence of (a) a smooth reducing family of projection P(s\ and (b) a smooth
solution of a commutator equation.

Throughout, we shall work with scaled time s = t/τ on the fixed interval 0 ^ s ^ 1
rather than ί o n O ^ ί ^ τ . Thus instead of the evolution operator U(t) satisfying
the Schrodinger equation

ijtU(t) = H(t/τ)U(t), U(0)=l

we shall work instead with the solution Uτ{s) = U{τs) of the rescaled equation,

U() H()Uτ(sl t / τ (0)=l

We shall make the following assumptions:

(i) H (s), — oo < s < oo, is a family of self adjoint operators on a Hilbert space Jf,
and having a s-ίndependent domain 3i.
(ii) The function (H(s) + i)~\ with values in the Banach space $£{β,#e) of linear
operators^ is twice strongly continuously differentiable.
Under these conditions, Ut(s) exists and is strongly differentiable.

1 We are interested in conditions that give adiabatic evolution for time scales of order τ. For shorter
time scales, say of order unity, the evolution respects the spectral splitting (to order 1/τ) under weaker
conditions, namely once the spectral bundle is differentiable
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(iii) P(s) is a strongly C2 family of orthogonal projections with

H(s)P(s) = P(s)H(s)

for each s.
Our final assumption is the following condition:

(iv) There exists a strongly C 1 family X(s) satisfying

Q(s) (2.1)

and

X(s) = P{s)X(s)Q(s)9

where Q(s) = 1 - P(s).

Note that X(s)* satisfies (2.1) with the right-hand side replaced by - Q(s)P{s)P(s).
As we shall see, the condition for inverting the commutator (2.1), i.e. for Eq. (2.2)
below to make sense, can be interpreted as a condition on the mismatch of
resonances. In [1], X(s) is constructed as the Friedrichs integral

X(s) = - (2πi)"x J R(z9 s)P(s)P(s)Q(s)R(z9 s)dz9 (2.2)
r

where Γ encircles the part of the spectrum corresponding to P(s), and R(z, s) =
[H(s) — z] " 1 is the resolvent. We shall use an adaptation of this construction below.

We can now state the adiabatic theorem [1].

Theorem. // (i)—(iv) hold, then uniformly for 0 :g s ̂  1,

Uτ(s)P(0)-P(s)Uτ(s) = O(τ-1). (2.3)

The basic idea of the proof, which goes back to the classic paper [8] of Kato,
is to approximate the dynamics generated by H{s) by a dynamics that manifestly
preserves the spectral splitting.

Given H(s) and P(s), there is a natural evolution that preserves the spectral
splitting and is an approximation of the physical evolution Uτ(s). We denote this
evolution by UA(s). It is the unitary given by:

UA(O)=1 (2.4)

Respecting the spectral splitting means that

UA(s)P(0) = P(s)UA(s). (2.5)

For a proof of (2.5) see [1].
On time scales where t is of order one, the variable s = t/τ is of order 1/τ, so

it is clear from the explicit form of HA, that UA and Uτ are close, provided the
spectral bundle is differentiable (P(s) is bounded). The adiabatic theorems are
concerned with the comparison of UA(s) and Ut(s) on long time scales of order τ,
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where s is of order one. Condition (iv) on the mismatch of resonances enters for
Uτ and UA to agree on long stretches of time.

We shall now sketch the proof of Theorem 2.1. First note that Ωτ(s) = U%(s)Uτ(s)
satisfies the integral equation

Kτ(s, P) = U*A(s)lP(s\ P(s)-] UM (2.6)

Ωτ(s) and Ωτ(s) are clearly bounded (Ωτ because of the integral equation). Writing

Ωτ(s) - 1 = (β(0)Λt(s) - β(0)) + (P(0)flτ(s) - P(0)), (2.7)

we will show that β(0) Ωτ(s) - β(0) = O(l/τ) and similarly for P(0). This implies
(2.3). From the integral equation (2.6), the intertwining property (2.5), the
commutator formula (2.1), and the evolution equations (2.4):

