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Born-Oppenheimer wave function near level crossing

J. E. Avron and A. Gordon
Department of Physics, Technion, 32000 Haifa, Israel
~Received 18 June 2000; published 3 November 2000!

The standard Born-Oppenheimer theory does not give an accurate description of the wave function near
points of level crossing. We give such a description near an isotropic conic crossing, for energies close to the
crossing energy. This leads to the study of two coupled second-order ordinary differential equations whose
solution is described in terms of the generalized hypergeometric functions of the kind0F3(;a,b,c;z). We find
that, at low angular momenta, the mixing due to crossing is surprisingly large, scaling likem1/6, wherem is the
electron to nuclear mass ratio.

PACS number~s!: 31.15.Gy, 33.55.Be, 33.20.2t
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I. INTRODUCTION

In 1927, in a landmark paper, Born and Oppenheimer@1#
paved the way toward applying quantum mechanics to m
lecular spectra. In their paper they introduced an approxi
tion that greatly simplified the treatment of quantum
mechanical spectral problems in which the particles can
divided into heavy and light. Molecules are an example si
the nuclei are much heavier than the electrons. We s
denote the small parameter of the theory bym. In molecules
m;1024, the electron to nucleon mass ratio. Since the li
particles are associated with fast degrees of freedom and
heavy particles with slow degrees of freedom, the Bo
Oppenheimer approximation is related to the adiabatic
proximation @2–4,6,12#. At the same time, the Born
Oppenheimer method can be viewed as a general
semiclassical approximation, where the small parametem
plays the role of\2. This is a reflection of the fact that th
electrons and nuclei also live on different spatial scales;
electronic wave function is spread out and far from the se
classical limit, while the nuclear wave function is tight an
close to semiclassical.

The procedure put forward by Born and Oppenheime
first to solve the electronic spectral problem with fixed n
clei, and view the nuclear coordinates as parameters.
leading order inm, and far from crossings, the heavy degre
of freedom in the Born-Oppenheimer theory are described
a ~scalar! Schrödinger operator in the semiclassical lim
with \25m, and where the electronic energy surface ser
as a potential.

The Born-Oppenheimer theory developed in two disti
directions. The main direction was the application to vario
systems and the development of effective and accurate m
ods of calculation@5,7–9#. The second direction was the d
velopment of the theory as a tool of rigorous spectral the
@10,3,11#. Our work falls into the first class.

Points where electronic energy surfaces cross are sing
points of the Born-Oppenheimer theory. In certain cas
these points can affect spectral properties@8#. In this work
we focus on the behavior of eigenfunctions near cross
There is surprisingly little that is known about this. It is n
known if the function has finite values at the crossing,
how the amplitude of the wave function near the cross
scales withm. Since the crossing controls the mixing of ele
1050-2947/2000/62~6!/062504~9!/$15.00 62 0625
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tronic levels, a knowledge of the wave function near cross
is important. Of course, these questions are interesting in
case when the crossing lies in a classically allowed regio

In this work we address these issues for conical~i.e., lin-
ear! crossing of two levels where the Born-Oppenheim
problem reduces to two coupled Schro¨dinger equations. In
the isotropic case the analysis reduces further to a stud
two coupled, second-order, ordinary differential equatio
We obtain the nuclear wave function analytically, to leadi
order inm, close to the crossing. It is related to the gener
ized hypergeometric functions of the kind0F3 . This func-
tion takes the ordinary Born-Oppenheimer nuclear wa
functions, which are a good approximation far from t
crossing, all the way to the crossing, where the nuclear w
function mixes the two electronic levels. We find that t
nuclear wave function with total angular momentum1 m5
61/2 is nonzeroat the crossing point. Moreover, for low
momenta, the wave function has a large amplitude near
crossing, of orderm21/4. We find an appreciable mixing o
the two levels at distances that are smaller thanm1/3, and a
total weight that is mixed between levels scales likem1/6

which is remarkably large.

II. BORN-OPPENHEIMER APPROXIMATION

This section is a brief introduction to the basic and
ementary elements of Born-Oppenheimer theory.

