
Journal of Statistical Physics, Vol. 92, Nos. 3/4. 1998

Odd Viscosity
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When time reversal is broken, the viscosity tensor can have a nonvanishing odd
part. In two dimensions, and only then, such odd viscosity is compatible with
isotropy. Elementary and basic features of odd viscosity are examined by
considering solutions of the wave and Navier-Stokes equations for hypothetical
fluids where the stress is dominated by odd viscosity.

1. INTRODUCTION AND OVERVIEW

Normally, one associates viscosity with dissipation. However, as the viscosity
is, in general, a tensor, this need not be the case since the antisymmetric
part of a tensor is not associated with dissipation. We call the antisym-
metric part odd. It must vanish, by Onsager relation, if time reversal holds.
It must also vanish in three dimensions if the tensor is isotropic. But, in
two dimensions odd viscosity is compatible with isotropy.

It is conceivable that that odd viscosity does not vanish for many
system where time reversal is broken either spontaneously or by external
fields. But, I know of only two systems for which there are theoretical studies
of the odd viscosity and none for which it has been studied experimentally.
In superfluid He3, time reversal and isotropy can spontaneously break and
the odd viscosity has three independent components.(9) As far as I know
there is no estimate for their magnitudes. In the two dimensional quantum
Hall fluid time reversal is broken by an external magnetic field. In the case
of a full Landau level the dissipative viscosity vanishes. The odd viscosity,
r;a, has been calculated for non interacting electrons in(4) for the lowest
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Landau level. Using results of,(5) the odd viscosity for any integral filling
factor n is:

e is the charge of the electron, c the velocity of light. It is an amusing coin-
cidence of the cgs units that the kinematic viscosity of the electron gas, at
integer fillings,

is close to n in cgs units.
Significant odd viscosity can be responsible for odd properties and we

shall illustrate these by considering the wave and Navier-Stokes equations
for hypothetical media where the odd viscosity dominates. A good example
for such a peculiar property is the following: Consider a small, slowly
rotating circular cylinder (so that the Reynolds number is small) in an fluid
which has both dissipating and and odd viscosity. The dissipative viscosity
applies a torque which resists the rotation. This agrees with common intui-
tion. The odd viscosity leads to radial pressure on the cylinder which is
proportional to the rate of rotation (and the coefficient of odd viscosity, of
course). Reversing the orientation of rotation, reverses the sign of this
pressure. This response to the rotation is not particularly intuitive.

Materials with significant odd viscosity, be they solids or liquids, can
support non-dissipating chiral viscosity waves with a quadratic dispersion.
The reflection from a boundary of these waves obeys a different rule than
the reflection of acoustic waves. In addition, such materials can function as
circular polarizers for ordinary acoustic waves. At the same time, viscosity
waves can be quite elusive. In particular we shall show that there are no
viscosity waves in isotropic and incompressible media. In particular, the
Hall system, being isotropic and incompressible, does not support viscosity
waves.

A dimensionless number that gives a measure of the importance of
viscosity relative to elasticity is

where v is the kinematic viscosity, a> the frequency, and cs the velocity of
sound. Odd viscosity is always unimportant relative to elasticity at low
frequencies. For the dissipating viscosity, and also for the odd viscosity in
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the Hall effect, the kinematic viscosity is of order 1 in cgs units. Then, since
cs is typically of order 105 in cgs, e is of order unity for a> of order GHz.

As we shall see, the generalized Navier-Stokes equation that allows
for odd viscosity preserves the basic properties of fluid dynamics of the
ordinary Navier-Stokes equation: Kelvin theorem and Bernoulli law
generalize to non zero odd viscosity.

2. ODD VISCOSITY

Consider a hypothetical, homogeneous and ideal Newtonian fluid. The
stress due to viscosity is:

where uij= 1 / 2 ( u i , j + uj,i) is the strain, ujk is the strain rate, >; a (constant)
viscosity tensor and a the stress. By general principles,(1) the viscosity
tensor, t] i j k l , is symmetric under i«->j, and k<-»l. One can always write
r/ = rjs + r]A where r\A is anti symmetric under {//'} <-> {kl} and r;s is sym-
metric under { / / } « - » { k l } . By Onsager relation(2) the anti-symmetric part is
odd under time reversal and the symmetric part is even, e.g., with B an
external magnetic field;

So, for rjA + 0 time reversal must be broken. One can ask if odd viscosity
is not just a way of mascarading, say, an external magnetic field. The
answer to this is no. This can be seen by a counting argument. A (constant)
magnetic field has three components while the space of anti-symmetric
tensors r\A is 15 dimensional in three dimensions.

