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Abstract. The swimming of a pair of spherical bladders that change their
volumes and mutual distance is superior to other models of artificial swimmers at
low Reynolds numbers. The swimming resembles the wriggling motion known
as metaboly of certain protozoa.
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1. Introduction and statement of results

Swimming at low Reynolds numbers can be remote from common intuition because of the
absence of inertia [1]. In fact, even the direction of swimming may be hard to foretell [2]. At
the same time, and not unrelated to this, it does not require elaborate designs: any stroke that is
not self-retracing will, generically, leads to some swimming [3]. A simple model that illustrates
these features is the three linked spheres [4], (figure 1, right), that swim by a periodic contraction
(in quadrature) of the distances �1,2 between neighbouring spheres. The swimming stroke is a
closed, area enclosing, path in the �1 − �2 plane. Another mechanical model, Purcell’s two hinge
model [5], has actually been built recently and can be viewed on the website [6].

Swimming efficiently is an issue for artificial micro-swimmers [7]. As we have been
cautioned by Purcell not to trust common intuition at low Reynolds numbers [2], one may
worry that efficient swimming may involve unusual and non-intuitive swimming styles. The aim
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Figure 1. Five snapshots of the pushmepullyou swimming stroke (left) and
the corresponding strokes of the three linked spheres (right). Both figures are
schematic. After a full cycle, the swimmers resume their original shape but are
displaced to the right. Pushmepullyou is both more intuitive and more efficient
than the three linked spheres. See the accompanying movie.

of this paper is to give an example of an elementary and fairly intuitive swimmer that is also
remarkably efficient provided it is allowed to make large strokes.

The swimmer is made of two spherical bladders that exchange volumes in each stroke,
figure 1(left). For the sake of simplicity and concreteness we assume that the total volume,
v0, is conserved. The bladders are elastic bodies that impose no-slip boundary conditions. The
swimming stroke is a closed path in the v − � plane, where v is the volume of, say, the left sphere
and � the distance between them. For reasons that shall become clear below, we call the swimmer
pushmepullyou.

Like the three linked spheres, pushmepullyou is mathematically elementary only in the limit
where the distance between the spheres is large, i.e. when εi = ai/� � 1 (ai stands for the radii
of the two spheres and � for the distances between the spheres). In this limit, one can construct a
solution to a collection of spheres from the known solution to a single sphere using the linearity of
the Stokes equations for low Reynolds number R = ρav/µ � 1 (see the appendix). We further
assume that the distance � is not too large, i.e. �v � µ/ρ. This last assumption is not essential and
is made for simplicity only. (To treat large � one needs to replace the Stokes solution, equation
(A.1), by the more complicated, but still elementary, Oseen–Lamb solution [8].)

Pushmepullyou is simpler than the three linked spheres: it involves two spheres rather
than three; it is more intuitive physically and is easier to solve mathematically. It also swims
a larger distance per stroke and is considerably more efficient.1 If large strokes are allowed, it
can outperform conventional models of biological swimmers that swim by beating a flagellum
[9]. If only small strokes are allowed then pushmepullyou, like all squirmers [7], becomes rather
inefficient.

1 A competetion between the three linked spheres and pushmepullyou can be viewed at
http://physics.technion.ac.il/ãvron. The competition is made with the following rules: the spheres have the
same (average) radii and the same (average) �. Furthermore, the strokes are similar rectangles in shape space with
identical periods. Pushmepullyou is then both faster and spends considerably less energy.
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The swimming velocity is defined, geometrically, by Ẋ = (U1 + U2)/2 where Ui are the
velocities of the centres of the two spheres. Our sign convention is, as usual, that velocity to the
right is considered positive. To solve a swimming problem, one needs to find the (linear) relation
between the (differential) displacement -dX and the (differential) controls (d�, dv). This relation,
as we show in the appendix of this paper, takes the form:

2 -dX = a1 − a2

a1 + a2
d� +

1

2π�2
dv, (1.1)

where a1 and a2 are the radii of the left and right spheres respectively, v is the volume of the
left bladder and -dX > 0 represents an infinitesimal displacement to the right. The bar in -dX

stresses that the differential displacement does not integrate to a function X(�, v). Rather, the
displacement X(γ) ≡ ∫

γ
-dX depends on the path in the space of controls, represented by a curve

in the � − v plane. A stroke is a closed path γ in the space of controls and swimming means that
X(γ) �= 0.