A. Basic model

A prototype of the Born-Oppenheimer problem, and t
one we study here is@8#

H52mDx1He~x!, ~1!

wherem is a small parameter.He(x) is an operator-valued
function that acts in the Hilbert space of the light degrees
freedom. Since the eigenvalues ofHe(x) repel@13#, one does
not expect crossing in the case of one heavy coordinatex. If

1Here we do not actually mean the physical angular moment
but a quantum number reminiscent of it; see Eq.~12!.
©2000 The American Physical Society04-1
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He(x) is time reversal invariant, then a stable crossing w
occur if there are two heavy coordinates. We therefore
sume thatxPR2. For the sake of simplicity we have take
identical masses for the two heavy degrees of freedom.2 Two
degrees of freedom is the simplest case that is still r
enough to cover the phenomena we are interested in.

There are several ways to motivateH. The most direct is
to think of H as a phenomenological quantization of the m
lecular vibration. For example, in the case of molecular
mers, the two heavy modes are the antisymmetric stretc
and bending of the molecule; see Fig. 1.

Alternatively, one can start with the Schro¨dinger equation
for a molecule, which indeed has the form of Eq.~1!, where
He(x) includes the Coulumb potential of the nuclei and t
electrons and the electronic kinetic energy. Often, and th
the case in molecules,H is invariant under Gallilean transla
tion and rigid rotation. The symmetry gives three quant
numbers$P, J, m%, and the spectral analysis ofHP,J,m is now
restricted to ‘‘internal’’ nuclear coordinates. In Ref.@5# one
can find a detailed description of this procedure for a
atomic molecule.HP,J,m has a more complicated expressi
thanH: Fixing the center of mass at the origin and restricti
to an angular momentum subspace replaces the kinetic
ergy 2mD by a more general quadratic function of the m
menta. However, locally near the crossing this express
reduces to@5# Eq. ~1!.

We shall assume thatHe(x) has a discrete spectrum and
smooth dependence on the coordinates.3 In addition, since
we shall use the Born-Oppenheimer theory as a calculati
tool, rather than a tool of spectral analysis, we shall assu
that the problem has benign qualitative spectral features.
example, we shall assume that the spectrum ofH in the en-
ergy range of interest is discrete, and that the associ
wave functions are localized in space in the classically
lowed region, and that this region is connected. Subtle
associated with tunneling and other exponentially small p

2There is no loss here, for by scaling some of thex directions this
can always be achieved.

3Both assumptions are not realistic. The electronic Hamilton
has a continuous spectrum at high energy, and because of Cou
bic singularities there is no smoothness in thex dependence. Fortu
nately, both problems are, by now, well understood, and may
viewed as a technical complication that, for our purposes, can
left out.

FIG. 1. Two degenerate modes in triangular molecules.
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nomena will not concern us here.
Since the small parameterm multiplies the leading deriva-

tive in the x variable, the Born-Oppenheimer problem is
version of semiclassical problem where the operatorHe(x)
replaces the scalar potentialV(x). In molecules there is a
second small parameter 1/c'1/137, which governs relativis
tic effects. In particular, spin-orbit interactions are of ord
1/c2. The lowest order of Born-Oppenheimer theory gives
energy scale ofAm which is comparable to 1/c, but is much
larger than 1/c2. It is therefore consistent when discussin
Born-Oppenheimer theory to leading order to disregard s
orbit. This is also the reason why we shall not go beyond
leading order.

B. Partial diagonalization

The starting point of the Born-Oppenheimer method is
considerH in the basis that diagonalizes the fast~electronic!
degrees of freedom. We assume that the electronic Ha
tonian is real, which is the case in the absence of exte
magnetic fields. LetO(x) be the orthogonal transformatio
that diagonalizesHe(x). If He(x) has a simple~nondegener-
ate! spectrum in the vicinity ofx, then O(x) is uniquely
determined up to multiplication by a diagonal matrix wi
61 on the diagonal. Locally, one can chooseO(x) so that it
inherits the smoothness properties ofHe(x) @15#. It follows
that in the basis that diagonalizesHe(x), Eq. ~1! takes the
form

O†HO5m„2 i¹x2A~x!…21E~x!, ~2!

whereE(x) is a diagonal matrix whose entriesEj (x) are the
electronic energy surfaces, andA(x)5 iO†(x)¹O(x) is a
~matrix! gauge field. SinceO(x) is real,A is antisymmetric
and Hermitian.A is responsible to the coupling betwee
electronic energy levels@16#.

