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The viscosity of quantum fluids with an energy gap at zero temperature is related to the adiabatic

curvature on the space parametrizing flat background metrics.
dimensional tori, the quantum viscosity is computed.

proportional to the magnetic field strength.

PACS numbers: 72.10.Bg

Classically, the elastic modulus A and viscosity 7 are
tensors of rank 4, which relate the stress tensor o to the
strain tensor u, and the strain-rate tensor u. For small
deformations [1],

Oap = Zg Aapysiys — Z NaByslys,
Y

a,B,y,6 =1,...,d, 1

where d is the dimension of configuration space. The
elastic modulus tensor A, gys is symmetric in the first and
second pairs of indices, and it is also symmetric under the
transposition of the first and second pairs of indices.
Since the tensors o, u, and u are symmetric, the
components of the viscosity tensor obey the relations
NaBys = MBays = MNapsy [1,2]. With respect to the
substitution of indices (@ 8y 8) — (ydaB), the viscosity
tensor splits into symmetric and antisymmetric parts, n =
7% + n4, where
C Magys = Mysap- 2

S S
Napys = MNysaB

The symmetric part, being associated with dissipation, is
a positive quadratic form in strain rates. For an isotropic
fluid, S depends on two coefficients of viscosity [3].
This is the normal situation in Newtonian fluid mechanics.
The antisymmetric part of the viscosity tensor 74
describes nondissipative response. It vanishes for systems
with time-reversal symmetry (this is a consequence of
the Onsager relation [4]). In general, in two dlmensxons
7; contains three independent coefficients 771112, 71122,
1)1222 For an isotropic fluid in Euclidean plane one has

A A _ A _
Miz = Moz = 7 M2 = 0, 3)

where 7 is a single coefficient of viscosity. In three
dimensions isotropy implies n# = 0.

Quantum fluids can have a ground state which is
separated by a finite gap from the rest of the spectrum. At
zero temperature, such a fluid will have a nondissipative

response, with 7% = 0. The antisymmetric part n* may
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For quantum Hall fluids on two-
It turns out to be isotropic, constant, and

or may not vanish at zero temperature. Quantum fluids
with energy gap and broken time-reversal symmetry will,
in general, have n* # 0 at zero temperature. A quantum
Hall fluid with a full Landau level gives such an example.
The viscosity tensor at low temperature could then be
dominated by the nondissipative part 7. The study of the
nondissipative viscosity bears analogies with the quantum
Hall effect [5], the Magnus force in superconductors [6],
and even with gravity [7,8]. Like the Hall conductance
and the Magnus force, the (nondissipative) viscosity is
related to the adiabatic curvature [9] and to topological
invariants [10]. The connection with gravity comes about
because the adiabatic curvature relevant for viscosity is
a 2-form on the space parametrizing flat background
metrics.

Let us first recall a general fact from the theory of adi-
abatic response [11]. Consider a family of Hamiltoni-
ans H(X) which depend smoothly on a set of parameters
X ={X1,...,X,} (X denotes a point in parameter space
while x denotes a point in configuration space). Let |¢/(X))
be a (normalized) nondegenerate state of H(X), with en-
ergy E(X). Let X(¢) be a path in parameter space which
is traversed adiabatically; X is the velocity along the path.
We assume throughout that the state stays nondegenerate
along the path.

By the principle of virtual work, —6H/8X is the
observable corresponding to the generalized force related

to 8X [12]. Adiabatic response theory says that, in the
adiabatic limit,
0H JE
— )= + QuXe, 4
<an> 3%, kZ X &

where € j is the (antisymmetric) adiabatic curvature [9]:

k= Im{d; |9 th), ; Qi = — Qs
9; = B—Xj : (5)

If H is time-reversal invariant, then ;; = 0 [9]. The
antisymmetry of { implies no dissipation: There is no
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change in energy if the system is taken along a closed
loop in parameter space.

In the special case where |¢) is a (normalized) multi-
particle state corresponding to N noninteracting fermions
in the single particle (normalized) states |p¢) with ener-
gies E¢(X) (all depending smoothly on parameter X ) one
has

N
Qi =1Im D (3;peldree),
=i
N

EX) =D E(X). (6)
£=1

To apply all this to viscosity, one needs to identify
appropriate parameters so that —dH/aX; is related to the
stress tensor and X to the rate of strain. Consider a fluid
confined to a given domain in d-dimensional Euclidean
space (planar parallelogram shown in Fig. 1 is an example
for d = 2). A uniform deformation is represented by the
(symmetric) tensor u of constant strain [1]:

1 (Oug aua)
- + — , 7
2 (axa BXﬁ ( )

uaﬁ =

where u, = x/, — x, are the coordinates of the displace-
ment vector, and x' is a linear transformation of x. In two
dimensions, the space of linear deformations (i.e., con-
stant strains) is three dimensional. A two-dimensional
subspace is associated with shears (transformations that
preserve the volume), and the transverse direction may be
associated with scaling.