2.1. Viscosity in Two Dimensions

In two dimensions there is a natural basis for representing real 4th
rank tensor which are symmetric in pairs:2

Here aa are the Pauli matrices with a° the unit matrix, a2, which is conven-
tionally imaginary, is not used. In components:

2 This basis was suggested by the referee of this paper.
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The space of such tensors is nine dimensional, and its splits to a six dimen-
sional even part and three dimensional odd part. The odd part takes the
form

To see what happens in isotropic media, recall that iff2 is the generator of
rotations in two dimension, and it anticommutes with aa for a = 1, 3 and
commutes for a — 0. Hence a2 ® a2 commutes with aa ® ab if a, b = 1, 3 and
a = b = 0. The isotropic symmetric part is two dimensional and is charac-
terized by two viscosity coefficients:

The odd isotropic part is one dimensional and is of the form

The non-zero components are determined by

It is sufficient that a two dimensional medium is invariant under rotation
by n/4 for rj to have this form.

As a consequence of this, isotropic two dimensional media are charac-
terized, in general, by three coefficients of viscosity: two for the even part
and the third for the odd viscosity r j a . This is in contrast with a claim made
in ref. 3 (p. 45-46), and in ref. 6, Section 15, that isotropy alone implies
that the viscosity tensor has two coefficients of viscosity.

The stress av associated with the viscosity of an isotropic medium, is

In an incompressible fluid ukk = 0 and the stress becomes independent
of £, the second viscosity coefficient. Because of this £ plays no role in
the Navier-Stokes equation for incompressible fluids. Incompressible and
isotropic fluids in two dimensions with broken time reversal are charac-
terized by two viscosity coefficients one for the odd part, //a, and one for
the even part tjs.
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2.2. Viscosity in Three Dimensions

In three dimensions isotropy implies that r\A = 0. Three dimensional
isotropic media are characterized by only two coefficients of viscosity, and
both of these are associated with the even part of the viscosity tensor.
Isotropic and incompresible media are characterized by a single dissipative
viscosity coefficient.

The vanishing of the odd viscosity for isotropic tensors can be seen by
the following elementary argument, which I owe to L. Sadun. Vectors in
three dimensions are associated with the 1 representation of the rotation
group. 2-tensors are identified with

representation of the rotation group. The vector representation 1 on the
right hand side, is associated with pseudo vectors and so with the antisym-
metric 2-tensors. The 2 © 0 is the six dimensional representation associated
with the symmetric 2-tensors. This shows that there is one isotropic 2-tensor
in three dimensions, namely the identity. Continuing in this vein, tensors t i j l ,
with the symmetry i <-> j, and k <-» l are identified with

This shows that the space of isotropic 4-tensors with the symmetry i«-»j,
and k <-> l is 2-dimensional. The isotropic 4-tensors ts make a two dimen-
sional family, given by

this leaves nothing for the isotropic antisymmetric 4-tensor and so r\A = 0.
The number of independent components of the odd and even part of

the viscosity tensor is given in Table I.

Table 1

Dimension

2
3

Even

general

9
21

isotropic

2
2

Odd

general

3
15

isotropic

1
0
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3. VISCOSITY WAVES

Consider a hypothetical ideal three dimensional medium where the
stress tensor is dominated by the odd viscosity. For small oscillations the
equation of motion is [ 1 ]:

where p is the (mass) density, uj the (cartesian) jth component of the dis-
placement (assumed small), and a", the stress tensor, depends linearly on
the strain rate. Linear elasticity is mathematically trivial in the sense that
solving the PDE reduces to a problem in linear algebra. In a homogeneous
systems p is a constant so one can, without loss, set p = 1 (by absorbing
p in a.) For a medium with odd viscosity Newton equation gives a linear
PDE which is second order in space and time:

This equation is not just an alternative way of describing the Lorentz force.
The corresponding Newton-Lorentz equation:

is not a PDE.
Newton equation for viscosity waves admits an integral and by

choosing the constant of integration appropriately, reads:

This equation is first order in time and second order in space. Because r\A

is antisymmetric it has the same character as Schrodinger equation.3 But
it is a classical equation in the sense that the wave function is directly
observable.

Consider plane waves solutions to this equation with wave vector k.
Let fl(k) be the (pseudo) vector with components that are quadratic forms
in the coordinates kj:

Newton law for a plane wave propagating in the k direction can be written as:

3 In real coordinates, with <l/1 — Re \ji and i/*2 = Im <]/, Schrodinger equation for a free particle
takes the form <fil = ev^jlul.
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From this equation it is clear that the viscosity wave in three dimensions
is chiral and circularly polarized in the plane perpendicular to the vector
ft(k) and has quadratic dispersion. Recall that ordinary sounds waves have
linear dispersion, but, rods and plates also allow for elastic modes with qua-
dratic dispersion.(1) The equation for viscosity waves, Eq. (20), is formally
identical to the Landau Lifshitz equation for magnons.4

3.1. Incompressible Media

Consider an incompressible medium where V • u = 0. For a plane wave
this means that U is parallel to k, that is:

For a viscosity wave propagating in the 1 direction

From this it follows that in an incompressible medium either r j f t 1 1 1 = 0 for
all i or u = 0 identically. This leads to:

Proposition 3.1. There are no odd viscosity waves in isotropic
and incompressible fluids. In particular, there are no viscosity waves in a
two dimensional quantum Hall fluid.

