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Born-Oppenheimer wave function near level crossing
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The standard Born-Oppenheimer theory does not give an accurate description of the wave function near
points of level crossing. We give such a description near an isotropic conic crossing, for energies close to the
crossing energy. This leads to the study of two coupled second-order ordinary differential equations whose
solution is described in terms of the generalized hypergeometric functions of thgkitrh,b,c;z). We find
that, at low angular momenta, the mixing due to crossing is surprisingly large, scaling*fkevherew is the
electron to nuclear mass ratio.

PACS numbses): 31.15.Gy, 33.55.Be, 33.26t

[. INTRODUCTION tronic levels, a knowledge of the wave function near crossing
is important. Of course, these questions are interesting in the

In 1927, in a landmark paper, Born and Oppenheifig¢r case when the crossing lies in a classically allowed region.
paved the way toward applying quantum mechanics to mo- In this work we address these issues for conical, lin-
lecular spectra. In their paper they introduced an approximaeal crossing of two levels where the Born-Oppenheimer
tion that greatly simplified the treatment of quantum-problem reduces to two coupled Sctirger equations. In
mechanical spectral problems in which the particles can b#e isotropic case the analysis reduces further to a study of
divided into heavy and light. Molecules are an example sincéwo coupled, second-order, ordinary differential equations.
the nuclei are much heavier than the electrons. We shallVe obtain the nuclear wave function analytically, to leading
denote the small parameter of the theorybyin molecules ~ order inu, close to the crossing. It is related to the general-
wu~1074, the electron to nucleon mass ratio. Since the lightzed hypergeometric functions of the kingF3. This func-
particles are associated with fast degrees of freedom and ti@n takes the ordinary Born-Oppenheimer nuclear wave
heavy particles with slow degrees of freedom, the Bornfunctions, which are a good approximation far from the
Oppenheimer approximation is related to the adiabatic apcrossing, all the way to the crossing, where the nuclear wave
proximation [2-4,6,13. At the same time, the Born- function mixes the two electronic levels. We find that the
Oppenheimer method can be viewed as a generalizeduclear wave function with total angular momentum=
semiclassical approximation, where the small paramgter =1/2 is nonzeroat the crossing point. Moreover, for low
plays the role ofi2. This is a reflection of the fact that the momenta, the wave function has a large amplitude near the
electrons and nuclei also live on different spatial scales; therossing, of ordey. "% We find an appreciable mixing of
electronic wave function is spread out and far from the semithe two levels at distances that are smaller tpaff, and a
classical limit, while the nuclear wave function is tight and total weight that is mixed between levels scales Ijk&°
close to semiclassical. which is remarkably large.

The procedure put forward by Born and Oppenheimer is
first to solve the electronic spectral problem with fixed nu-
clei, and view the nuclear coordinates as parameters. To
leading order inu, and far from crossings, the heavy degrees  Thjs section is a brief introduction to the basic and el-

of freedom in the Born-Oppenheimer theory are described bgmentary elements of Born-Oppenheimer theory.
a (scalaj Schralinger operator in the semiclassical limit,

with #2=u, and where the electronic energy surface serves
as a potential. A. Basic model

The Born-Oppenheimer theory developed in two distinct o prototype of the Born-Oppenheimer problem, and the
directions. The main direction was the application to variougyne we study here i8]
systems and the development of effective and accurate meth-
ods of calculatiol5,7—9. The second direction was the de- H=—puA,+HJ(x), (8]
velopment of the theory as a tool of rigorous spectral theory
[10,3,17. Our work falls into the first class.

Points where electronic energy surfaces cross are singulf1€ré # is a small parameteH(x) is an operator-valued
points of the Born-Oppenheimer theory. In certain cases unction that acts in the Hilbert space of the light degrees of

these points can affect spectral proper{igs In this work freedom. Since the eigenvalueskdf(x) repel[13], one does

we focus on the behavior of eigenfunctions near crossing?0t €XPect crossing in the case of one heavy coordiafte

There is surprisingly little that is known about this. It is not

known if the function has finite values at the crossing, or

how the amplitude of the wave function near the crossing 'Here we do not actually mean the physical angular momentum,
scales withu. Since the crossing controls the mixing of elec- but a quantum number reminiscent of it; see Bd).

