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Diophantine Equation for the Hall Conductance of Interacting Electrons on a Torus
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We derive a Diophantine equation for the Hall conductance of N interacting electrons moving on
a torus. The equation holds for general background fields, including inhomogeneous magnetic
fields, and random substrates, but is effective when combined with symmetries. For example, to-
gether with translation invariance in one direction it determines the Hall conductance uniquely and
constrains the degeneracy and crossings of eigenvalues.

PACS numbers: 72.20.My, 03.65.—w

In a profound paper, Thouless et al! made two
discoveries about the Hall conductance of noninteract-
ing electrons in an infinitely extended periodic poten-
tial and homogeneous magnetic field (with rational
flux through the unit cell). The first is that when Ef
lies in a gap, the Hall conductance has a differential
geometric meaning, which accounts for why it is quan-
tized to be an integer.? The second is that the Hall
conductance satisfies a certain Diophantine equation.’
This equation constrains the allowed integers. More
precisely, for rational magnetic fields, with flux m/q
through the unit cell,* the Hall conductance of N full
bands, o (N), is the integer satisfying

mo(N)— N =gk, (D

with k an integer. This Diophantine equation deter-
mines o(N) modulo ¢g. Related results have been
described by Streda,® MacDonald,® Thouless,” and
Dana, Avron, and Zak.! Equation (1) can be under-
stood to be a consequence of the magnetic translation-
al symmetry.?

It is natural to ask to what extent these two results
generalize to a wider class of models and in particular
to models where electrons interact.

The first result of Thouless et al. has indeed a gen-
eralization to a wide class of multiparticle Hamiltoni-
ans’!2: The Hall conductance, when appropriately de-
fined, is a topological invariant with a precise meaning
within the theory of characteristic classes!>!* and is
quantized to be an integer whenever the ground state
of the multiparticle Hamiltonian is nondegenerate.!’
This gives a mathematically satisfactory theory of
Laughlin’s argument!® for the integer quantization of
the conductance in finite systems at zero temperatures.

The purpose of the present work is to present an
analog generalization of the Diophantine equation.
The method we shall use is general enough to recover
all the Diophantine equations in quantum mechanics
we are familiar with. In particular, it can be used to
give Eq. (1), and the Wannier-Johnson-Moser-
Bellissard-Lima-Testard gap-labeling equations’ in
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almost-periodic Schrédinger equations.

We consider N interacting electrons moving on the
two-dimensional torus, with a general background po-
tential and a magnetic field in the perpendicular direc-
tion. The magnetic field may, but need not be, homo-
geneous. It is constrained to have total flux of m
units,!” as it must. This geometry has been used for
the studies'® ! of degeneracies in the spectrum, and in
various numerical studies; see references in Ref. 19.
We shall recover the results in Refs. 18 and 19 as a
by-product of the Diophantine equation when applied
to the translation-invariant situation.

We have chosen the same letters, N and m, to
denote different things here and in Eq. (1) for reasons
that shall become clear presently.

Formally, the system is described by the Hamiltoni-
an given in Eq. (5) below and the boundary conditions
given in Eqgs. (6) and (7). More precisely, H(¢) of
(5) is a family of Hamiltonians, depending parametri-
cally on @. ¢ is a vector in the two-dimensional plane.
The physical significance of its first component is re-
lated to the flux that drives the emf in one direction
and that of the second component to a second flux,
originally introduced by Laughlin,!® which serves to
determine the charge transport. See Ref. 10 for more
details.

There is some ambiguity in what is meant by the
Hall conductance which is a priori ¢ dependent. The
natural choice, also made originally by Laughlin,'¢ in
Refs. 9-12, and by Halperin,? is to average. o then
acquires geometric content. There is no such ambigui-
ty for noninteracting electrons in an infinitely extend-
ed crystal because the thermodynamic limit makes o
independent of ¢.°

We shall first describe the main result, Eq. (2)
below, then show how symmetries combine to give
useful information on o and the degeneracy and cross-
ings of eigenvalues. The derivation of Eq. (2) and its
concomitants, Eqs. (3) and (4), are deferred to the
end of the paper.

Fix ¢. Since H(¢) describes a finite system, its
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spectrum is discrete and bounded below. Let E;(¢)
be the Jjth point in the spectrum, counted from below,
and assume no crossings, i.e., Ej(¢) > E (@) if j > k
for all . Let P;,(¢) denote the associated projec-
tion. dj=Tr[Pj(¢$] is its degeneracy. The Diophan-
tine equation is

(mo;—N)d;=kj, )

where k; and djo; are integers associated to P;(¢).
We shall give below explicit formulas for them [Egs.
(13) and (17)]. In the general case of crossings, d; is
the dimension of the space of crossing eigenvalues.
Equation (2) is independent of statistics, and holds for
fermions as well as bosons. Given N and m, Eq. (2)
alone does not give useful information on the o ;. But,
as we shall see, if H(¢) has symmetries, Eq. (2) be-
comes quite useful and it yields information on o ; and
the 4.

