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We study the Chern numbers associated with the quantum adiabatic conductances in 
networks that have mesoscopic and macroscopic components. The classes of networks 
considered have links that are single-mode electron wave-guides, with commensurate lengths, 
and three independent flux tubes that thread three loops. The mesoscopic part of the networks 
have few vertices and the macroscopic parts are made of few long leads or long loops. For 
such networks the analysis of the Schrodinger operator reduces to the study of small matrices. 
We analyse various classes of such networks qualitatively and solve explicitly a representative 
model in each class. We find two scenarios that are the analogs of the integer and classical 
Hall effects. In particular, the adiabatic transport at zero temperature for noninteracting 
Fermions, is an integer in one scenario and a real (i.e., non-integer) number, in the other. We 
also discuss an interpretation of the results in terms of the scattering data. This leads to 
Landauer type formulas for adiabatic transport. 0 1991 Academic Press, Inc. 
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1. INTRODUCTION 

In this work we study the geometric aspects of quantum adiabatic conductance 
in multiply connected systems that contain both mesoscopic and macroscopic 
components. 

A. Background 

A network is represented by a graph whose loops are threaded by independent, 
externally controllable, flux tubes 4,. We shall consider networks with three flux 
tubes, dr, &, and &, which turn out to be the simplest nontrivial cases. See, e.g., 
Fig. 1. The electrons are constrained to the links of the graph, and their dynamics 
are governed by the appropriate Schrodinger equation. We consider links that are 
“one mode electron wave guides.” The electron dynamics are then governed by the 
one-dimensional Schrodinger equation with boundary conditions at the vertices. 
(The multimode situation corresponds to the one-dimensional vector-valued 
Schriidinger equation.) 

The basic question we address is the following: Suppose that initially the system 
is in an eigenstate and the flux 4j is increased adiabatically by the unit of quantum 
flux. What is the charge transported around loop i? (We choose units where the 
flux quantum is 2~) 

Since the initial and final Hamiltonians of the system are related by a gauge 
transformation, in the absence of level crossings, the initial and final states must 
also be related by the same gauge transformation, and so the initial and final charge 
densities are the same. An argument, due to Laughlin [ 1 ] suggests that in such 
circumstances the charge transported around loop i is an integer. This argument 
does not always hold for mesoscopic systems because the electronic wave function 

FIG. I. The mesoscopic hubcap, threated by three independent fluxes. 
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may be extended throughout the system. However, the average over tii of this 
charge is known to always be an integer provided the corresponding eigenstate is 
nondegenerate for all di and 4, [2, 31. In fact, there are no power corrections to the 
integer in the adiabatic expansion [4]. We call this integer the conductance and 
denote it g,. 

The integer g, is the Chern number of the eigenstate bundle at fixed value of the 
remaining flux dk, and may be thought of as a topological quantum number. It is 
both periodic and antisymmetric as a function of (Pi: 

gij(& + 2n) = ‘!Tij(h). (1.1) 

gij(h) = -&j( -hJ. (1.2) 

Being integer valued, gti(d,) can only change discontinuously. These discontinuities 
occur at those values of #k where level crossings occur (for some dj and dj). 

The basic geometric ideas go back to the quantum Hall effect, where there is 
an extensive literature that examines the Hall conductance from a differential 
geometric viewpoint [5-201. A study in the context of isolated mesoscopic systems 
was made in [21]. The present work is as a continuation of this program. Partial 
results were announced in [22]. 

B. Networks with Macroscopic Components 

In this paper we study the conductances of isolated mesoscopic networks with a 
few macroscopic components. More specifically, we consider networks with one or 
more macroscopic leads or loops. We have been motivated in part by recent 
experiments and theoretical work on mesoscopic systems (See [23] for a review) 
and more specifically by the question: How do leads affect transport phenomena in 
mesoscopic systems? 

Another, more theoretical, motivation is the study of Chern numbers that arise 
for various classes of Schrodinger operators. This is part of the program, discussed 
above, that started with the quantum Hall effect. 

