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We study adiabatic quantum pumps on time scales that are short relative to the cycle of the pump. In
this regime the pump is characterized by the matrix of energy shift which we introduce as the dual to
Wigner’s time delay. The energy shift determines the charge transport, the dissipation, the noise, and
the entropy production. We prove a general lower bound on dissipation in a quantum channel and define
optimal pumps as those that saturate the bound. We give a geometric characterization of optimal pumps
and show that they are noiseless and transport integral charge in a cycle. Finally we discuss an example

of an optimal pump related to the Hall effect.
DOI: 10.1103/PhysRevLett.87.236601

Introduction.— A time-dependent scatterer can trans-
port charges between electron reservoirs which otherwise
are in thermal equilibrium. This makes it into a quantum
pump. An example is shown in Fig. 1, where the flux ®
is slowly time dependent. While operating, the pump may
also generate (excess) noise in the ideal channels connect-
ing to the reservoirs and dissipate energy in the reservoirs.
A pump is adiabatic when its frequency @ is slow com-
pared with the natural time scale 7 of the scattered elec-
trons, e.g., the Wigner time delay [1]. The adiabaticity
parameter, ¢ = w7 << 1, plays the role analogous to the
semiclassical limit: A particle localized in energy is scat-
tered at a well-defined time as measured by the pump cycle.

The theory of adiabatic pumps is concerned with a de-
scription of transport and noise in terms of the frozen,
on-shell, scattering matrix, S(#; E). In the case when the
pump is connected to, say, two reservoirs, as in Fig. 1, S
is an n X n unitary matrix, with n the total number of
channels in both leads. S is parametrized by the frozen
time 7 and energy E. At low temperatures, 7/8 < fi, the
transport and noise are determined by the electrons near
the Fermi energy, u, and hence by S(; w).

Two basic results in the theory of adiabatic pumps are
[Eq. (3) below] originally due to [2,3], for the instanta-
neous expected current in a channel, and a formula of Lev-
itov and Lesovik [4,5], for the current correlations, and the
noise, in a pump cycle. Here we focus on further quantities
that admit a local description in time, such as dissipation at
B = o, which is related to integral transport, and entropy
and noise production at 8 < .

Energy shift.—1t turns out that instantaneous response
is determined by the energy shift matrix, . It is conjugate
to Wigner time delay, 7 (1, u) = —ihd, S(t, w)St(e, w),
and is defined by:

E(t,p) = ilio,S(t,w)ST(t, ). (1)

It is of the order of the adiabaticity parameter &€ with matrix
elements,
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where |¢;) is the jth row of the scattering matrix. For
example, the diagonal matrix elements of £ determine the
instantaneous net current entering the reservoir through the
jth channel (even at zero temperature)

0 = 7+ Ej; + 0(D). 3)

(A formal derivation of this result follows easily from the
analog of Eqgs. (10) and (11) below.) As we shall see, the
energy shift also provides information on dissipation and
noise, and leads to a characterization of optimal pumps.

Lower bound on dissipation.— In order to motivate the
notion of an optimal pump we shall first establish a lower
bound on the dissipation in a quantum channel.

Suppose a reservoir at zero temperature is connected by
a channel to a general time-independent, possibly nonther-
mal, particle source. (In the applications we consider here,
this particle source will be an adiabatic quantum pump.)
Let E denote the net energy flux (power) and Q the charge
flux (current) flowing out from the source to the cold reser-
voir. The power dissipated in the channel, i.e., the differ-
ence between the energy flow and the energy flow that can
be recovered, satisfies the general lower bound,
Lo=Bgp @)
e 2
with Ry = h/e? being the (von Klitzing) unit of resistance.
This bound does not depend on the nature of the particle
source. It is a consequence of the fact that a channel
is one dimensional, the charge carriers are noninteracting
(spinless) fermions, the reservoir is at zero temperature,
and the particle source is time independent. A source that
saturates the lower bound [Eq. (4)] will be called optimal.