Suppose that H(¢) is translation invariant in one
direction. This is the case if the magnetic field and the
background potential are functions of one coordinate
only. As we shall show below, this implies that k; =0
for all . Now Eq. (2) actually determines o ;:

a;=N/m. 3)

This result is known for noninteracting electrons, and
interacting electrons in a constant background poten-
tial in infinite geometries. It is also apparently known
for the geometry of the torus with full translation in-

H(®) =3, L 1(v, =)+ V(x)1+ 3, o Wix;—

where X; is a point on the two-torus and X; — X, is the
natural distance on it. e is the electric charge. It is
convenient to regard X as a point in the plane or in the
rectangle Q = [t;xt,] where t,, a=1,2, are the
period vectors of the torus. V(x), W(x), and B(x)
=V x A(x) must then be periodic functions of their
arguments with period ¢,. The vector potential need
not be periodic in X but it can be decomposed into a
periodic piece, 4,(x), and a piece which is linear in x,
A,(x), which is absent if and only if the total flux van-
ishes.

The boundary conditions for H(¢) are somewhat
subtle and although the answer is known, it may be
useful to describe the reasoning behind it. Consider
the x; to be in the rectangle (). The question is, what
boundary conditions on ¥ (x;,...,xy) describe the
dynamics on a torus? The point is that parallel trans-
port of the state yy—translation without affecting the
observable properties—is subtle when a gauge field is
present and ‘‘periodic boundary conditions’’ involve a
certain twist. More precisely, parallel transport is gen-
erated by the velocity, —iV —eA(x), and not by the
canonical momentum — V. Parallel transport of ¢
from x to x+t, along a path in the t, direction is

xk),

variance although we are not aware of a formal deriva-
tion.

We can now recover, and extend, the results of
Refs. 18 and 19. Since o;d; is an integer, it follows
from Eq. (3) that d; must be a multiple of m if N and
m are relatively prime, and in general must be a multi-
ple of m/(N,m) where (N,m) is the largest common
divisor of N and m. This is the analog of Landau de-
generacy and it has been known for interacting elec-
trons in the infinite geometry with translation-
invariant fields.?! Maksym'® and more recently Hal-
dane!® derived this result for the torus with translation
invariant fields.

The second application we consider is for the case of
discrete translation invariance: Suppose that the back-
ground fields have a unit cell so that g such cells cover
the torus. g and m are assumed to be relatively prime.
Then, as we shall show, k; is a multiple of ¢ and Eq.
(2) reads

Note that in the case d;=1, which is the generic situa-
tion in the absence of symmetries,'® Eq. (4) is formal-
ly identical with Eq. (1). In particular, it determines
o; modulo ¢. In the general case, Eq. (4) determines
o ;d; to be a multiple of (N,qg). There are more com-
plicated results when ¢ and m are not relatively prime.
We shall now outline the derivation of the above
results. The Hamiltonians are given formally by??

Vj=—iVj“eA(Xj), (5)

given by
Y(x) =y (x+t,)expl — ie[j:A(x-i-ﬂa) “t,drl}.

The appropriate boundary conditions are therefore

v(..x, ..0)
=expl—ieA,(x) (... .x;+t,, ...), (6)
where
1
Aa(x) = [ A(x+71,) 1, dr. %)

Parallel transport is path dependent if B=0: The
magnetic field plays the role of curvature. A conse-
quence of this is that the boundary conditions con-
strain the flux to be quantized. This can be seen by
comparing ¢( ..., t;+ty, ...) with¢(...,0...)
using Eq. (6) twice: once for the path t;+t,
=>t, =0 and once for t;+t, =t, =0. Con-
sistency requires

[Az(tl) “Az(O)] - [Al(tz) —/\1(0)] =27rm/e,
(8)
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with man integer. But
JB-ax=PA-d1=[4,(0) = A (e)1 - [A,(0) — Az(e))], 9)

giving the flux quantization.

This type of argument is also used for the quantiza-
tion of the Hall conductance;, compare, e.g., Ref. 1.
The difference is that flux quantization is related to
the transport in coordinate space while Hall quantiza-
tion is related to transport in the parameter space of ¢
where the adiabatic evolution provides a natural paral-
lel transport.23-26

The following is known about periodic, parameter-
dependent projections: Suppose that P(¢) is an
orthogonal projection, smooth and periodic in ¢, and
let BZ denote the unit cell in the ¢ parameter space.
Then‘o' 27

n(P)=(i/2m) [, TrldP P dP] (10)

is an integer. d is the exterior derivative with respect
to ¢. We shall apply Eq. (10) for the spectral projec-
tion, P(¢), of periodic, parameter-dependent, Hamil-
tonians.

Equation (10) is not directly applicable to H(¢) be-
casue H(¢) is not periodic in ¢, and neither are its

(oo xp, o) =expl—ileA,(x) + -t [y, (..

projections. However, there are unitary transforma-
tions that make H(¢) periodic. Indeed, we shall in-
troduce two such transformations; one gives k; and
one o;d;. To this end, we need a technical tool that
describes how Eq. (10) is modified under unitary
transformations.