With macroscopic elements of length 1, the one-electron Schrijdinger equation 
has O(I) eigenstates in each energy interval of size O(l), so there are very many 
Chern numbers to compute. For noninteracting electrons with a given density at 
temperature T, the (averaged) conductance is the sum, over states, of the Chern 
number of each eigenstate times its occupation probability. In particular, at T = 0 
the conductance is the sum of the Chern numbers of all the states below the Fermi 
energy. 

This physical interpretation of the weighted sum of Chern numbers as low tem- 
perature conductances assumes that the order of limits is as follows: The adiabatic 
limit is taken first, then the macroscopic limit I + co, and finally the low tem- 
perature limit T -+ 0. While it is of interest to take the limits in different orders, and 
in particular to take the I+ cc first, such analysis is outside the scope of this work. 
We also note that there may be avoided crossings on a small energy scale (see, e.g., 
[24]), so insisting on taking the adiabatic limit first is a strong condition. 
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Our purpose is both to develop methods for computing Chern numbers for large 
1 and to understand some of the qualitative features of the low temperature conduc- 
tances. The networks we consider are connected, and contain both macroscopic and 
mesoscopic components. We examine only those classes of networks whose links 
have commensurate lengths. Incommensurate networks form a class to themselves, 
outside the scope of the present work. Under these circumstances the qualitative 
patterns of the Chern numbers fall into one of the following scenarios: 

(a) The integer scenario. The integer scenario is an analog of the integer Hall 
effect. The conductance of noninteracting electrons with fixed density has a well- 
defined integer limit as l+ cc and has wide plateaus (i.e., regions of constant value 
of length 0( 1)) as functions of the Fermi energy or the controlling flux. The 
plateaus are separated by sharp integer jumps. 

On a microscopic level, all but a handful (0( 1) in a given energy interval) of the 
states have g, = 0 for any given value dk of the controlling flux. In particular, the 
conductance is carried by few states that may lie deep below the Fermi energy. The 
wide plateaus come about through an interesting mechanism. As we vary, e.g., $3, 
there are usually lots (O(I)) of level crossings among the single particle states that 
transfer a nonzero conductance from one level to a neighboring one. Such 
crossings, however, do not affect the conductance of the multielectron system as 
long as the crossing is between two states that are both occupied (i.e., below the 
Fermi energy) or both unoccupied. Only at special values of $3 (typically O(1) 
apart), where the level crossing is at the Fermi surface, does the conductance of the 
multielectron system change. We shall refer to this mechanism as the bucket 
brigade. 

This scenario occurs typically when a single macroscopic component is attached 
to a mesoscopic network. An intuition to this is the (almost) disconnected network, 
Fig. 5. Unless a state satisfies a resonant condition, it will be supported almost 
entirely away from the fluxes. Such a state cannot transport an integer number of 
electrons around the loops as the fluxes are varied, and so it will not conduct. Only 
a few states, spaced 0( 1) apart, which satisfy a resonant condition and so have 
large amplitudes on the network, can have a non-zero Chern number. 

The integer scenario also occurs in networks with a macroscopic loop that is 
used to drive the network, for more complicated reasons. 

(b) The real scenario. The real scenario is an analog of the classical Hall 
effect where the Hall conductance is not quantized. The low temperature conduc- 
tance of the multiparticle system has a well-defined real limit as I+ co (we take the 
I+ co limit before taking the limit T + 0). There are no strict plateaus, but, as we 
shall see, there still are sharp jumps of size 0( 1) in the conductance that are spaced 
0( 1) apart. 

On a microscopic level, many, that is O(l), of the one particle states in a given 
energy interval have non-zero Chern numbers. The conductance, a sum of Chern 
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1 

FIG. 2. The mesoscopic hubcap with a macroscopic lead. 

FIG. 3. The mesoscopic hubcap with three macroscopic leads 

FIG. 4. The mesoscopic hubcap with a macroscopic loop. 
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FIG. 5. A mesoscopic hubcap with a disconnected, or weakly coupled macroscopic lead. 

numbers times occupation probabilities, need not be an integer, since for any T 
there will be many conducting states near the Fermi energy for 1 large enough. 