Proof.— A time-independent particle source connected
to a channel is characterized by the filling 0 = n(k) = 1 of
states at momentum k. Let E (Q) be the energy (charge)

E —

© 2001 The American Physical Society 236601-1



VOLUME 87, NUMBER 23

PHYSICAL REVIEW LETTERS

3 DECEMBER 2001

current out of the source and let €(k) be the dispersion
relation. Then,

e

N e /
Q 2wh Je)>0 di n(k)e (k).
1 (5)
- dk n(k)e(k)e' (k).
2mh Jex)>0

The bathtub principle (with respect to the measure €’(k)dk
on {k | €'(k) > O}; see, e.g., [6]) states that for fixed Q
the quantity E is minimized by n(k) = 6[u — e(k)] for
some . Assuming ke'(k) = 0, €(0) = 0, we find for the
minimizer

D em N 6
Q 27h’ 4h’ ©)
This implies that £ = %QZ, with equality holding if, and
only if, the source is a reservoir at thermal equilibrium at
zero temperature so that the carriers fill the Fermi sea up
to energies u.

Consider next a channel connecting a particle source,
denoted by subscript (+), to a thermal reservoir, denoted
by subscript (—), at zero temperature and with chemical
potential u_. E = E;, —E_ (0=0+ — Q) is the
net energy (charge) flowing into the cold reservorr Since
the reservoir is at zero temperature E_ = Q2 = “ =
Meanwhrle E. is at least 2 QJr Hence E Z R‘(Q T =
Qz_) = Q2 + “e Q. Equality occurs if, and only if,
the source also fills a Fermi sea up to some energy .
Equation (4) bounds the dissipation in an ideal channel.

Optimal pumps.— An adiabatic pump approximates
a time-independent (and typically nonthermal) particle
source that connects to the n channels. The lower bound
[Eq. (4)] motivates the following definition: We say that
an adiabatic pump is optimal if the bound [Eq. (4)] is
saturated for all times and all channels in the adiabatic
limit. Since the left-hand side of Eq. (4) is made of two
terms that are each of order & while the right-hand side
is a term of order &2, saturating the bound means that
equality of the two sides holds to order &2.

For the jth channel of an adiabatic pump connected to
reservoirs at zero temperature we will establish:

. . 1
By = 5 0= 5 XIEl + 06, @)

It follows from Egs. (3) and (4) that the jth channel is
optimal if Ej; = O for all k& # j. This leads to a simple
criterion for optimal pumps: A pump is optimal if, and
only if, the energy shift £ is a diagonal matrix for all
times.

The notion of optimal pumps is geometric. This is
seen from the fact that the vanishing condition on matrix
elements of the energy shift, Eq. (2), is invariant under
reparametrization of time.

236601-2

The space of Hermitian n X n matrices F has n? real
dimensions, while the space of diagonal matrices is n
dimensional. In particular, pumps with a single lead and
as single channel are automatically optimal. Below we
shall give an example of an optimal pump with n = 2 that
models the quantum Hall effect.

The scattering matrix associated with a diagonal energy
shiftis S(¢) = Uy(t)So, where Uy(t) is a diagonal unitary
and S is a constant unitary matrix. According to [7], this
special form of an § matrix turns out to characterize noise-
less pumps in the theory of Levitov and Lesovik. Optimal
pumps are therefore distinguished in more than one way.
In [5] weak pumping at zero temperature is studied. This
leads to a different characterization of optimal pumps.

Integral charge transport.— Optimal channels transport
integral charge in a cycle of the pump. This can be seen
from Eq. (3) for the jth channel,

i _if%mpdt = —if(%ldtﬂjf ®)

e
For an optimal channel, l;) is parallel to |i;), since
(i | ;) = 0; hence it can only accumulate a phase along
the path. Since |¢;) is single valued, the total phase ac-
cumulated on a closed path must be an integer multiple of
27r. It is worth remarking that in this case Eq. (8) not only
expresses the expectation value of the charge transport in
a cycle, as it does by virtue of its derivation, but also the
actual charge transport, since the stated condition implies
absence of noise, i.e., vanishing variance.

The right-hand side of Eq. (8) shows that charge trans-
port is geometric: It depends on the path but is inde-
pendent of its parametrization. In spite of this geometric
interpretation, the charge transport is not quantized in the
sense that it has no topological content: A small defor-
mation of the scattering matrix will be a deformation away
from optimality and will deform the charge transport away
from the integers.