Let Q(¢)=U(¢)P(¢)U'(¢) (where the dagger
denotes the adjoint), then

Tr(dP P dP)
=Tr(dQ QdQ) +dTr(QdU U'). (11)

In deriving (11) we used the facts that Q*(¢) = Q(¢),
Q dQ Q=0, and (dU") U+ U'dU =0; the cyclicity of
the trace; and the anticommutativity of one-forms.
Now take U(¢)=exp—ix-¢ with x=3x,. Then
H\(¢)=U(¢)H(¢) U] (¢) is formally ¢ indepen-
dent and, in particular, is periodic in ¢. The period is

determined by the boundary conditions: Since
Y= U,()¢, then
S 5 3 MR (12)

[H(¢) has ¢-independent boundary conditions.] The period of (12) is BZ =*t; X*t,, where *t, are the duals of
te, i.€., "ty ~tg=2m3, g. This is the period of the spectral projections P;(¢), which is smooth if it projects on an
energy band bordered by gaps. Now dU,TUl =ix-dd¢ is ¢ independent and so the boundary term in (11) drops out
and

f,, Tr(@P\PaP) = [ Tr(aP P aP).
The relation between P (¢), P,(¢), and the Hall conductance is given by
o,=(i/2nd) [ Tr(dP P dP). 13)

Here, the two factors of dP are associated with the external emf and the response, and the P reflects the underlying
expectation value. When the jth level is degenerate we assume that the system is described by the density matrix
P/d;. This relation has been discussed (for rank-one projection) in Ref. 10. When levels cross we take Eq. (13) to
be the definition of o;. Combined with Eq. (10), it implies that o ;d; is an integer. Thus, o, is a fraction with a
denominator related to the ground-state degeneracy.’-!!-28

The same mechanism produces a second integer by choice of another unitary transformation U,(¢). The
Diophantine equation will come from a relation between these two integers.

Letu= —iV —eA,(x). One verifies the following relations:

expl—i(B-u)f(x)lexpli(B-u)]l=rf(x—B), (14)
expl—i(B-u)f(v)lexpli(B-u)]=f(v—eBxBy—eA,(x+B) +eA,(x+B) +eA,(x)),
where By=V X A, is a constant. Now let u= Yu; and b=B/B-B, and take

U,(¢p) =exp(iu-éxb).
From Eq. (14)

Hy(¢)=Uy($)H($)U; (¢)
=323,[vi—eA, (x=éxb) +eA, ()2 + 3, V(x;—¢xb) + 3, ., W(x;—x). (15)
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The wave function, ¢, = U,(@ )y, satisfies the boundary conditions
P Xy, ) =expl—ieAqa(x))lexp({—ilty- Aj(dXxb) + Ai(ty) " dXxbllwy( ..., x;+t,, ...). (16)

In the symmetric gauge, A;=+Byxx, t,)-A(¢
xb) +A;(t,-dxb=0, and the boundary conditions
in Eq. (16) are ¢ independent. The periodicity of
P,(¢)=U,(¢)P(¢) U] (¢) is determined by H,(¢)
alone and is BZ,= mt] x mt}. So by Eq. (10),

K (P) = (i/2m) [, Tr(dP, P, dPy) (17)

is an integer.
The Diophantine equation (2) comes from (11):
One has

(dU,)U; = —iv-dexb+ (iN/2)¢pxb-de.

The first term on the right-hand side is independent of
¢ and does not contribute when Eq. (11) is integrated
over BZ. The second term comes from the commuta-
tor of the components of the vector v which is propor-
tional to Nb. Since this term is linear in ¢ it survives
the integration in Eq. (11) over the periods. Combin-
ing Egs. (11, (13), and (17) gives

m?o ;d;=k; + Nmd,. (18)

This says that k; of Eq. (17) is a multiple of m,
kj = mk; and gives Eq. (2) if m=0.

Suppose that H(¢) is translation invariant in one
direction, say, t;. H,(¢) is then constant in ¢ along
the t, direction. It follows that P,(¢) is a function of
a single coordinate ¢ -t; and so any two-form con-
structed from it, in particular dP, P, dP,, must vanish
identically. This implies that k; = 0.

Consider the case of discrete translation invariance.
Suppose that g=gq;q, where g, is the number of
periods in the « direction, a=1,2. The period of
H(¢) is now smaller by a factor of g¢. From (15) and
(17), and a translating argument, we see that k' of Eq.
(17) is a multiple of ¢q. If ¢ and m are relatively
prime, this gives Eq. (4).

To summarize, we have derived a Diophantine
equation for the Hall conductance of interacting elec-
trons on a two-dimensional torus, in arbitrary back-
ground fields. In cases where the background fields
have symmetries, the equation constrains (and some-
times actually determines) the Hall conductance and
the degeneracy of eigenvalues.
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