One can associate indices,$ i 1 ,...,i n%, wheren5dimHe
and i j561, with a crossing pointn. Let us take a closed
curve around a crossing point. After such a cycleO(x) must
return to itself up to up to multiplication by a diagonal matr
with entries61 on the diagonal. These entries are the indic
of the crossing. It is known@17# that for a conic crossing
between thej th and j 11 eigenvalues ofHe(x),i j5 i j 115
21, and all other indices are, of course,11.

For a conic~linear! crossing,O(x) flips signs on a circle
of radius uxu @17#. Therefore, its gradient must be of ord
1/uxu. This makesA of order 1/uxu. It follows that the cou-
pling between electronic states diverges like a simple p
near crossing.

n
m-

e
e

FIG. 2. With points of crossing removed, the plane becom
multiply connected.
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BORN-OPPENHEIMER WAVE FUNCTION NEAR LEVEL . . . PHYSICAL REVIEW A 62 062504
This completes the local description of the theory. T
problem also has an interesting global aspect. SinceHe(x) is
a real symmetric matrix, the Wigner–von Neumann cross
rule @13# states thatHe(x),xPR2 has generically isolated
crossing points. As a consequence, with points of cross
being removed the plane becomes multiply connected~see
Fig. 2!.

We can now describe the boundary conditions associ
with Eq. ~2!. The general case of several crossing points
be complicated, but in the case of at most one point of cro
ing the situation is simple. In this case, we cut the plane fr
the crossing point to infinity. On the cut planeO(x) is
uniquely defined in a continuous way. Then the bound
condition on thej th component of the wave function assoc
ated with Eq.~2! is periodic or antiperiodic according to th
index i j .

1. Born-Oppenheimer theory near a nondegenerate minimum

Let x50 be a minimizer of an electronic energy surfac
Pick the origin so that the minimum is at zero energy~see
Fig. 3!. Upon scaling,x5m1/4j, the Born-Oppenheimer op
erator assumes the form

AmS „2 i¹j2«A~«j!…21
1

Am
E~«j!D , «5m1/4. ~3!

FIG. 3. A potential-energy surface near a nondegenerate m
mum.

FIG. 4. For a nondegenerate minimum, when the crossing f
in a classically forbidden region, the cut to infinity can be pushed
the classically forbidden zone, and one can forget about the cr
ing to leading order.
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The ~scaled, matrix! potential energy isO(1) for the elec-
tronic energy surface near the minimum, and has gaps
orderm21/2 to ~scaled! ‘‘excited electronic states.’’ Suppos
first that there is no crossing. Then the coupling betwe
electronic levels is small,«A(«j)5O(m1/4), and a perturba-
tion argument shows that the effect on eigenvalues is of
der O(m) ~in unscaled energy! and of orderO(m3/4) for the
wave function. It follows that the spectral analysis in an e
ergy interval of ordero(1) near the minimum, reduces to a
ordinary Schro¨dinger equation~not matrix valued! with no
vector potential~sinceA vanishes on the diagonal!. This ac-
counts foro(1/m) eigenvalues near the minimum in two d
mensions.

Now, if there is a point of crossing, there are two pos
bilities. The first, and simplest, is that the crossing lies in
classically forbidden region; see Fig. 4. Then the diverg
vector potential is harmless, since the wave function
exp(21/Am) near the crossing. The cut to infinity can b
pushed to the classically forbidden zone, so the differe
between periodic or antiperiodic boundary conditions is
ponentially small, and one can forget about the crossing
together. If the crossing point lies in the classically allow
region, it couples two nuclear Schro¨dinger equations and ru
ins the traditional Born-Oppenheimer approximation.

2. Born-Oppenheimer theory near a degenerate minimizer

It can occur that the crossing must be taken into acco
although it lies at the classically forbidden zone. This ha
pens when the cut cannot be pushed to the classically for
den zone. This is the case, for example, when the curvg
PR2 is a minimizer of an electronic energy surface with ze
energy4 on g. If g encircles a crossing~see Fig. 5!, then the
cut necessarily intersectsg, and sinceg lies in the classically
accessible region the wave function is large there and it m
ters whether one imposes periodic or antiperiodic bound
conditions.

4Similar arguments apply if the energy associated withg is suffi-
ciently small.

i-

ls
o
s-

FIG. 5. A degenerate minimum around a crossing. The so
circle representsg. Although the crossing falls in the classicall
forbidden zone, it should be taken into account.
4-3
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J. E. AVRON AND A. GORDON PHYSICAL REVIEW A62 062504
III. BORN-OPPENHEIMER THEORY NEAR
CROSSING

Now consider the spectral problem near crossing ene
of two electronic energy surfaces. Let us set the cross
energy at 0, and assume that the crossing is conic. This is
generic situation.