Geometric interpretation.—The dissipation formulas
admit a geometric interpretation. |i;), being normalized,
can be viewed as a point on the sphere S*'~! C C".
The Hopf map [8] 7 : $*"~! — CP""!, which “forgets”
the phase of i), turns S>"~! into a fiber (circle) bundle
with base space CP"~!. The jth row of E describes the
velocity of |;) in S**~!. Of this, Z}; is the projection
of this velocity onto the fiber—the changing phase of
|¢j>—while the matrix elements Ej, with k& # j, give
the projection of this velocity onto CP""!'. The current
Q;, and the minimal dissipation | E;;|* /47 are both func-
tions of motion in the fiber, while the excess dissipation
is the “energy” (that is, squared velocity) associated with
motion in the base.

Entropy and noise.— So far we have not considered cor-
relations between the current (or power) at different times.
Entropy and noise production involve such correlations.
The analysis depends critically on which of the two small
parameters, /iw and B_l, is smaller.
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If ho < B! < h/r (eg., in the experiment of
Switkes et al. [9]), then the correlations between current
(and power) at different portions of a cycle are negligible,
and one can meaningfully speak of the entropy (noise)
production per unit time S; (N;) in the jth channel. We
remark, without proof, that these quantities, too, are
determined by the energy shift and are proportional to the
excess energy dissipation:

SJ' - F Z |El?, pe’ Z IExl®. (9)
4mh ey 127 h ey

If 87! < liw, however, then the analysis is fundamentally
nonlocal in time, and one is naturally led to study the noise
or entropy generated by a complete cycle. The results then
have a different character [4,5].

Dissipation in adiabatic pumps.—To derive Eq. (7), we
note that the left-hand side of Eq. (7) can be written as
Mmoo dE

- Q; = E(E — w)[ny;(E) — n_(E)].
(10)

where n_(E) = 0(u — E) is the distribution of the elec-
trons that arrive from the (zero temperature) reservoirs and
n+;(E) is the distribution of the electrons that enter the jth
reservoir. The pump scrambles the incoming distribution
and produces a (nonthermal) outgoing distribution 7 ; (E).
Calculating the outgoing distribution is a problem in adia-
batic scattering theory.

We will show that the outgoing density at energy E, on
the jth channel, is

[n(E)]jj= 0(u — E) + [E;; + O()]S(E — )

— (E%);;0'(E — w)/2. (D
where (=) means that the operator on the left-hand side can
be approximated by the semiclassical distributions (sym-
bol) on the right-hand side to second order in €. Insert-
ing this into Eq. (10), and using the fact that (£2);; =
> i1 |’Ejx|?, gives Eq. (7). This relation establishes an in-
stantaneous identity between charge and energy transports
(which are first order) and dissipation (which is second
order). This is remarkable because S gives only the lead-
ing adiabatic approximation to the scattering matrix and is
therefore inadequate to describe general second order pro-
cesses and first order processes beyond the leading behav-
ior. In particular, neither E nor Q are correctly computable
to second order in & but Eq. (7) is. Equation (3) is derived
along similar, though somewhat simpler, lines.

Adiabatic scattering.— It remains to derive Eq. (11).
We start with the standard point of view [10] of time-
dependent scattering theory, which views the S matrix as
a comparison of a “free” dynamics, generated by Hy, and
the interacting dynamics, generated by H(¢). For example,
we can pick for Hy the Hamiltonian associated with dis-
connected channels. Let U(z,s) and Uy(z,s) denote the
corresponding evolutions. Then, the S matrix is defined
by the limit (which we assume exists)

¥, -

Ej -
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Sa(t) = imU(t. T)U(T, ~T)Uo(~T.1).  (12)

In the absence of a scatterer, U = Uy and S is the identity,
as it should be. When the scatterer is time independent,
H(t) = H, the existence of the T — oo limit for the fac-
tors U(0, —T)Uy(—T,t) and Uy(t, T)U(T,0) implies that
S4(t) is independent of ¢, as it should be.

Sa(#) maps the incoming wave packet to outgoing ones.
When applied to a wave packet near the scatterer, it de-
scribes the mapping for an incoming wave, originating at
the reservoirs, that hits the scatterer at time ¢.