(s) - 1 ) = - 1 Q(0)Kz(s',
0

= - 1 U*A(s')ίP(s)P(s)Q(s)γUA(s')Ωτ(s')ds'

= j UΛ(s')\;H(s),X(s)*WA(s)Ωt(s')ds'

= - - J 3, {U*A(s')X(sT UA(s')}Ωτ(s')ds'
τ o

')ds' (2.8)

Integrating the first term by parts, and using the boundedness of Ωτ(s) shows
that the first term is 0 (1/τ) if X is bounded. The second term is bounded if X and
Pare.

3. Relatively Finite Perturbations

In this section, we shall consider situations of which the following is typical. Let
H be an operator with pure point spectrum, and en a complete orthonormal set
of eigenvectors:

Hen = λnen.

We consider a rank one perturbation of H:

with || φ | |2 = 1. As was shown in [7,13], Hβ is pure point for a.e. /?, provided that

I<oo. (3.1)

If we now permit the coupling constant β(s) to vary smoothly in time, we obtain
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a time-dependent family of Hamiltonians

H(s) = H + β(sKφ9 >φ (3.2)

for which we do not even know whether H(s) has eigenvalues for all values of s
or not. Since we cannot follow a subspace corresponding to a single, continuously
varying eigenvalue, we must find some other definition for the projection P(s\ if
we are to prove an adiabatic theorem.

We solve this problem by choosing:

P(s) = Es(a9b)

for a fixed spectral interval (a, b\ and assume, in analogy to the usual assumption
of "no level crossings," that a and b are never in σp(H(s)) for any s; that is, no
eigenvalues of H(s) "leak out" of (α, b). If, in addition, we assume that the endpoints
α, b belong to a certain set of "non-resonant" values, which is large in the sense of
having full measure, then we are able to prove an adiabatic theorem for the family
of projections P(s).

It may seem an overly strong assumption that for all s, neither a nor b is in
σp(H(s)). After all, the point spectrum is dense and keeps moving. In fact, general
principles for rank one perturbations tell us that for any real λ, there is at most
one β = βc(λ) so that λ is an eigenvalue of Hβ. Thus, the real line is divided into
three open intervals where the conditions that a,bφσp(H(s)) is only that β lies in
only one of these intervals. (If βc(a) = βc(b) there are two regions, not three.)

In order to define the non-resonant set precisely, we shall need the following
result [7,13].

3.1. Proposition. Let p > 1, an > 0 and £ an < oo. Then the function
n

AJ-'<i (3.3)

is finite for a.e. λ, regardless of the sequence λn.

Proof Let Sn = {λeJ:\λ — λn\ ^ an). Let χn(λ) be the characteristic function of Sn,
and χc

n = 1 - χn. Write

Integrate the first term:

g (p - 1)-! £ α' -^-=== 4(p - I)"' £ αB < oo.

Hence, the first term converges a.e.
Write the second term as:
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The first of these terms is finite except at the points of the sequence {λn}> and the
last term is identically zero except on the set:

EN= 0 «•
But EN has measure

N ) ^ f meas(SJ:g £ 2an,
n=N+l n=N+l

which is less than ε if N is large enough. •

Let N(H, φ) be the set of all λ such that

By Proposition 3.1, N(H,φ) has Lebesgue measure zero provided

θΓ/2<oo. (3.4)

If λφN(H, φ\ then (H - λ)2φ is a finite vector of Jf.

Theorem 3.2. Assume that β(s) is C2, and that (3.4) holds. Let a, bφN(H, ψ) u σp(H(s))
for all s, and define

= Es(a,b). (3.5)

Then the adiabatic theorem holds for P(s).
Actually, we shall prove below a more general result suggested by [7]. If A is

bounded, and
1 / 2 < o o , (3.6)

we shall denote by N(H, A) the set of all λ for which

Σ\λ-λn\-*\\AeJ2 = oo.
n

By Proposition 3.1, N(H,A) has measure zero. From the formula

it follows that (H - λ)~2A is a bounded operator if λφN(H9 A). Note also that (3.6)
implies that A is compact (in fact, trace class).