The first term in equation (1.1) says that increasing � leads to swimming in the direction of
the small sphere. It can be interpreted physically as the statement that the larger sphere acts as
an anchor while the smaller sphere does most of the motion when the ‘piston’ � is extended. The
second term says that when � is held fixed, the swimming is in the direction of the contracting
sphere: the expanding sphere acts as a source pushing away the shrinking sphere which acts as
a sink to pull the expanding sphere. This is why the swimmer is dubbed pushmepullyou.

Using Stokes’ theorem of elementary calculus and equation (1.1), one readily sees that the
swimming distance δX associated to an infinitesimal closed loop is

δX = 1
2

[
∂v

(
a1 − a2

a1 + a2

)
− ∂�

(
1

2π�2

)]
dv ∧ d�, (1.2)

where dv ∧ d� denotes the signed area enclosed by the loop (the sign reflects the sense of traversal
of the loop: clockwise or anticlockwise).

To gain insight into what formula (1.2) implies, consider the special case of small strokes
near equal bi-spheres. Dropping sub-leading terms in εi = ai/�, one finds:

δX = 1
6d(log v) ∧ d�. (1.3)

The distance covered in one stroke scales like the area in the (log v) − � plane. Remarkably,
the swimming distance is independent of the distance between the two spheres, even though
the two may be far apart and ε is small. This is in contrast with the three linked spheres where
the swimming distance of one stroke is proportional to ε. For a small cycle in the �1 − �2 plane,
Najafi and Golestanian found for a symmetric swimmer (equation (11) in [4]):

δX = 0.7ε d(log �2) ∧ d�1, (1.4)

which scales to zero linearly with ε.
Consider now a large stroke associated with the closed rectangular path enclosing the box

�s � � � �L, vs � v1, v2 � vL ≡ v0 − vs, where v1 = v and v2 are, respectively, the volumes of
the left and right bladders. If as � aL then from equation (1.1), X(γ) is essentially �L − �s:

X(γ) =
(

aL − as

aL + as

)
(�L − �s)[1 + O(ε3)]. (1.5)
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This implies that the distance covered in one stroke is of the order of the change of the distance
between the balls.

Certain protozoa and species of Euglena perform a wriggling motion known as metaboly
[10] which resembles the swimming stroke of pushmepullyou. Metaboly is, at present, not well
understood and while some suggest that it plays a role in feeding others argue that it is relevant
to locomotion [11]. The pushmepullyou model shows that at least as far as fluid dynamics
is concerned, metaboly is a viable method of locomotion. In any case, pushmepullyou is an
oversimplification of the biological swimmer. Euglena resemble a deformed pear more than it
resembles two disconnected spheres. However, there is no known solution to the flow equations
for deformed pears. Equation (1.5) can be expected to be qualitatively, but not necessarily
quantitatively, right. Racing tests made by Triemer [12] show that Euglenoids swim 1–1.5 their
body length per stroke. This is in qualitative agreement with equation (1.5) for reasonable choices
of stroke parameters.

The second step in solving a swimming problem is to compute the power P needed to propel
the swimmer. At this point, we shall make the further simplifying assumption that the viscosity
of the fluid contained in the bladders is negligible compared with the viscosity of the ambient
fluid. This makes the model soluble. By general principles, P is a quadratic form in the velocities
in the control space and is proportional to the (ambient) viscosity µ. The problem is to find this
quadratic form explicitly. If the viscosity of the fluid inside the bladders is negligible, one finds
that in order to drive the controls � and v, pushmepullyou needs to invest the power

P

6πµ
=

(
1

a1
+

1

a2

)−1

�̇2 +
2

9π

(
1

v1
+

1

v2

)
v̇2. (1.6)

In the appendix, we derive this expression from first principles. Note that the dissipation
associated with �̇, is dictated by the small sphere and decreases as the radius of the small sphere
shrinks. (The radius cannot get arbitrarily small and must remain much larger than the atomic
scale for the macroscopic Stokes equations to hold.) The moral of this is that pushing the small
sphere is frugal. The dissipation associated with v̇ is also dictated by the small sphere. However,
in this case, dilating a small sphere is expensive.