It follows from Eq. (12) that, provided the limit exists,

inSy(t) = [Ho, Sa(1)]. (13)

This shows that the free dynamics controls when a wave
packet hits the scatterer. Equation (13) determines n (Hy)
to be

Sa(On—(Ho)Sa()t = n_[Hy — ihSa(t)Sa()T]. (14)

In the time-independent case, S; = 0, and Eq. (14) is an
expression of conservation of energy. For time-dependent
scattering, Eq. (14) describes the scattering out of the en-
ergy shell. This is the motivation for calling i1 Sy(¢) Sy()*
the operator of energy shift.

In the adiabatic limit, the (exact) time-dependent scat-
tering matrix S,(¢) can be approximated by the time-
independent scattering matrix for the scatterer frozen at
the time of the scattering . Namely, S;(r) = &(u —
u')S (t; w), with S(; u) being the on-shell scattering ma-
trix of Eq. (1). For the on-shell densities, Eq. (14) takes
the form

no(E,1) = n_[E — iiS;()S;(0)f + 0(eH)].  (15)

A semiclassical expansion of the operator on the right-hand
side, restricted to the jth channel, gives Eq. (11).

An optimal pump.— An example of an optimal pump is
shown schematically in Fig. 1. Each of the two leads, each
leading having one channel, is connected to a reservoir at
zero temperature on one end and to the loop of circumfer-
ence ¢ on the other end. The loop is threaded by a time-
dependent magnetic flux @, which is the engine of the
pump. The scattering at the vertices is a permutation ma-
trix corresponding to the arrows in the figure. The frozen

4\ < ® > /->
FIG. 1. An optimal quantum pump represented by a graph
of ideal wires. For a fixed value of the magnetic flux, P,
particles that enter from the left go clockwise around the loop

and exit to the left, while particles that enter from the right go
counterclockwise and exit to the right.
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scattering matrix of the pump is therefore diagonal, with
the phases of the two reflection coefficients determined by

[OF

o= pilkl+®)

r = !k, (16)

From Eq. (8), we see that increasing ® by a unit of
quantum flux draws one particle in from the right and
expels one particle to the left. This is independent of the
chemical potential u of the bath, the circumference € of
the loop, and the position of the vertices on the loop.

At first glance the pumping expressed by Eq. (8) seems
to be in conflict with common sense: The frozen S ma-
trix does not allow transmission across the scatterer, so
how can the pump transport any charge at all?  This
can be understood as follows. Increasing the flux creates
an EMF around the loop that accelerates the clockwise-
moving particles and decelerates the counterclockwise-
moving particles. In particular, some of the low-energy
counterclockwise movers that entered from the right are
turned around by the EMF and become clockwise movers,
after which they emerge to the left. This accounts for the
net transfer of charge from right to left. Since the scattering
at each vertex is deterministic, the outgoing channels have
no entropy, the inequalities (4) become equalities, and the
pump is optimal. A little reflection shows that Fig. 1 is a
graph theoretic description of the quantum Hall effect. In
the quantum Hall effect, time reversal is broken by an ex-
ternal magnetic field. In Fig. 1, time reversal is broken by
the permutation matrix associated with the scattering con-
dition at the vertices. More precisely, the vertex conditions
at the vertices can be implemented by the edge currents in
the quantum Hall effect in a Corbino disk [11].

Concluding remarks.—We have analyzed quantum
pumps as a problem in adiabatic scattering theory. We
have focused on transport properties that admit instan-
taneous description, i.e., on times scales that are small
compared to the pump cycle. In this theory a central role
is played by the matrix of energy shift. We proved a
general bound on the dissipation in quantum channels that
motivated a notion of optimal quantum pumps. Optimal
quantum pumps have geometric significance [12], saturate
a bound on dissipation; transport integer charges in closed
cycles, are noiseless, and minimize entropy production.
Finally, we showed that the integer quantum Hall effect
may be interpreted as an optimal pump.
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Note added.— Shortly after submission of this Letter,
Makhlin and Mirlin [12] derived interesting geometric re-
sults for noise in pumps. Some of their results overlap with
some of ours.
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