II. BORN-OPPENHEIMER APPROXIMATION
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N / / FIG. 2. With points of crossing removed, the plane becomes
Xy X3 multiply connected.
FIG. 1. Two degenerate modes in triangular molecules. nomena will not concern us here.

Since the small parametarmultiplies the leading deriva-
Ho(X) is time reversal invariant, then a stable crossing willtive in the x variable, the Born-Oppenheimer problem is a
occur if there are two heavy coordinates. We therefore asversion of semiclassical problem where the operatgfx)
sume thatx € R2. For the sake of simplicity we have taken replaces the scalar potenti(x). In molecules there is a
identical masses for the two heavy degrees of freetldmo  second small parameterck 1/137, which governs relativis-
degrees of freedom is the simplest case that is still richic effects. In particular, spin-orbit interactions are of order
enough to cover the phenomena we are interested in. 1/c2. The lowest order of Born-Oppenheimer theory gives an

There are several ways to motivdte The most direct is energy scale of/ﬁ which is comparable to &/ but is much

to think of H as a phenomenological quantization of the mo-larger than 1¢2. It is therefore consistent when discussing
lecular vibration. For example, in the case of molecular tri-Born-Oppenheimer theory to leading order to disregard spin

mers, the two heavy modes are the antisymmetric stretchingrbit. This is also the reason why we shall not go beyond the
and bending of the molecule; see Fig. 1. leading order.

Alternatively, one can start with the Schiinger equation
for a molecule, which indeed has the form of Et), where B. Partial diagonalization
H(X) includes the Coulumb potential of the nuclei and the . . . .
electrons and the electronic kinetic energy. Often, and this is The startlng pomt_of the B'orn-Op'penhe|mer metho‘?‘ Is to
the case in molecules{ is invariant under Gallilean transla- cOnsiderH in the basis that diagonalizes the féslectronig
tion and rigid rotation. The symmetry gives three quantumdegrees of freedom. We assume that the electronic Hamil-

numbers(P, J, n, and the spectral analysis Hf ; ., is now tonian i; r(_eal, which is the case in the absence of ex';ernal
restricted to “internal” nuclear coordinates. In Ré&] one ~ Magnetic fields. LeD(x) be the orthogonal transformation
can find a detailed description of this procedure for a tri-that diagonalizesio(x). If He(x) has a simplénondegener-
atomic moleculeHp ; ., has a more complicated expression &® Spectrum in the vicinity of, then O(x) is uniquely
thanH: Fixing the center of mass at the origin and restrictingdet€rmined up to multiplication by a diagonal matrix with
to an angular momentum subspace replaces the kinetic er-+ O the diagonal. Locally, one can chod3gx) so that it
ergy —uA by a more general quadratic function of the mo- |nher-|ts the smpothnes§ properﬂesl—bj(x) [15]. It follows
menta. However, locally near the crossing this expressioff?at in the basis that diagonalize(x), Eq. (1) takes the
reduces td5] Eq. (1). form
We shall assume that.(x) has a discrete spectrum and a
smooth dependence on the coordindtds.addition, since

we shall use the Born-Oppenheimer theory as a calculationghereE(x) is a diagonal matrix whose entri&(x) are the
tool, rather than a tool of spectral analysis, we shall assumgjectronic energy surfaces, am{x)=i0T(x)VO(x) is a
that the problem has benign qualitative spectral features. FQmatrix) gauge field. Sinc®(x) is real, A is antisymmetric

example, we shall assume that the spectrurhl af the en-  and Hermitian.A is responsible to the coupling between
ergy range of interest is discrete, and that the associateglectronic energy levelgL6].