The real scenario occurs, typically, in networks with several macroscopic com- 
ponents. In particular this is the case in networks with as many leads as vertices. 
These have the additional feature that the Chern numbers repeat periodically, with 
O(Z) periods in energy intervals of O(1). It is also observed in the conductance of 
networks with one large loop that is threaded by the “controlling” flux #k. There 
is no observed scenario that is an analog of the fractional quantum Hall effect. 

In both scenarios the conductances and the Chern numbers that arise are O(l), 
even though there is a large parameter in the problem, 1. This is in contrast with 
the Hall effect for a periodic crystal where large Chern numbers are known to occur 
with appropriate choices of the flux through the unit cell [7, 10, 11, 251. 

Our methods of analysis are general. However, as examples we consider the 
networks of Figs. 2-4, all of which are a variation on Fig. 1, the “hubcap.” 
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2. THE SPECTRAL MATRIX 

The spectral analysis of Schrodinger operators associated with networks is a sub- 
ject of long history that goes back to the 1950s [26]. For the reader’s convenience 
we recall here how Schrodinger equations associated with networks are formulated 
and how their spectral analysis reduces to studying finite-dimensional matrices 
[2630, 52, 531. We further describe networks with leads and loops. A detailed 
analysis of the special cases where the reduction fails is included in the Appendix. 

A. Formulation 

The Schrodinger operator associated to a network of single mode links is defined 
by the one-dimensional Schrodinger equation associated to each link, together with 
appropriate boundary conditions at the vertices. These boundary conditions can be 
viewed as generalizations of boundary conditions at the ends of intervals. 

In the absence of gauge fields, we consider boundary conditions at the vertex j 
of the form 

(2.1) 

where a,$ is the derivative along the Ith link emanating from j, and Aj is real. See 
Fig. 6. This is the only choice of boundary condition that preserves self-adjointness 
and is permutation symmetric with respect to the interchange of links. In analogy 
to the terminology for intervals, we call L.j = 0 a Neuman boundary condition and 
call 2, = cc a Dirichlet boundary condition. 

In the presence of a gauge field A, on the Ith link, we replace (2.1) by 

(2.2) 

where D,- (a,- iA,) is the covariant derivative along link 1. 

B. Ideal Electron Wave Guides 

An ideal electron wave guide is a wire (or link) 1 on which the potential is zero, 
so that the Hamiltonian associated with 1 is 

If,= -& (D,)‘, (2.3) 

FIG. 6. A vertex where three links meet. 
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An ideal network is a network in which all the links are ideal wave guides. In ideal 
networks the spectral analysis of the Schrodinger operator reduces to a study of 
finite matrices. Let 

Es k2/2m, k > 0. (2.4) 

The space of solutions of H,$ = E$ is two dimensional and is spanned by 

exp($(x)) exp( f ikx). (2.5) 

For an eigenfunction of energy E, we must choose the amplitudes of the right and 
left moving waves in (2.5) for all the links, such that at each vertex $ is continuous 
and satisfies Eq. (2.2). This is clearly a matrix problem whose dimension is twice 
the number of links. The eigenvalue problem is to find k(A), the set of all k’s for 
which such a solution exists. 

The conventional, and more useful, reduction is to a smaller matrix problem 
whose dimension is the number of vertices in the graph. The reduction can be done 
for all k’s outside of a discrete set for which, for some link j of length I,, 

sin( klj) = 0. (2.6) 

We call such k’s singular. If all the lengths are commensurate (say, integers) then 
the set of singular k’s is discrete and periodic. Henceforth in this chapter we will 
deal only with nonsingular k’s The matrix problem for k singular is treated in the 
Appendix. 

C. The Spectral Matrix for Simple Networks 

We call a network simple if each link has two distinct endpoints (i.e., does not 
run from a point to itself). To every simple network with n vertices we will 
associate an n x n spectral matrix h(k, A), which determines all non-singular points 
in the spectrum k(A). Specifically, a given nonsingular k is in k(A) if and only if 
det h(k, A) = 0. The construction of the spectral matrix follows: 

On a link of length 1 with sin(kZ) #O, the wave function on the link is determined 
by its values at the endpoints: 

[$(I) exp( -$(l)) sin(kx) + +(O) sin(k(l-x))]. (2.7) 

It follows that 

(o,+)(o) = & [II/(0 exp( - id(O) - $(O) cos(kl)l. 