Upon scaling,x5ej ande5m1/3, the Born-Oppenheime
operator assumes the form

eS „2 i¹j2eA~ej!…21
1

e
E~ej! D , e5m1/3. ~4!

The scaling increases the gaps between the electronic en
surfaces, and decreases the couplingof the crossing pairto
other levels sinceeAi j (ej)5O(m1/3), wheni belongs to the
pair andj to other levels. On the other hand, the crossing p
remains coupled, because the Coulombic singularity near
crossing says thateAi ,i 8(ej)5O(1/uju), which is large when
j is small. We see that a spectral problem in an interva
order o(1), near the crossing energy, reduces to a prob
whereHe(x) is a 232 matrix up to an error of orderm in the
eigenvalues and up to an error of orderm2/3 in the eigenfunc-
tions.

Our aim, in this work, is to describe the wave functio
for states located at an interval of width that is much sma
than m1/3 near the crossing. Even though this is a small
terval, it has many eigenvalues: By Weyl’s rule there a
many states, of orderm22/3, in an interval of widthm1/3, in
two dimensions. One can expect to find many states in
interval in question.

Close to the crossingHe(x) can be expanded in terms o
the Pauli matrices and the unit matrix. We assume that
ymptotically close to the crossing pointHe(x) is isotropic
and conic@14#5:

He~x!5s•x1O~x2!. ~5!

5Reality, isotropy, and linearity would allow for an addition
overall scale factor inHe . This scale can be absorbed in a rede
nition of m.

FIG. 6. The components ofFm(r) for m51/2 and their
asymptotic form given by Eq.~10!. The function is compared with
the WKB Born-Oppenheimer wave function.
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We chooses1,2 real6:

s15S 0 1

1 0D , s25S 1 0

0 21D . ~6!

O(x2) accounts for the behavior far from the crossing whi
is not universal, or isotropic.

How restrictive is the assumption that near the cross
He(x) is isotropic? Molecules are never isotropic, althou
some may be approximately so. Nevertheless, isotropic c
intersections are, in fact, common. This is a known pheno
enon in group theory: Discrete symmetry can force full co
tinuous symmetry on tensors of finite rank@19#. For ex-
ample, as shown in Ref.@7#, the D3 symmetry of trimers
forces isotropy of the conics.

It follows from the above that if one is interested in th
local behavior of eigenfunctions for eigenvalues that lie in
energy rangethat is small compared tom1/3 and in aspatial
neighborhoodof the crossing,uxu!1, the eigenfunctions sat
isfy, to leading order inm, a canonical system of partia
differential equations:

~2mDxx1s•x!C5m1/3~2Djj1s•j!C50. ~7!

The rotational symmetry allows us to reduce Eq.~7! to a
system of linear,ordinary differential equationparameter-
ized by angular momentummPZ11/2 ~see Sec. IV A!:

H 2
d2

dr22
1

r

d

dr
1

m211/4

r2

1S 2
m

r2 r

r
m

r2

D J Fm50, r5uju. ~8!

For fixedm the space of solutions of the ordinary differenti
equation is four dimensional. We shall see that there i
one-dimensional subspace of solutionsthat is well behaved
near the originr50, and near infinity. As we shall explain
functions in this space describe the asymptotic behavio
eigenfunctions with energies near the crossing and spat
close to it. The explicit expression for these solutions,
described below~see Fig. 6!.

Main result

We now describe our main result.
Theorem 3.1: For mPZ11/2, andm>1/2, let

6This is unconventional, but convenient.
4-4
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Fm~r!5
321/262@~5/6!1~2m/3!#rm2~1/2!

GS 2

3DGS 1

2
1

m

3 DGS 7

6
1

m

3 D S 0F3S ;
1

3
,
1

2
1

m

3
,
5

6
1

m

3
;
r6

64D
r3

614m 0F3S ;
4

3
,
3

2
1

m

3
,
5

6
1

m

3
;
r6

64D D
2

321/262@~1/6!1~2m/3!#rm1~1/2!