An equivalent point of view is to keep the domam
fixed and to consider deformations of the metric instead.
The parameter space of flat metrics is then the same as
that of constant strains. Explicit formulas relating strains
and metrics, as well as convenient coordinates on the
corresponding parameter space, will be given later.

Now let H denote the Hamiltonian in a domain D in
d-dimensional space with metric g. By the principle of
virtual work [12], —8H /& u is the observable associated
with total stress tensor, [,[8H/8u(x)]d vol(x).

Adiabatic deformations of constant strain give the
quantum version of Eq. (1):

d
oH oF .
= -+ E 0 . 8
<6ua3> po=1 «pyotys ®

0 1

FIG. 1. Parallelogram in the complex plane associated with
the lattice with periods w; = (V/71)2, w, = (V/1)"/?7

698 .

Here —(0H/duqp) is the total stress tensor which is

Telated to the (ordinary) stress tensor o by Tap =

—(1/V){0H/duqp). The first term on the right-hand
side of Eq (8) means that the elastic modulus tensor is
Aapys = %0 2E/duqp duys. It is symmetric in the pairs
of indices (afB) and (y8) and under the transposition of
(aB) and (y8).

The adiabatic curvature (), g,s is antisymmetric with
respect to the transposition of the first and second pairs
of indices, and plays the role of nondissipative viscosity.
The adiabatic curvature ) and the viscosity 774 are two
related notions of viscosity, in rough analogy to conduc-
tance and conductivity. Here () is a dimensionless mea-
sure of quantum viscosity and has units of Planck constant
fi. It relates the total stress (whose dimension coincides
with energy) to the strain rate. The conventional viscosity
na4 has a dimension of //V, where V is the volume and
relates the stress (whose dimension coincides with pres-
sure) to the strain rate. The two notions of viscosity are
related by

=3 ®

Whether one chooses to focus on {} or on 74 is to an
extent a matter of taste. In the example we shall consider,
{) is quantized, whereas 7, is a local characteristic of the
fluid.

Let us illustrate these ideas with a concrete example.
Consider two-dimensional quantum Hall fluid on a torus
represented by the unit square in the configuration space
(x,y) € 0 =[0,1] X [0, 1] with opposite sides identi-
fied. As coordinates on the space of flat metrics on Q,
we use the_area V = (detg)'/? and complex parameter
7 = 11 + i7y describing shears, i.e., deformations that
preserve the volume. In this parametrization, flat metrics
are

gV, 1) = Tx(a’x2 + 21 dxdy + |72 dy?),
2

x,y,€ 0. (10)

An equivalent point of view is to associate this configura-
tion torus to the lattice in the complex plane with periods

14 1/2 174 1/2
- ()" ()
T2 T2

as shown in Fig. 1. The complex coordinate z on the
parallelogram in Fig. 1 is related to coordinates (x,y) €
Qbyz = (V/frz)l"2 (x + 7y). Interms of coordinate z,
one has g = |dz]?%; i.e., the metric is Euclidean.

The Landau Hamiltonian describes the kinetic energy
of a charged (spinless) particle in a constant magnetic
field and Aharonov-Bohm gauge fields. It is given by the
5-parameter family

HV,7,¢)

an

1
= v, Ui = 1(D.D, + D,D,) + D]],
(12)
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where D, = —id, + 2w(By + ¢ + B/2), Dy =
—idy + 2w(¢py + B/2); ¢ and ¢, are associated with
two Aharonov-Bohm fluxes, and the integer B is the
number of magnetic flux quanta through torus. (Note
that in our units, 1 is the unit of quantum flux Ac/e.)
We impose the usual magnetic translation boundary
conditions [13]:

Yx + 1,y) = ¢ix,y),
Yloy + 1) = e 2By (x, y). (13)

The (single particle) ground state is B-fold degenerate
with energy E = 27B/V independent of 7 and ¢. The

ground state of a full Landau level has energy E =-

27B%/V and is separated by a gap from the rest of
the spectrum. (For a nonrelativistic spinning electron,
described by the Pauli equation, one has £ = 0.) It
follows from Eq. (8) that the only nonzero component of
the elastic modulus tensor is Ayy = 277B%/V3. All other
components of A vanish, as they should, for a fluid; the
two shear modes are soft [14].

An orthonormal, smooth, family of single particle states
that span the lowest Landau level 1s glven by theta
functions [15,16]:

_@nB)* A
eelx,y) == - -

: 542
% et1r1'B(y+n)
2

X e-—2i7r(¢2+8/2)(i+n)621ri(nB+€)x’ (14)

where $=y+4€/B+ ¢/B+1/2 and €=
0,....,.B— 1.