This is so because in two dimensions isotropic fluids the non zero
component of the isotropic odd viscosity are r\a= — '/f1222

 = '/2111. For an
isotropic fluid we can choose the 1 axis to coincide with the wave vector,
and then incompressibility says that either r ] a - r ] 2111 = 0 or the wave has
zero amplitude.5 In three dimensions, there are no viscosity waves because
the odd viscosity vanishes.

3.2. The Energy Flux of Viscosity Waves

In the case rjs = 0 one can define a conserved current associated with
conservation of energy. The kinetic energy density:

4 I thank Dr. M. Milovanovic for reminding me of this fact.
5 The result, and proof, works also for a two dimensional planar medium embedded in three

dimensions.
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satisfies a conservation law:

where the energy flux J is

It follows that odd viscosity carries energy flux. There is a generalization of
this energy flux to media where the stress also has elastic part.

3.3. Dissipative Shear Waves

It is instructive to contrast viscosity waves with the strongly dissipative
shear waves.(6) For shear waves t]s =£ 0 and r/A = 0, and the dispersion
curves are pure imaginary

Shear waves decay rapidly, by a factor of about exp(2?i)«540 in one
period.(1) If one now consider a mixed situation where r/s and t}A are of
the same magnitude then the attenuation is much weaker—of order
exp(27Ttan(7r/8))=13.

4. SCATTERING OF VISCOSITY WAVES

Using the rules of geometric acoustics it is straightforward to find the
laws of reflection and refraction of an acoustic wave (in a medium where
77 = 0) from an interface with an odd viscous medium (where the stress is
dominated by qA). If we let y be the axis separating the two media, then
k2 is conserved and so is the frequency ca. Let 9 be the angle of incidence,
cos(#) = £•£,-, of an acoustic wave with sound velocity cs and ^ the angle
of the transmitted viscosity wave, cos(^) = .*•£,. Then a little geometry
shows that

We see that e -1/2 plays the role of the index of reflection. Since £ is small
at low frequencies, the index of reflection is large, and the transmitted
beam is essentially normal to the interface. Since the index depends on co
the reflection is dispersive.



Odd Viscosity 551

4.1. Reflection from Empty Space

Consider the reflection of ideal viscosity waves in two dimensional
isotropic and compressible medium from an interface with a vacuum which
we take to be the line x = 0. A viscosity waves is

where w = r]"k2. The waves is circularly polarized in the plane and changes
polarization from longitudinal to transversal. The boundary conditions at
x = 0 are

For this wave:

Let k = (k1, k2) be the incident wave, k = ( —k1, k2) be the reflected wave;
and z = exp i(E • x — w t ) . u(z) is the incident wave (from the left) and u(z)
the reflected wave and R(k) the reflection amplitude. The wave on the left
is:

Substituting in the boundary conditions, using Eq. (30) and linearity, one
finds

The phase of the reflected wave has an interesting dependence on the direc-
tion of incidence: It goes from 1 for normal reflection to — 1 for grazing
reflection. This is quite unlike the reflection of say longitudinal sound
waves in an incompressible liquid where the reflection amplitude is inde-
pendent of the direction of incidence.

4.2. Odd Viscosity as Polarizer

Consider a wave propagating in the x direction, of a three dimensional
incompressible medium, so that to the left there is an isotropic elastic
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medium with velocities of sound c, and c,. To the right is a viscous
(possibly incompressible) medium. The y — z plane separates the two
media. Incompressibility says that fl(k) points in the x direction. Let

denote the two basic vectors of circular polarization. Consider scattering of
a transverse wave with positive chirality from the y — z interface. The
incoming and reflected waves in the elastic medium are

The transmitted wave (necessarily with positive chirality) is:

Where w = kc t= |J1(£)|. The basic boundary conditions matches <rf) on the
left with (rfj on the right. One checks that aL

11 = arR
11 = 0 and that /crf12 = <rf13.

icrf12 = o-f13 is automatically satisfied (confirming the anzatz that there is no
reflected wave with flipped chirality). The remaining equation, <7f12

 = (Jf12,

gives

Continuity of the wave u on the boundary gives two equations but only
one new: 1 +r = t. From these I finally get:

Note that |r |< 1 as it should: The reflected wave always has smaller
amplitude than the incident wave. However, for t one gets an unusual
behavior: 0<t<2 and the amplitude t is maximal for e = 0 when the
amplitude of the transmitted wave is twice as large as that of the incident
wave! This surprise is mitigated when one notices that for the energy flux
in the x direction, J1, the dependence on s is e/(1+e)2 , which gives
maximal flux at e = 1 as one expects, since in this case r = 0. The wave is
perfectly transmitted.