GS 1

3DGS 1

2
1

m

3 DGS 5

6
1

m

3 D S
r3

1218m 0F3S ;
5

3
,
3

2
1

m

3
,
7

6
1

m

3
;
r6

64D
0F3S ;

2

3
,
1

2
1

m

3
,
7

6
1

m

3
;
r6

64D D ;

then we have the following.
~i! Fm(r), is a solution of the system of differential equations@Eq. ~8!#.
~ii ! For smallr,

Fm~r!→ 321/2rm2~1/2!

GS 1

2
1

m

3 D6~4m11!/6S 1

GS 2

3DGS 7

6
1

m

3 D62/3

2
r

GS 1

3DGS 5

6
1

m

3 D D . ~9!
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In particular,F1/2(0)Þ0.
~iii ! For larger,

Fm~r!→ 1

~2p!3/2r3/4cosX2
3

r3/22pS m

3
1

1

4D CS 1
21D .

~10!

Theorem 3.2: For mPZ11/2 andm>1/2, let

Cm~r ,u!5m21/4eimuS eiu/2 ie2 iu/2

ieiu/2 e2 iu/2 DFm~m21/3r !;

~11!

then we have the following.
~i! Cm is a solution of the system of the partial differenti

equation~7!, wherex5(r cosu,r sinu).
~ii ! The mth component of an eigenfunction of Eq.~1!

near crossing, i.e., with eigenvalueuEu!m1/3 and for x
5(r cosu,r sinu), r !1 is, to leading order, proportional t
Cm(r ,u).

~iii ! The amplitude ofCm is independent ofm in the
region r @m1/3.

~iv! Near the crossing,r'm1/3, the amplitude of the wave
function Cm5O(m21/4)

Remark 3.1: The most interesting aspect of the solution
that the wave function has a large amplitude at the cros
region in the limit of smallm. As we shall see, this resu
follows from arguments that do not rely on the explicit for
of the solution, but do depend on the fact that in the nonm
ing region,r @m1/3 the solution has a WKB form in the ra
dial direction.

Remark 3.2: The functionCm does not describe the be
havior of wave functions in the far zone, wherer .1. The
06250
g

-

behavior in the far zone is not universal and depends on
details of the electronic energy surface. The far zone is
scribed by standard Born-Oppenheimer, theory, soCm gives
complementary information.

Remark 3.3: There areo(m22/3) states in the relevant en
ergy intervalo(m1/3) near the crossing disregardingm. For a
givenm there are onlym21/6 levels in this interval. This says
that near the crossingm is bounded by orderm21/2.

Remark 3.4: We shall actually only prove the theorem
the special case thatHe(x) is rotationally symmetric. The
symmetry decouples channels with different angular m
menta. We believe that mixing of angular momenta in the
zone is only a technical complication, and that the result a
holds without rotational symmetry in the far zone.

IV. ROTATIONALLY SYMMETRIC CASE

In the following we describe a derivation of the ma
result for a Born-Oppenheimer model that is rotationa
symmetric. With rotational symmetry we can reduce t
spectral problem of a PDE to a spectral problem of an OD
No real molecule is rotationally symmetric, and the gene
case leads to mixing ofm channels. We believe that this i
only a technical complication.

We require the invariance ofHe(x) under infinitesimal
rotations in the nuclear and electronic Hilbert spaces. Suc
rotation is generated by

J35L31
1

2
s352 ix1

]

]x2
1 ix2

]

]x1
1

1

2
s3 , ~12!

with
4-5
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s35S 0 i

2 i 0D .

The L3 part generates SO~2! rotations in the nuclear Hilber
space (x1-x2 plane!, whereas the 1/2s3 part generates a ro
tation in the electronic Hilbert space.J3 does not have the
meaning of total angular momentum since the Pauli matr
do not represent spin. Isotropy means thatJ3 commutes with
He(x):

05@J3 ,He~x!#.

The most general form ofHe(x) for a two-level system tha
is rotationally symmetric and real is

He~x!5Q0~r !1Q1~r !~x•s!1Q2~r !~x3s!, r 5uxu
~13!

An additionalQ3(r )s3 term in Eq.~13! is allowed by rota-
tional invariance, but it is forbidden by time-reversal sym
metry, sinces3 is imaginary.

The energy surfaces ofHe(x) are equal to

E6~r !5Q0~r !6q~r !, q~r !5rAQ1
2~r !1Q2

2~r !.
~14!

We shall assume thatQ0,1,2 are smooth functions ofr, and
thatQ1(0)51 while7 Q0,2(r )5O(r 2) for small r. This gives
conic intersection at zero withE6(r )56r , see Fig. 7.