wave functions are localized in space in the classically al- ©pe can associate indiceS, ,....i,}, wheren=dimH,
lowed region, and that this region is connected. Subtletiegndi:il, with a crossing poinh. Let us take a closed
associated with tunneling and other exponentially small phe(‘,urvé around a crossing point. After such a cyolex) must
return to itself up to up to multiplication by a diagonal matrix
with entries+1 on the diagonal. These entries are the indices
2There is no loss here, for by scaling some of thgirections this ~ Of the crossing. It is know17] that for a conic crossing
can always be achieved. between thegjth andj+1 eigenvalues oHg(X),ij=ij1=
3Both assumptions are not realistic. The electronic Hamiltonian— 1, and all other indices are, of coursel.
has a continuous spectrum at high energy, and because of Coulom- For a conic(linear crossing,O(x) flips signs on a circle
bic singularities there is no smoothness in #@ependence. Fortu- of radius x| [17]. Therefore, its gradient must be of order
nately, both problems are, by now, well understood, and may bd/|x|. This makesA of order 1/x|. It follows that the cou-
viewed as a technical complication that, for our purposes, can bpling between electronic states diverges like a simple pole
left out. near crossing.

O'™HO=u(—iV,—A(x))*>+E(X), 2
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FIG. 3. A potential-energy surface near a nondegenerate mini- o ] )
mum. FIG. 5. A degenerate minimum around a crossing. The solid

circle representsy. Although the crossing falls in the classically

. L forbidden zone, it should be taken into account.
This completes the local description of the theory. The

problem also has an interesting global aspect. Sihd&) is . . .
a real symmetric matrix, the Wigner—von Neumann crossing N€ (Scaled, matrix potential energy is0(1) for the elec-
rule [13] states thatHo(x),xe R? has generically isolated tronic energy surface near the minimum, and has gaps of
crossing points. As a consequence, with points of crossingrder u~2to (scaled “excited electronic states.” Suppose
being removed the plane becomes multiply connec¢sed  first that there is no crossing. Then the coupling between
Fig. 2. electronic levels is smalkA(e&)=0(u?, and a perturba-
We can now describe the boundary conditions associatetion argument shows that the effect on eigenvalues is of or-
with Eq. (2). The general case of several crossing points camler O(x) (in unscaled energyand of orderO(u*) for the
be complicated, but in the case of at most one point of crossyave function. It follows that the spectral analysis in an en-
ing the situation is simple. In this case, we cut the plane fI’OI’TErgy interval of orden(1) near the minimum, reduces to an
the crossing point to infinity. On the cut plar@(x) is  ordinary Schrdinger equatior(not matrix valued with no
uniquely defined in a continuous way. Then the boundaryector potentialsinceA vanishes on the diagonalThis ac-
condition on thejth component of the wave function associ- ¢gunts foro(1/u) eigenvalues near the minimum in two di-
ated with Eq.(2) is periodic or antiperiodic according to the mensions.
indexi; . Now, if there is a point of crossing, there are two possi-
bilities. The first, and simplest, is that the crossing lies in the
1. Born-Oppenheimer theory near a nondegenerate minimum  classically forbidden region; see Fig. 4. Then the divergent

Let x=0 be a minimizer of an electronic energy surface.Vector potential is harmless, since the wave function is
Pick the origin so that the minimum is at zero enefgge  €xP(~1/y/u) near the crossing. The cut to infinity can be
Fig. 3. Upon scalingx= x4, the Born-Oppenheimer op- Pushed to the classically forbidden zone, so the difference
erator assumes the form between periodic or antiperiodic boundary conditions is ex-

ponentially small, and one can forget about the crossing al-
together. If the crossing point lies in the classically allowed
1 region, it couples two nuclear Sclidinger equations and ru-
Vil (ZiV—eA(e£)*+ \/——ME(Sf) , e=uY. (3 ins the traditional Born-Oppenheimer approximation.

2. Born-Oppenheimer theory near a degenerate minimizer

It can occur that the crossing must be taken into account
although it lies at the classically forbidden zone. This hap-
pens when the cut cannot be pushed to the classically forbid-
den zone. This is the case, for example, when the cyrve
e R? is a minimizer of an electronic energy surface with zero
energy on v. If y encircles a crossinsee Fig. 5, then the
cut necessarily intersects and sincey lies in the classically
accessible region the wave function is large there and it mat-
ters whether one imposes periodic or antiperiodic boundary
conditions.