Consider now the scattering of a viscosity wave so that the incident
wave has negative chirality. The most general transverse wave in the elastic
medium with the given incident wave is:
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while the wave in the viscous medium is as before. Matching CTij with CT1j

one finds that as before erf11 =<7f1 1 =0 and ierf12 = erf13. Writing out i/<7f12 = erf13

gives: r=1. The remaining equation, <7f12 = crf12, gives

This is all that follows from the continuity of the three stress components.
Imposing continuity of the wave on the boundary gives two new equations:

The second equation is in conflict with the equation for the continuity of
the stress.6 The way out is not to require continuity of the wave, but
instead continuity of the energy flux. This holds if the flux vanishes at the
surface and sets r = t = 0. The incident wave with the wrong polarization is
totally reflected. We see that anisotropic incompressible media with odd
viscosity act as circular polarizers.

5. NAVIER-STOKES EQUATION

Consider the Navier-Stokes equation, for homogeneous ( p = 1 ) ,
isotropic and incompressible fluid in two dimensions—the one dimension
where odd viscosity is compatible with isotropy.

With broken time reversal, the general Navier-Stokes equation for the
pressure p and the velocity field v, is the obvious generalization of the
standard Navier-Stokes equation:(3)

The dual is defined, as usual, by

Incompressibility is implemented by introducing a stream function and the
equations can be alternatively written as four equations for the four fields
(P- &, v):

6 This is the generic situation in scattering of acoustic and viscosity waves. That is, in general
imposing continuity of the wave across the interface gives an overdetermined system. In this
sense, the previous example is exceptional in that both the stress and the wave turned out
to be continuous.
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Taking curl the equation for the vorticity is

Vorticity is be generated only by the symmetric (dissipative) part of the
viscosity tensor. The odd viscosity does not generate vorticity.

5.1. Bernoulli Law

Consider incompressible fluid in two dimensions, with rjs = 0, in steady
state. The equation of motion is:

Since

one gets, by integrating along a streamline, that

This looks at first like an interesting generalization of Bernoulli's law to
odd viscosity with the pleasant feature that the vorticity (weighted by the
odd viscosity) plays a role of (signed) kinetic energy. However, as vorticity
is conserved along a streamline, it is actually precisely equivalent to
Bernoulli's law.

5.2. Stokes Equation

The limit of small Reynolds number is described by Stokes equation.
This is the case where normally viscosity dominates. Stokes equation is
linear, so this is also the easy limit. In the present context, with broken
time reversal, and for two dimensional isotropic and incompressible fluid:

Taking curl and div we get:

In a steady state, if r j s ^ 0 , both the pressure and the vorticity must be
harmonic functions and \// bi-harmonic.
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5.3. A Rotating Disc

Consider a rigid disc which is rotating with constant (and small)
angular velocity Q in a fluid subject to no-slip boundary conditions. Stokes
equation can be solved explicitly in this case(7,8). I will show that while
the ordinary viscosity applies a torque that resists the rotation of the disc,
the odd viscosity leads to a pressure on the disc which is proportional
to the angular velocity. The pressure can be either positive or negative,
depending on the sense of rotation.

Written in complex notation Stokes equation read:

Since \l> is bi-harmonic and real

Let v = v 1 +iv 2 . Using

one finds

Since the velocities at infinity are finite, one must haves7

On the surface of the circle zz = 1 and one can trade z for an inverse power
of z, so:

Equating coefficients we get

7 One can actually allow a-1 real. One can not allow a log term in a(z) if one is interested
in continuous solutions for the velocity field.
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All other coefficients are zero. That is

It then also follows that p is a constant. Using the velocity field one finds
the strain on the surface of the circle:

Here x = \z\ cos 6. Let us write the stress as a = as + aa where the first piece
is due to the dissipative viscosity and the second is due to the odd viscosity.
Then

And

Let n and t denote the unit vectors normal and tangent to the disc. A
calculation gives

This says that the symmetric viscosity resists the rotation by applying a
torque on the rotating circle. The odd viscosity applies no torque, but
instead, a normal pressure on the circle, which is proportional to the rate
of rotation.

Remark. One could have also asked what is the effect of odd
viscosity on the drag and lift (the Magnus force). Unfortunately, for an
incompressible, viscous fluid in two dimensions the question is moot:
Stokes equation in two dimension does not admit steady state solutions
that describe a moving disc with no slip boundary conditions in a fluid that
is at rest at infinity. Two dimensions behave like one dimension and unlike
three dimensions. This feature of the Stokes equation is known in classical
fluid mechanics as the Whitehead paradox.
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