A. Radial Hamiltonian

The spectral subspace ofJ3 , with eigenvaluem, is
spanned by

e15ei ~m11/2!uS 1
i D , e25ei ~m21/2!uS i

1D ; ~15!

m must be half odd integer fore1,2 to be univalued, i.e.,m
PZ11/2.

Since

2De15

S m1
1

2D 2

r 2 e1 , 2De25

S m2
1

2D 2

r 2 e2 ,

7Q2(0) can be always set to zero by an appropriate rotation in
x space only, i.e., by an appropriate choice of the heavy coordin

FIG. 7. The electronic energy surfaces ofHe(x).
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x•se15re2 , x•se25re1 ,
~16!

x3se152 ire2 , x3se25 ire1

in terms of the basis$e1 ,e2% for the radial equation we ob
tain

H~m,m!52mS d2

dr2 1
1

r

d

dr
2

1

4r 2D1He~r ,m,m!, ~17!

with

He~r ,m,m!5Q0~r !1rQ1~r !s11rQ2~r !

3s32
m

r 2 ~ms22m2!. ~18!

Scalingr 5m1/3r we obtain Eq.~8!, to leading order inm, for
0<r!m21/3.

Remark 4.1: The radial HamiltonianHe(m,m,r ) actually
has no level crossing. This, by itself, does not ameliorate
mixing of the two levels for now the gap in the spectrum
He(m,m,r ) is of orderm1/3. The smallness of this gap lead
to mixing of the electronic levels.

We shall restrict ourselves tom.0. Since

s1H3* ~r ,m,m!s15He~r ,m,2m!. ~19!

H(m,m) and H(2m,m) are isospectral, and the radial pa
of the function with2m can be obtained from the one wit
1m by interchanging upper and lower components and t
ing complex conjugates.

B. Indicial equation

The origin r50 is a regular-singular point@20# of the
equation. Substituting

S ra

rb D @11O~r!# ~20!

into Eq. ~8! we obtain the rootsa56(m21/2) andb5
6(m11/2). Equation~8! therefore has four linearly inde
pendent solutions, which asymptotically near the origin,
have like

S rm2~1/2!

0 D , S r2m1~1/2!

0 D , S 0
rm1~1/2!D , S 0

r2m2~1/2!D .

~21!

Equation ~21! is correct only for umuÞ1/2. The caseumu
51/2 requires special treatment, because of the two deg
erate roots in the upper component. Forumu51/2 the four
linearly independent solutions behave asymptotically n
the origin like @21#

S 1
0D , S ln~r!

0 D , S 0
r D , S 0

1/r D . ~22!

We see that for anym there are always two solutions whic
are bounded near the origin, and two others which are div
e
s.
4-6
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gent. Since a smooth Hamiltonian can give rise to smo
eigenfunctions only@21# in the four-dimensional space o
solutions to the differential equation, there is a tw
dimensional subspace of admissible solutions, the o
which are well behaved at the origin.

C. Solution to the ODE

In this section we show that the solutions of Eq.~8! that
are regular at the origin, can be explicitly constructed
terms of certain hypergeometric functions.

Theorem 4.1: The solutions of Eq.~8! which are bounded
at the origin are spanned by

Fm
~1!~r!5S w1

~1!~r!

w2
~1!~r! D

5S rm2~1/2!
0F3S ;

1

3
,
1

2
1

m

3
,
5

6
1

m

3
;
r6

64D
rm1~5/2!

614m 0F3S ;
4

3
,
3

2
1

m

3
,
5

6
1

m

3
;
r6

64D D ,

~23!

Fm
~2!~r!5S w1

~2!~r!

w2
~2!~r! D

5S rm1~7/2!

1218m 0F3S ;
5

3
,
3

2
1

m

3
,
7

6
1

m

3
;
r6

64D
rm1~1/2!

0F3S ;
2

3
,
1

2
1

m

3
,
7

6
1

m

3
;
r6

64D D ,

where 0F3(;a,b,c;x) are generalized hypergeometric fun
tions of the kind0F3 .

Proof: Under scaling,r→lr, Eq. ~8! transforms to

H 2
d2

dr22
1

r

d

dr
1

m211/4

r2 1S 2
m

r2 l3r

l3r
m

r2

D J
3Fm~lr!50. ~24!