In artificial realizations of pushmepullyou, the bladders could be filled with low-viscosity
gases and equation (1.6) would then apply. This is not the case for Euglena, where the viscosity of
the fluid inside is comparable to the viscosity of the fluid outside. Metaboly involves significant
dissipation inside the organism and equation (1.6) does not apply. If one attempts to take the
inside flow into account then the model becomes intractable and there is no closed form solution
to the metric. An intermediate approach is to try and estimate roughly the inside dissipation: in a
tube of length � and radius a, which transports flux v̇ of fluid with viscosity µin, the dissipation
is of the order of µin�v̇

2/a4. This term is similar to the second term in equation (1.6) but is larger
by a factor 1/ε. In any case, it is clear that the inside flow, dissipative or not, cannot affect the
swimming equation (1.1), which is wholly determined by the outside flow.

The drag coefficient is a natural measure to compare different swimmers. It measures the
energy dissipated in swimming a fixed distance at a fixed speed. (One can always decrease
the dissipation by swimming more slowly.) Let τ denote the stroke period. The drag is formally
defined by [9, 13]:

δ(γ) = τ
∫ τ

0 P dt

6πµX2(γ)
, (1.7)
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where X(γ) is the swimming distance of the stroke γ . The smaller the δ the more efficient is the
swimmer. δ has the dimension of length (in three dimensions) and is normalized so that dragging
of a sphere of radius a by an external force has δ = a.

We shall now compute the dissipation associated with the rectangular path of equation (1.5)
for an ideal pushmepullyou. To do so we need to choose rates for traversing the path. The optimal

rates are constant on each leg provided the coordinates are chosen as
(
�, arcsin

√
v

v0

)
. This can be

seen from the fact that if we define x = arcsin
√

v

v0
, then 4v0ẋ

2 =
(

1
v1

+ 1
v2

)
v̇2 and the Lagrangian

associated with equation (1.6) is quadratic in (�̇, ẋ) with constant coefficients, like the ordinary
kinetic Lagrangian of non-relativistic mechanics. It is a common fact that the optimal path of
such a Lagrangian has constant speed.

From equation (1.6) we find, provided also �2
L � �2

s , �L � √
v0/as

1

6πµ

∫
P dt ≈ 2as�

2
L

T�

(
1 + O

(
ε2 vL

vs

T�

Tv

))
, T� + Tv = τ/2, (1.8)

where T� (Tv) is the time for traversing the horizontal (vertical) leg. (Here, ε2 is actually (as/�L)2

rather than the much larger (aL/�s)
2. Also note that the second term in equation (1.6) contributed

O(vL/T�) rather than O(v2
L/(vsT�)), as one may have expected from equation (1.6) which

is dominated by the small volume.) The optimal strategy, in this range of parameters, is to
spend most of the stroke’s time on extending �. By equations (1.7), (1.5) and (1.8), this gives
the drag

δ ≈ 4as, (1.9)

where as is the radius of the small bladder. This allows for the transport of a large sphere with
the drag determined by the small sphere.

Equation (1.9) says that in principle at least, the drag can be made arbitrarily small by letting
as get smaller. Small drag involves large strokes (�L � O(

√
v0/as) by the condition preceding

equation (1.8)). The fact that one can make the drag arbitrarily small is a feature of the ideal
pushmepullyou where the inside fluid is inviscid. Small as and large �L are penalized when the
fluid inside pushmepullyou is viscous. The inner viscosity would add to equation (1.9), a term
of order µin

µout
a6

L�−1a−4
s which would mean that the drag can be optimized, but cannot be made

arbitrarily small.
It is instructive to compare the ideal pushmepullyou with the swimming efficiency of models

of (spherical) microorganisms that swim by beating flagella. These have been extensively studied
by the school of Lighthill and Taylor [9, 14] where one finds δ � 100 a. This is much worse than
dragging. (We could not find estimates for the efficiency δ for swimming by ciliary motion [15],
but we expect that they are rather poor, as for other squirmers [7].) For models of bacteria that
swim by propagating longitudinal waves along their surfaces Stone and Samuel [13] established
the (theoretical) lower bound δ � 4

3a. (Actual models of squirmers do much worse than the
bound.) If the pushmepullyou swimmer is allowed to make large strokes, it can beat the efficiency
of all of the above.