We can now formulate the main theorem of this section. Let H and A be self
adjoint, with H pure point, and A bounded. Let W(s) be a strongly continuous
family of self adjoint operators, uniformly bounded in operator norm. Define

H{s) = H + AW{s)A.

Theorem 3.3. Assume that (3.6) holds, and that W(s) is strongly C2 with uniformly
bounded derivatives. Let a,bφN(H,A)vσp(H(s)) for all s, and define

P(s) = Es(a,b).

Then the adiabatic theorem holds for P(s).
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Remark. Theorem 3.2 follows by choosing A = A2 = < ,φ>φ and W(s) = β(s) 1.

Proof. We need to verify (iii) and (iv) of Theorem 2.1. In [1], this was done by
writing, with R(z,s) = (H(s) -z)~\

s)dz9 (3.7)

and

where Γ is a contour encircling the spectral set corresponding to P(s) with positive
orientation. Here, although the interval {a, b) is not separated from the rest of the
spectrum, we nevertheless do exactly the same thing, and take Γ to be the positively
oriented rectangle with corners a±ic and b±ic for some c>0. Although Γ runs
right through the spectrum. We shall show that (3.7) and (3.8) make perfect sense
and satisfy (iii) and (iv) of Sect. 2.

We first establish notation. Write R0(z) = (H — z)~\ so that by the second
resolvent equation:

R(z9 s) = R0(z) T(z9 s) = T*(z9 s)R0(zl (3.9)

where

T(z, s) = (I + A W(s)AR0(z))-ί (3.10)

and

Γ*(z,s) = [T(z,s)] = (1 + R0(z)AW{s)A)-1. (3.11)

The following is what makes the proof work.

Lemma 3.4. R0(ζ) A and R0(z) R0(ζ) A are norm continuous on Γ and Γ x Γ
respectively.

Proof. The only points of questionable continuity of R0(ζ)A are ζ = α, b. We have

n^i {λn-a)(λn-a-iε)

so that by Pythagoras' theorem

o II Λp || 2 ΛΓ-1 || Δp

Hence

limsup ||R(a + iε)A-R(a)A||2^ £ (AB

for every N. But the series converges by choice of a.
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A similar, slightly messier proof works for R0(z)R0(ζ)A.
It follows that AR0(ζ) = [R 0 (Q^]*, and AR0(ζ)R0(z) are norm continuous.

Since A is compact, they are all compact as well—trivially for £, z non-real, and
by continuity otherwise. Moreover, T(ζ, s) is also norm continuous on Γ. For since
AW(s)AR0(ζ) is compact, the only question is whether 1 + AW(s)AR0(ζ) is injective
for ζ = a,b. But if

ll+AW(s)ARo(a)]φ = 0,

then

ψ = R0(a)φ = - lR0(a)Λ] W(s)lAR0(a)φ^

is a finite vector, and

-a)ψ = φ=-AW(s)Aφ9

so that H(s)φ = aφ9 and aeσp(H(s)\ contrary to hypothesis. As a function of s, T(ζ, s)
is strongly C2 since W(s) is.

With these remarks, we proceed to the proof of Theorem 3.3.
Define:

P(s) = Po - - ^ J [Λ0(0>ί] W(*)[>lΛo(O] Γ(C,*)C (3.12)
Z7Π r

By differentiation under the integral sign, P(s) is strongly C2. We claim that

P(s) = £β(fl,6). (3.13)

For let Γε be the polygonal path with two pieces, obtained by deleting the segments
(a — iε9 a + is) and (b — iε, b + ίε) from Γ. By standard spectral theory, since a and
ft are not eigenvalues of H(s),

= w-lim - L I {Λo(0 -

which clearly equals (3.12). Define

= - T~ ί Λ ( z ' s)P(s)P(s)Q(s)R(z, s)dz. (3.14)

We must show that this exists by differentiating (3.12), and substituting into (3.14).
To simplify the rather lengthy formulas, we suppress the variables ζ and s.