In particular, the equation is invariant under scaling byl, a
cube root of unity,l5e2p i /3. ~Note that this feature is los
when one considers solutions of the equation for nonz
eigenvalue.! By an analog of Bloch theorem, the solution is
product of an eigenfunction of the scaling transformation a
a periodic function under scaling bye2p i /3. ra is an eigen-
function of the scaling transformation with eigenvaluela.
Hence thatFm must be of the formraG(r3). The indicial
equation fixesa5m61/2.Gm(r3) is then an analytical func
tion of its argument.

The space of regular solutions of this kind is two dime
sional and gives a representation ofD3 , the group of discrete
rotations by 2p/3. Since the only complex irreducible repr
sentations@22# of D3 are the complex numbersv, such that
v351, one can always find a basisFm

(1)(r),Fm
(2)(r) such that
06250
th

-
es

ro

d

-

Fm
~ j !~e2p i /3r!5v jFm

~ j !~r!.

This condition fixes the solutions in Eq.~23!, where v1

5e2p i (m21/2)/3 andv25e2p i (m11/2)/3.
To relateGm to hypergeometric functions, we turn the tw

coupled second-order equations~8! into a scalar fourth order
equation for each component. The equations obtained for
componentw1 and w2 can be written, withz5r6/64, and
D5z(d/dz), in the form

H DS D-
2

3D S D1
m

3
2

1

2D S D1
m

3
2

1

6D2zJ
3z~2m11/2!/6w1~z!50,

~25!

H DS D2
1

3D S D1
m

3
2

1

2D S D1
m

3
1

1

6D2zJ
3z~2m21/2!/6w2~z!50.

The generalized hypergeometric function0F3(;a,b,c;z) is
defined by@23–26#

0F3~ ;a,b,c;z!5 (
k50

`
G~a!G~b!G~c!

k!G~k1a!G~k1b!G~k1c!
zk.

~26!

It is a matter of calculation to see that it satisfies the diff
ential equation:

$D~D1a21!~D1b21!~D1c21!2z%0F3~ ;a,b,c;z!50.
~27!

Equation~25! is a special case of this. Note, however, th
we are not free to pick bothw1

(1) andw2
(1) as hypergeometric

functions corresponding to Eq.~27!. We can pick one, and
then the other is determined by Eq.~8!.

To obtainFm
(1) , we pick the upper component to be th

hypergeometric function that solves Eq.~25!, i.e.,

w1
~1!~r!5rm2~1/2!

0F3S ;
1

3
,
1

2
1

m

3
,
5

6
1

m

3
;
r6

64D .

The lower component,w2
(1) , is determined by Eq.~8!, which

gives us the relation

w2
~1!~r!5

rm2~1/2!

r3 H r
d

dr S r
d

dr
12m21D J w1

~1!~r!

rm2~1/2! .

~28!

With the identities@23,24#

S z
d

dz
1c21D

0

F3~ ;a,b,c;z!5~c21!0F3~ ;a,b,c21;z!,

d

dz 0F3~ ;a,b,c;z!5
1

abc 0F3~ ;a11,b11,c11;z!,

we obtain
4-7
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w2
~1!~r!5

1

614m
rm1~5/2!

0F3S ;
4

3
,
3

2
1

m

3
,
5

6
1

m

3
;
r6

64D .

~29!

The second solutionFm
(2) is obtained by pickingw2

(2) to be
the hypergeometric solution to Eq.~25!. That is,

w2
~2!~r!5rm1~1/2!

0F3S ;
2

3
,
1

2
1

m

3
,
7

6
1

m

3
;
r6

64D , ~30!

and with a relation

w1
~2!~r!5

rm1~1/2!

r3 H r
d

dr S r
d

dr
12m11D J w2

~2!~m;r!

rm1~1/2! ,

similar to Eq. ~28!, one computes the upper component
the second solution:

w1
~2!~r!5

1

1218m
rm1~7/2!

0F3S ;
5

3
,
3

2
1

m

3
,
7

6
1

m

3
;
r6

64D .

D. Well-behaved solutions

We have seen that of the four-dimensional family of s
lution of Eq. ~8! there is a distinguished two-dimension
family that is well behaved near the origin. We shall no
show that there is a three-dimensional family that is w
behaved at infinity.

Theorem 4.2: ~i! In the four-dimensional space of solu
tions of Eq.~8! there is a three-dimensional family of solu
tions that vanish at infinity, and a one-dimensional subsp
that diverges exponentially at infinity.