FIG. 4. For a nondegenerate minimum, when the crossing falls
in a classically forbidden region, the cut to infinity can be pushed to
the classically forbidden zone, and one can forget about the cross-*Similar arguments apply if the energy associated wiils suffi-
ing to leading order. ciently small.
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O(x?) accounts for the behavior far from the crossing which
is not universal, or isotropic.

How restrictive is the assumption that near the crossing
H.(x) is isotropic? Molecules are never isotropic, although
some may be approximately so. Nevertheless, isotropic conic

FIG. 6. The components off,(p) for m=1/2 and their intersections are, in fact, common. This is a known phenom-
asymptotic form given by Eq10). The function is compared with €non in group theory: Discrete symmetry can force full con-
the WKB Born-Oppenheimer wave function. tinuous symmetry on tensors of finite rafk9]. For ex-
ample, as shown in Ref7], the D3 symmetry of trimers
forces isotropy of the conics.

It follows from the above that if one is interested in the
local behavior of eigenfunctions for eigenvalues that lie in an

Now consider the spectral problem near crossing energgnergy rangehat is small compared ta** and in aspatial
of two electronic energy surfaces. Let us set the crossingeighborhoocf the crossing|x|<1, the eigenfunctions sat-
energy at 0, and assume that the crossing is conic. This is thgfy, to leading order inu, a canonical system of partial

-0.03

IIl. BORN-OPPENHEIMER THEORY NEAR
CROSSING

generic situation. differential equations
Upon scalingx= ¢ ande= u*3, the Born-Oppenheimer
operator assumes the form (—MAXX+0~X)‘I’=M1/3(—Agg‘*'tf- &W=0. )

' 1 ) The rotational symmetry allows us to reduce K@) to a
€| (—1V,— eA(eé))*+ EE(GS) , e=u'B (4)  system of linearordinary differential equatiorparameter-
ized by angular momentumme Z+ 1/2 (see Sec. IV A

The scaling increases the gaps between the electronic energy
surfaces, and decreases the coupbihdghe crossing paito

other levels sinceA;;(e£) =0(u?), wheni belongs to the 2 1d miii/a
pair andj to other levels. On the other hand, the crossing pair —————t ——
remains coupled, because the Coulombic singularity near the dp® pdp P

crossing says thatA, ;, (&) =0(1//¢]), which is large when
¢ is small. We see that a spectral problem in an interval of

ordero(1), near the crossing energy, reduces to a problem _ Ez p
whereH(x) is a 2X2 matrix up to an error of ordet in the p ~0 B 8
eigenvalues and up to an error of ordé?® in the eigenfunc- + m Fn=0, p=[¢l. (8)
tions. P ;z

Our aim, in this work, is to describe the wave functions
for states located at an interval of width that is much smaller
than ©'® near the crossing. Even though this is a small in-For fixedm the space of solutions of the ordinary differential
terval, it has many eigenvalues: By Weyl's rule there areequation is four dimensional. We shall see that there is a
many states, of ordex 2% in an interval of widthu® in  one-dimensional subspace of solutidhat is well behaved
two dimensions. One can expect to find many states in thaear the origino=0, and near infinity. As we shall explain,
interval in question. functions in this space describe the asymptotic behavior of
Close to the crossingl.(x) can be expanded in terms of eigenfunctions with energies near the crossing and spatially
the Pauli matrices and the unit matrix. We assume that aszlose to it. The explicit expression for these solutions, is
ymptotically close to the crossing poihte(x) is isotropic  described belowsee Fig. 6.
and conic[14]°%:
Ho(X)= o X+ 0(x2). (5) Main result
We now describe our main result.
Theorem 3.1For me Z+ 1/2, andm=1/2, let
SReality, isotropy, and linearity would allow for an additional
overall scale factor ifH,. This scale can be absorbed in a redefi-
nition of L. 5This is unconventional, but convenient.
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11 m5 mp°
3—1/26—[(5/6)+(2m/3)]pm—(1/2) oFs|; 3’ §+ 3'6 + 364
fm(’))_r(zr1+mr7+m p3 43 m5 m pb
3/1273)M 673 \eramel’3 2736 30
p° 53 m7 mp®
371/267[(1/6)+(2m/3)]pm+(1/2) 12+8m oFs| 3'2 + 3'6 + 364
_r1r1+mr5+m) 21 m7 mp° ’
3'1273) 1673 oFsliz2T3 6" 36
then we have the following.
(i) Fm(p), is a solution of the system of differential equatiqis. (8)].
(ii) For smallp,
1
2 7 m
/
3~ V2,m-(112 F(§>F 5+§ 62
Fulp) =~ ©)
Il =4+ —|gm+1r6
2 3 r 1 r 5 m
36" 3
|
In particular, F;,,(0)# 0. behavior in the far zone is not universal and depends on the
(iii) For largep, details of the electronic energy surface. The far zone is de-
scribed by standard Born-Oppenheimer, theoryWspgives
x 1 2 4 (M N 1))/ 1 complementary information.
m(p)— 2m) 2O P T T 3 T 4\ ~1) Remark 3.8There areo(u~23) states in the relevant en-