Differentiate (3.12) to obtain

P= -^-.$lRoAWRoT+RoAWARot]dζ, (3.15)

and substitute into (3.14), using R{z)P = PR(z) and similarly for Q. We obtain
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X = Λ ί Λ ί {PR(z)RoΛίWARo T + WARoflR(z)Q}dzdζ

= P ^ T J ^ ί {T*(z)(R0(z)R0A)lW(AR0TR0(z)

- WW(AR0)TAW(ATR0(z)] T(z)dzdζ}Q, (3.16)

where we have used t= - TAW AT. Now

ATR0(z) = A[_I - T(AWA)R0']R0(z) = AR0(z) - ATAW{AR0R0(z)) (3.17)

is continuous on Γ x Γ, as is

AR0TR0(z) = ARR0(z) = [/ + ARoAWY^ARoRoiz)), (3.18)

where we have used the factorization method. The inverse exists since aφσp(H(s)).
Thus all terms on (3.16) are norm continuous on Γ x Γ, and X(s) is well-defined.
Moreover, X(s) is clearly strongly C 2 as well.

It remains to show that X(s) satisfies the commutator identity (2.1),

Define

Xε(s) = - i ί R(z, s)P(s)P(s)Q(s)R{z, s)dz.

It is trivial to compute (see [1]) that

where 2πίPε(s) = J R(z9s)dz. But in our case Xε^>X in norm and Pε-+P weakly,

so that we obtain (3.19).
This concludes the proof of Theorem 3.3. •

4. Well Localized Dense Point Spectrum

In this section, we will discuss a situation where, as s varies, the dense spectrum
moves smoothly and a strong form of no crossing takes place. Here are the
assumptions:

1. For each s in [0,1], H(s) has a complete set of eigenvectors {en(s)}£°=0

eigenvalues {λn(s)}?=0.
Let P(s) be the projection onto eo(s).

2. P(s) is C2 and the matrix elements of its derivatives Pil)(s) obey

. ( s)) |gC(l + fi)-- (4.1)

for / = 1,2 and some m > 0.
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3. The following strong no crossing rule holds:

DJπΓ (4.2)

(4.3)

for some q>0.
4. Each λn(s) is C 1 and obeys for / = 0,1:

for some p.
5. The eigenfunctions en(s) are C1 and obey

for the same p as in (4.3).
6. m>3

\\eH(s)\\£D3\n\> (4.4)

There are nontrivial examples where the hypotheses hold.

Theorem 4.1. Suppose that H(s) obeys (ϊ),(n) of Sect. 2 and that (l)-(6) holds. Then
P obeys the adiabatic theorem.

Proof We need only verify the hypothesis of Theorem 2.1 (2.iii) is implied by (2),
so we need only prove (2.iv). Thus we concentrate on the equation

Taking matrix elements in the basis en(s) we see that

fe(s), X(s)ej(s)) = ί l 0 ( l - δjθmeo(s% P(s)ej(s)/(λ0(s) - λ/

= aj(s)δi0{l - δj0).

Since m > q + \, Σ \aj(s)\2 < oo from which it easily follows that X (normalized by
(e0, Xe0) = 0) is a well defined bounded operator which obeys the requisite equation.
By just differentiating and using the hypothesis m > 3q + 2p + \ we prove that X
is C2. •

Examples where the hypothesis (4.1-4.6) can be proven are connected with
varying a coupling constant in a system which can be solved by overcoming a
small divisor problem. One case is

h(s) -ho + β(s) tan (πocri)

with h0 the discrete one dimensional Schrodinger operator and α an irrational
with good Diophantine properties [5,12]. In this example the dependence on β is
actually analytic.

Another example would come from the model studied by Craig [4].
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