~ii ! The solutions of Eq.~8! for r@1 are~asymptotically!
spanned by the four-dimensional family

r23/4expS 2
2

3
r3/2D S 1

1D , r23/4expS 2

3
r3/2D S 1

1D ,

~31!

r23/4cosS 2

3
r3/2D S 1

21D , r23/4sinS 2

3
r3/2D S 1

21D .

~iii ! The exponential blowup ofFm
(1,2) of Eq. ~8! is given

by

2Fm
~1!~r!→GS 1

3DGS 1

2
1

m

3 D
3GS 5

6
1

m

3 D6~1/6!1~2m/3!r23/4expS 2

3
r3/2D S 1

1D ,

2Fm
~2!~r!→GS 2

3DGS 1

2
1

m

3 D
3GS 7

6
1

m

3 D6~5/6!1~2m/3!r23/4expS 2

3
r3/2D S 1

1D .

~iv! The solution to Eq.~8! that vanishes at the origin an
at infinity is a multiple of
06250
f

-

ll

ce

GS 2

3DGS 1

2
1

m

3 DGS 7

6
1

m

3 D65/6Fm
~1!~r!

2GS 1

3DGS 1

2
1

m

3 DGS 5

6
1

m

3 D61/6Fm
~2!~r!.

Proof: He(r,m,m) for Eq. ~8! is, for r@1,

He~r,m,m!5
m211/4

r2 1S 2
m

r2 r

r
m

r2

D 'S 0 r

r 0D ,

~32!

with eigenvalues6r. It follows that the solution for larger
reduces to the study of two uncoupled equations:

S 2
d2

dr22
1

r

d

dr
6r Dc50. ~33!

Since r is large, these can be solved@18# by the WKB
method to give the first part of the theorem. The blowup
the solutions at infinity can be obtained from the relati
~omitting the exponentially decaying part!

0F3~ ;a,b,c;x!→ G~a!G~b!G~c!

2~2p!3/2

3xg
„e4x1/4

12 cos~4x1/412pg!…,

~34!

with g5(a1b1c23/2)/4. This relation can be obtained b
studying the asymptotic behavior of the coefficients in t
series of 0F3 . Alternatively, in Ref. @26# the asymptotic
form of the generalized hypergeometric functionspFq is de-
rived, and the formula given there reduces to Eq.~34! after
substitutingq50 andp53, computing the summations, an
omitting the exponentially decaying part. From this the r
follows, as well as the proof of theorem 3.1.

It remains to explain how eigenvectors are related to th
well-behaved solutions. The point is that the canonical d
ferential equation approximates the eigenvalue equation o
for r !1, or, equivalently, forr!m21/3. Consider an eigen-
function. Far from the crossing this eigenfunction can
approximated by a WKB solution, and it is clear that th
WKB solution can be approximated by a WKB solution
the canonical problem in the intervalm21/3@r@1. The com-
ponent that blows up must have an exponentially small a
plitude, of order exp(22/3Am), and, to leading order can b
neglected near the crossing.

V. ANOMALOUS MIXING

The basic and fundamental observation of the Bo
Oppenheimer theory is the emergence of the energy s
Am in molecular spectra associated with vibrations. Perh
the most interesting observation that results from the anal
of the Born-Oppenheimer theory near crossing is the em
gence of a scalem1/6, associated with mixing at crossing
4-8
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m1/6 is normally not a small number: In molecules,m1/6

;0.2.
Classically, a uniform density on the energy shell,d„p2

1V(x)2E…, implies that, in two dimensions, the spati
density is also uniform on the classically allowed region. T
region where there is substantial mixing between the
electronic energy surfaces has linear dimensions that s
like m1/3. For a crossing point in two dimensions the volum
characterizing the mixing therefore scales likem2/3. The
semiclassical expectation is therefore that mixing near cr
ing should scale like the aream2/3.

For isotropic crossing we found that the wave functi
has an anomalously large amplitude in the mixing region
values of azimuthal quantum numbers that are small c
pared tom21/2. For these, from theorem 3.2, the amplitude
the near zone scales likem21/4. This implies that the tota
r-
s

in

ys

s

ls

06250
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mixing weight scales likem1/6. It would be interesting to
have a more complete picture of the mixing near noniso
pic crossing, and also for chaotic systems.
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