(10 ergy intervalo(«*®) near the crossing disregarding For a
givenmthere are only. ™6 levels in this interval. This says
Theorem 3.2For me Z+ 1/2 andm=1/2, let that near the crossing is bounded by order. %2
i Remark 3.4We shall actually only prove the theorem in
€ e 13, the special case thaf,(x) is rotationally symmetric. The
jelt2 g-ioR2 Fm(p ); symmetry decouples channels with different angular mo-
(1)  menta. We believe that mixing of angular momenta in the far
zone is only a technical complication, and that the result also
then we have the following. holds without rotational symmetry in the far zone.
(i) ¥, is a solution of the system of the partial differential
equation(7), wherex=(r cosé,r sin ).
(i) The mth component of an eigenfunction of E¢{)

q,m(r , 0) — ,LL71/4eim0

IV. ROTATIONALLY SYMMETRIC CASE

near crossing, i.e., with eigenvaly&|<u'® and for x In the following we describe a derivation of the main
=(rcosérsing), r<1 is, to leading order, proportional to result for a Born-Oppenheimer model that is rotationally
Win(r, 6). symmetric. With rotational symmetry we can reduce the

(i) The amplitude of¥, is independent ofu in the  spectral problem of a PDE to a spectral problem of an ODE.
regionr > u ', No real molecule is rotationally symmetric, and the general
(iv) Near the crossing,~ u*3, the amplitude of the wave case leads to mixing ah channels. We believe that this is

function ¥ ,=O(u ™% only a technical complication.

Remark 3.1The most interesting aspect of the solutionis  We require the invariance dfl(x) under infinitesimal
that the wave function has a large amplitude at the crossingptations in the nuclear and electronic Hilbert spaces. Such a
region in the limit of smallu. As we shall see, this result rotation is generated by
follows from arguments that do not rely on the explicit form
of the solution, but do depend on the fact that in the nonmix- 1
ing region,r= u!® the solution has a WKB form in the ra- Ja=Lg+ = 0=
dial direction. 2

Remark 3.2 The functionV,, does not describe the be-
havior of wave functions in the far zone, whare1. The  with

o d a9 1
—IX]_(?—X2+IX2(9—X1+§0'3, (12
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FIG. 7. The electronic energy surfacestbf(x).
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The L part generates S©) rotations in the nuclear Hilbert
space Xi-X, plane, whereas the 1(2; part generates a ro-
tation in the electronic Hilbert spacds; does not have the
meaning of total angular momentum since the Pauli matrice Sp<p

do not represent spin. Isotropy means thatommutes with
Ha(X):

0=[J3,He(x)].

The most general form dfi,(x) for a two-level system that

is rotationally symmetric and real is

He(X)=Qo(r) +Q1(r)(X- ) +Qa(r) (XX o),

r=[x|
(13

An additionalQz(r) o3 term in Eq.(13) is allowed by rota-

tional invariance, but it is forbidden by time-reversal sym-

metry, sinceo; is imaginary.
The energy surfaces ¢f,(x) are equal to

E.(r)=Qo(r)=q(r), q(r)=r¢Q§(r)+Q%<r>.( )
14

We shall assume th&, ; , are smooth functions af, and
thatQ,(0)=1 while’ Qo Ar) =0(r?) for smallr. This gives
conic intersection at zero with..(r)=*r, see Fig. 7.