A computation shows that the component of the adia-
batic curvature in Eq. (6), which corresponds to the {th
state, is

Z Ql’ dX; A dX; dTl_AiTl )
i<j 4'7-2

2
~Sdgindd (15

(cf. Ref. [17]). The basic equations of transport follow
from Eqgs. (6), (8), and (15):

OH dH\ B
— ) = —27B*/V?, <——> \
<av> ™8/ onl 42"

()~ -Li. (6

972

To translate these into the language of viscosity tensor, let
us note that from the definition of strain, Eq. (7), we get
the following formulas for the strain rates:

l dV de) 1 T1
d = —|— - —, = ——
=g ( v 5 duy = 5~
1/av d7'2>
duy = — [ 2= + 272)
w2 =5 ( v an

- Combining them with Egs. (9) and (16), we obtain for the

viscosity part of the adiabatic curvature

Q= %dulz A (duyy — duy). (18)

It follows that the viscosity tensor has components

B

N = 1y = T2 N2 = 0. (19)

Comparison with Eq. (3) shows that the viscosity is
isotropic, and the coefficient of viscosity n = B/8V is
proportional to the magnetic field strength B/V. (In
our notation, B is the total flux.) It is remarkable that
the viscosity is independent of the geometry of the torus
(expressed by 7). If we choose to characterize the vis-
cosity by the adiabatic curvature, then the corresponding
viscosity constant B/8 is quantized (since B is an integer),
though not in general an integer.

The physical interpretation of the nondissipative quan-
tum viscosity is as follows. Consider two-dimensional
Hall fiuid on a surface of a cylinder. Compressing it in

- the radial direction (or in the axial direction) results in a

twist rate of one boundary circle relative to the other. In-
versely, a shear of the two boundary circles results in a
compression rate of the radial direction and stretching rate
of the axial direction.

It may be instructive to compare the transport equations
associated with the quantum viscosity with the transport
equations associated with the Hall conductance for Lan-
dau levels on the torus. These, too, follow from Eqs. (4)
and (15), namely,

<:TZ> _ —omdy, <§TZ> =27, ()

. The generalized force in this case is the current operator

—0H /3¢, and the generalized velocity qﬁ is the electro-
motive force. In Eq. (20) the conductance of a full Lan-
dau level is 27 in our units and /A in ordinary units. It
is isotropic and quantized.

To appreciate the geometric mgmﬁcance of Eg. (16),
we will look at the space of parameters (V, 7, ¢) more
thoroughly. The modular group SL(2, Z) acts naturally on
this parameter space as a symmetry group of the family of
Landau Hamiltonians H(V, 7, ¢), Eq. (12). To describe
this action explicitly, let us note first that an element

M =(‘CI Z) € SL(2,2)

provides an isometry between metrics g(V,7) and
g(V, ) with 7/ = (ar + b)/(cT + d) by the formula

x +> ax — by, y+=> —cx + dy.
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We can therefore consider M as a unitary operator in the
Hilbert space. The operator MH(V, 1, )M ~! coincides,
up to a gauge transformation, with H(V, 7/, ¢’), where

¢l =dpy + by, ¢y =cé1 + ad;.

The last formula shows, in particular, that the family
of Landau Hamiltonians H(V,7,0) is SL(2,Z) invariant
and the corresponding parameter space is nothing but
the moduli space of elliptic curves [15]. It is a 2-
sphere with two conical points and one puncture. It can
be conveniently represented by the fundamental domain
of SL(2,Z) action on the upper half plane of complex
variable 7, Fig. 2. It coincides with the parameter space
of flat metrics on a torus of fixed area. This is an analog
of the Aharonov-Bohm flux torus in the theory of Hall
conductance.

The geometric significance of the viscosity in Eq. (16)

is now apparent: The first term in Eq. (15) is the invariant
area form on the upper half plane of complex variable 7.
Similar to the Hall conductance, which is constant in the
flux space, the viscosity is proportional to the area form
on the moduli space of elliptic curves. i
In the theory of quantum Hall effect, the conductance
is associated with a topological invariant Chern number,
which is an integer. This integer comes from integrating
the adiabatic curvature over the parameter space flux
torus. In the case of Eq. (20) this integer is —1. For
the viscosity, the situation is almost the same. Integration
of the adiabatic curvature over the moduli space [or
fundamental domain F of the group SL(2, Z)] gives

1 Ed‘rlAdT;;_ B

27 Jp 4 72 24°

where we have used the fact that the area of the
fundamental domain is /3. Though not an integer in
general, this is still a topological invariant Chern number
(in the orbifold sense) of the ground state bundle on
the parameter space. (It is not an integer, because the

— 2D

-1 -0.5 0 05 1
FIG. 2. Fundamental domain of SL(2, Z).
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parameter space is not a smooth compact manifold in this
case.)
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