It is likely that some artificial micro-swimmers will be constrained to make only small
(relative) strokes. Small strokes necessarily lead to large drag [7], but it is still interesting to see
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how large. Suppose δ log � ∼ δ log v, then a1 ∼ a2. The dissipation in one stroke is then

∫
P dt

6πµ
= (δ�)2

(
a

T�

) [
1 + O

(
ε2 T�

Tv

)]
. (1.10)

From equation (1.3) and noting that T� = 1
2τ, one finds

δ ≈ 72

(δ log v)2
a. (1.11)
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Appendix. Derivation of the key formulas

We shall now outline how the key results, equations (1.1) and (1.6), are derived. The flow around
a pair of spheres is a classical problem in fluid dynamics which has been extensively studied
[16, 17]. We could have borrowed from the general results, e.g. in [16], and adapt them to the
case at hand. However, it is both simpler and more instructive to start from scratch: the classical
Stokes solution [8] describing the flow around a single sphere of radius a dragged by a force f

and, in addition, dilated at rate v̇

π	u(	x;a, f, v̇) = 1

6µ|x|
[(

3 +
a2

x2

)
	f +

(
1 − a2

x2

)
3( 	f · x̂)x̂

]
+

v̇

x2
x̂, (A.1)

where 	u(	x; a, f, v̇) is the velocity field at a position 	x from the centre of the sphere. The left term
is the known Stokes solution. (A Stokeslet, [8], is defined as the Stokes solution for a = 0.) The
term on the right is a source term.

Since Stokes’ equations are linear, a superposition of the solutions for two dilating spheres
is a solution of the differential equations. However, it does not quite satisfy the no-slip boundary
condition on the two spheres: there is an error of order ε. The superposition is therefore an
approximate solution provided the two spheres are far apart.

The (approximate) solution determines the velocities Ui of the centres of the two spheres:

Ui = 	u[aif̂ ; ai, (−)jf, 0] + 	u[(−)i�f̂ ; aj, (−)if, (−)iv̇], i �= j ∈ {1, 2}. (A.2)

The first term on the right describes how each sphere moves relative to the fluid according to
Stokes’ law as a result of the force 	f acting on it. The second term (which is typically smaller)
describes the velocity of the fluid surrounding the sphere (at distances � a but � �) as a result
of the movement of the other sphere. By symmetry, the net velocities of the two spheres and the
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net forces on them are parallel to the axis connecting the centres of the two spheres, and can be
taken as scalars. To leading order in ε, equation (A.2) reduces to

2πUi = (−)j 1

3ai

f

µ
+

v̇

2�2
. (A.3)

Using �̇ = −U1 + U2 gives the force in the rod

f = −6πµ

(
1

a1
+

1

a2

)−1

�̇. (A.4)

Using the last two expressions, we get equation (1.1) for 2Ẋ = U1 + U2.
We now turn to equation (1.6). Consider first the case v̇ = 0. The power supplied by the rod

is −f(U2 − U1) = −f �̇ which gives the first term. Now consider the case �̇ = 0. The stress on
the surface of the expanding sphere is given by

σ = −2µv̇

4π

(
1

x2

)′
= µv̇

πa3
. (A.5)

The power requisite to expand one sphere is then

4π a2σȧ = σv̇ = 4µ

3v
(v̇)2. (A.6)

Since there are two spheres, this give the second term in equation (1.6). Finally, we note that
there are no mixed terms in the dissipation proportional to �̇v̇. This is because the velocity field
and the field of force on the surface of each sphere generated by �̇ are constants (parallel to f̂ ),
while the components generated by v̇ are radial. The two cannot be coupled to give a scalar.
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