A. Radial Hamiltonian

The spectral subspace af;, with eigenvaluem, is
spanned by

: 1 ) i
el:el(m+1/2)0< : )’ ezzel(m—1/2)0(1 : (15)

m must be half odd integer fog; , to be univalued, i.e.n
eZ+1/2.
Since

L

—Ae1=—r2 e, —Aey=——7p—8y,

PHYSICAL REVIEW A62 062504
X'O'e]_:rEZ, X‘O'eZ:rel,
. . (16)
XXO'ej_:_”ez, X><0'62=Ire1
in terms of the basi$e,,e,} for the radial equation we ob-
tain
d2

1d 1
a2 rar a2 +He(r,u,m), (17)

H(mu)=—u
with
He(r,m,m)=Qq(r)+rQq(r)o;+rQy(r)

M
X(T3_r_2(m0'2_m2). (18)

Scalingr = 1*3p we obtain Eq(8), to leading order inu, for
~1/3

Remark 4.1 The radial HamiltoniarH o(m, «,r) actually
has no level crossing. This, by itself, does not ameliorate the
mixing of the two levels for now the gap in the spectrum of
He(m, u,r) is of orderu . The smallness of this gap leads
to mixing of the electronic levels.

We shall restrict ourselves tm>0. Since

o HI (1, pm,m)oy=He(r,u,—m). (19

H(m,u) andH(—m, ) are isospectral, and the radial part
of the function with—m can be obtained from the one with
+m by interchanging upper and lower components and tak-
ing complex conjugates.

B. Indicial equation

The origin p=0 is a regular-singular point20] of the
equation. Substituting

a

P )[1+0<p>]

P (20)

into Eq. (8) we obtain the rootsx==*(m—1/2) and 8=
+(m+1/2). Equation(8) therefore has four linearly inde-
pendent solutions, which asymptotically near the origin, be-
have like

pm—(1/2) p—m+(1/2) 0 0
0 , 0 , pm+(1/2) ) p—m—(1/2) .
(21

Equation (21) is correct only for|m|#1/2. The casgm|
=1/2 requires special treatment, because of the two degen-
erate roots in the upper component. Foif=1/2 the four
linearly independent solutions behave asymptotically near

the origin like[21]
0 0
p/" \lp)

1) In(p)
0/ ( 0

(22

’Q,(0) can be always set to zero by an appropriate rotation in thdVe see that for anyn there are always two solutions which
x space only, i.e., by an appropriate choice of the heavy coordinategire bounded near the origin, and two others which are diver-
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gent. Since a smooth Hamiltonian can give rise to smooth ﬁni)(QZWilsp):wjﬁnj])(p).
eigenfunctions only21] in the four-dimensional space of

solutions to the differential equation, there is a two-This condition fixes the solutions in Eq23), where w;
dimensional subspace of admissible solutions, the ones g27(m-12)/85n( y,=g2m(MT1/2)/3

which are well behaved at the origin. To relateG,, to hypergeometric functions, we turn the two
coupled second-order equatioi® into a scalar fourth order
C. Solution to the ODE equation for each component. The equations obtained for the

componenty, and ¢_ can be written, with{=p®/6*, and
In this section we show that the solutions of &8} that 5 _ f(d/dg;(ﬁn theglform =p

are regular at the origin, can be explicitly constructed in
terms of certain hypergeometric functions. m 1 m 1

D D+ §_ E D+ 5— 6 -
Xm0, (9)=0,

2
D-—

Theorem 4.1The solutions of Eq(8) which are bounded 3

at the origin are spanned by

(1)
e (p)
FD( )= (29
m () eP(p) olb 1 D+m 1 D+m+l
11 m5 mp® 3 3 2 5767 ¢
pm 12 0F3(;—,—+—.—+—1p—4) 12)/6
- 3'2 ' 3'6 3'6 x (=m=12le_()=0.
= m+(5/2) 6 d
p 0,;3( : f§+ TEJF T, p_4) The generalized hypergeometric functighs(;a,b,c;¢) is
6+4m 3’2 3'6 3’6 defined by[23-26
(23)
(2) F(a)I'(b)[(c)
2, [ #<(p) : Py — k
Fa 0= () oFa(iab. i) =2 e DT e &
P (712 53 m7 m pb (26)
12+8m OFS( 327367 3" @) It is a matter of calculation to see that it satisfies the differ-
= ) 1 . o | ential equation:
pm+(1/2) E . _+T _+Tp_
o3\'3'2" 3’6 3’6"

{D(D+a—1)(D+b—-1)(D+c—1)—}oFs(;a,b,c;¢)=0.
(27)

where oF3(;a,b,c;x) are generalized hypergeometric func-
tions of the kindyFs.
Proof. Under scalingp—Ap, Eq. (8) transforms to

Equation(25) is a special case of this. Note, however, that
we are not free to pick botk() and¢*) as hypergeometric
functions corresponding to E§27). We can pick one, and
then the other is determined by E®).

_ EZ \3p To obtain F{}), we pick the upper component to be the
d> 1d m?+1/4 p hypergeometric function that solves Eg5), i.e.,
Td? ods T T,z T
p° pdp  p s m 6
Ap 2 W p)= pm- (12 F Ll mS5 mp”
e ApIp 073|327 36" 364
X Fr(Ap)=0. (24)

The lower componenty™, is determined by Eq8), which

In particular, the equation is invariant under scalinghpya ~ 91ves us the relation

cube root of unity\=e?""3. (Note that this feature is lost m— (112 1

when one considers solutions of the equation for nonzero (Pg)(p): {pi(pi-I—Zm—l) PP (p)
eigenvalue.By an analog of Bloch theorem, the solution is a p> dp\"dp m- 12
product of an eigenfunction of the scaling transformation and (28

a periodic function under scaling ™3, p® is an eigen- . o
function of the scaling transformation with eigenvalug. With the identities23,24)
Hence thatF,, must be of the formp®G(p®). The indicial

equation fixesy=m=1/2.G(p°) is then an analytical func- (g
tion of its argument.

The space of regular solutions of this kind is two dimen-
sional and gives a representation»f, the group of discrete
rotations by 27/3. Since the only complex irreducible repre-
sentationg22] of D5 are the complex numbetis, such that
w3=1, one can always find a basi&(p), 72 (p) such that we obtain

—+C—1) Fs(;a,b,c;{)=(c—1)oF3(;a,b,c—1;),
d¢s o

d 1
d_§ OF3(,a,b,C,§): a_bC OF3(,a+ 1,b+ 1,C+1,§),
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1 43 m5 mpb 2\ (1 m\ (7 m
(1) —__— _m+(52 P T - oo 5/6 1)
()= g5 am”P °F3('3’2+3'6 3’64) F(s)r(fs)r(a 3)6 Fin'(
(29
1 1 m 5 m 1/6]:(2)
The second solutiorr{?) is obtained by picking'?) to be “Tiz/lizt3/TeT3/6

the hypergeometric solution to ER5). That is, )
Proof: He(p,u,m) for Eq. (8) is, for p>1,

21 m7 mp®
Bp)=p™ V2 oFsl 3.5+ 3.5 3757) (30 m
3’236 3'6 -= p
_m2+1/4 p 0 p
and with a relation He(p, M) = p° * m|~ p 0)
I 2) L
m+(1/2 .
p e(m;p)
¢?(p)= pE [pﬁ(pﬁﬂmﬂ A 32

with eigenvaluestp. It follows that the solution for large
similar to Eqg.(28), one computes the upper component ofreduces to the study of two uncoupled equations:
the second solution: 2 1 d

6) T pdp

Since p is large, these can be solvgd8] by the WKB
method to give the first part of the theorem. The blowup of
D. Well-behaved solutions the solutions at infinity can be obtained from the relation

We have seen that of the four-dimensional family of so-(0Mitting the exponentially decaying part
lution of Eq. (8) there is a distinguished two-dimensional T'(a)T(b)T'(c)
family that is well behaved near the origin. We shall now oFs(ia,b,ciX) > ————ar—
show that there is a three-dimensional family that is well 2(2m)
behaved at infinity.

Theorem 4.2(i) In the four-dimensional space of solu-

) ¥=0. (33

m
pm+(7/2) oFs( ; + §

w| ol
N W
+
w| 3
ol
Cle
iS

X x7(e*+ 2 cog ax 4+ 27Y)),

tions of Eq.(8) there is a three-dimensional family of solu- (34
tions that vanish at infinity, and a one-dimensional subspace
that diverges exponentially at infinity. with y=(a+b+c—3/2)/4. This relation can be obtained by
(i) The solutions of Eq(8) for p>1 are(asymptotically stuglymg the asymptot|_c behz?\vmr of the coefficients |n_ the
spanned by the four-dimensional family series of gF3. Alternatively, in Ref.[26] the asymptotic
form of the generalized hypergeometric functigyis, is de-
34 g 2 a1 gy E a0 (1 rived,. aqd the formula given therg reduces to sz_‘) after
p 3P 1) P 3P 1) substitutingg=0 andp=23, computing the summations, and

(31) omitting the exponentially decaying part. From this the rest
2 1 2 1 follows, as well as the proof of theorem 3.1.
p 3¢ 5<3 p3/2> ( 1) , p_3/4Sin(§p3/2) ( B 1) . It remains to explain how eigenvectors are related to these
well-behaved solutions. The point is that the canonical dif-

ferential equation approximates the eigenvalue equation only
b for r<1, or, equivalently, fop<u~*3. Consider an eigen-

y function. Far from the crossing this eigenfunction can be

1 approximated by a WKB solution, and it is clear that this

2?§?(p)—>f‘(§>r -

(i) The exponential blowup af{}? of Eq. (8) is given

m

WKB solution can be approximated by a WKB solution of
2 3 the canonical problem in the interval ¥*>p>1. The com-

5 m 2 1 ponent that blows up must have an exponentially small am-
><F(€+ 3 6(1’6)+(2m’3)p‘3’4exp<§p3’2) ( 1), plitude, of order exp{2/3\u), and, to leading order can be
neglected near the crossing.
2FD(p) T 2L, m V. ANOMALOUS MIXING
m 3 2 3

The basic and fundamental observation of the Born-
m 6(5’6)*(2m’3)p3’4ex;{gp3’2)(1) Oppenheimer theory is the emergence of the energy scale

XTI

3 1) Ve in molecular spectra associated with vibrations. Perhaps
the most interesting observation that results from the analysis
(iv) The solution to Eq(8) that vanishes at the origin and of the Born-Oppenheimer theory near crossing is the emer-

at infinity is a multiple of gence of a scale.'’%, associated with mixing at crossing.

062504-8
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w8 is normally not a small number: In moleculeg®  mixing weight scales likew®. It would be interesting to
~0.2. have a more complete picture of the mixing near nonisotro-
Classically, a uniform density on the energy shéllp? pic crossing, and also for chaotic systems.
+V(x)—E), implies that, in two dimensions, the spatial
density is also uniform on the classically allowed region. The
region where there is substantial mixing between the two
electronic energy surfaces has linear dimensions that scale We thank Richard Askey and Jet Wimp for helpful corre-
like uY. For a crossing point in two dimensions the volumespondence about hypergeometric functions, J. Ax and S.
characterizing the mixing therefore scales ligg”®. The  Kochen for pointing out sign errors in a previous version of
semiclassical expectation is therefore that mixing near crosghe manuscript, C. Alden Mead for helpful suggestions, M.
ing should scale like the arga®?. V. Berry for encouraging us to look for a special function
For isotropic crossing we found that the wave functionthat characterizes the crossing, and E. Berg, M. Baer, R.
has an anomalously large amplitude in the mixing region forEngiman, A. Elgart, and L. Sadun for helpful discussions.
values of azimuthal quantum numbers that are small comThis research was supported in part by the Israel Science
pared top~ 2. For these, from theorem 3.2, the amplitude in Foundation, the Fund for Promotion of Research at the Tech-
the near zone scales like~ Y% This implies that the total nion, and the DFG.
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