Substituting this into the boundary condition (2.2) for thejth vertex, we obtain 

- 1 cot(kZ,,) Yj + 1 ex!-$(;)) ‘Pi = (2,/k) !F,, 
<ii> <ii> I/ 

(2.9) 

595/206/2-I3 
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where Yj is the wave function amplitude at vertex 
connecting vertices i and j, and 

The n equations (2.9) can be organized in a matrix 

h(k, A)Y =o, 

i, (ij) is a link, of length I,, 

form, 

(2.10) 

(2.11) 

where ‘I‘ = (Y,, . . . . Y,,) is the vector of amplitudes at the vertices and h(k, A), the 
spectral matrix, is the Hermitian n x n matrix 

h,=x exp( - i4(zij)) 

sin(&) ’ 
i#j 

(2.12) 

h,= -++ot(kl,). 

The first sum in (2.12) is over all links connecting vertices i and j, while the second 
sum is over all links incident on i. If there is no link connecting i and j, then h, = 0. 
The basic property of the spectral matrix is: 

The kernel of h(k, A) corresponds to energy eigenstates and the multi- 
plicity of a point in the spectrum is the corank of h. (Corank 0 means 
that k is not in the spectrum). 

Remarks. (a) For Neuman boundary conditions, Aj = 0, the dependence of h 
on k is trigonometric. If the lengths are commensurate (say, integers), then h is 
periodic in k (say, with period 27~). So if k is in the spectrum, then so is k + 2q 
and the eigenfunctions at these two wave numbers have the same amplitudes at the 
vertices. 

(b) For a degenerate graph of one point it is convenient to define h 3 -A/k. 

(c) h(k, -A) = h*(k, A) = hT(k, A), so h transforms under time-reversal like 
a Hamiltonian. 

(d) Gauge transformations are implemented by diagonal unitary matrices. 
h(k, A) and h(k, A’) are gauge equivalent if $(A) - q5(A’) = 0 mod 2~. 

D. Dangling Loops 

We next consider networks that are not simple. Suppose that a loop of length 1, 
enclosing flux 4, with sin(kl) # 0 is attached to the n th vertex of a graph, Fig. 7. 
The construction of the previous section is easily modified to include this case. The 
loop contributes twice to the sum (2.2) at vertex n, once for each end of the loop. 
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FIG. 7. The mesoscopic hubcap with a dangling loop. 

By (2.8) these two contributions add up to 

As a result, all components of h are unchanged except for h,,, to which we add 

-2[cos(kZ) - cos(f$)]/sin(kZ). (2.14) 

Networks with several dangling loops have similar terms for each such loop, and 
as before, level crossings are determined by the rank of the spectral matrix. 

E. Networks with Leads 

Consider adding a lead of length I to the nth vertex of an n vertex graph. This 
creates an n + 1 vertex graph with the associated spectral matrix. However, it is 
useful to keep the spectral matrix n dimensional by explicitly solving the (n + 1)th 
equation, 

Yn exp(idJ 2, + 1 
sin(kZ) - 

- + cot(kZ) 
k > 

ul, + r = 0, (2.15) 

for !Pn + r. This may be done so long as 

cot(kZ) # -A,,+ ,/k. (2.16) 

If this inequality holds we say that the lead is nonsingular. Singular leads are 
discussed in the Appendix. 

For a nonsingular lead we solve Eq. (2.15) for Y,, + r and plug back into the other 
equations. This gives an n x n spectral matrix h, for the network with the lead 
attached. All components of this new matrix equal those of the old matrix except 
for h,,,, to which we add the term 

&{ -cos(kZ)+[cos(kZ)+%sin(kZ)]-‘1. (2.16) 
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Note that when I, + , =O, (2.16) reduces to tan(H) and 

(/~~)~=h~~+ tan(H) 6, S,,. 

Adding several leads corresponds to adding several such terms. 

(2.17) 

F. A Basic Example 

We close this chapter with an example of great importance in the sequel. We con- 
sider the mesoscopic hubcap, Fig. 1, with all the links of unit length, and all the L’s 
equal zero and derive the location of level crossings from the spectral matrix. We 
consider here only non-singular k (i.e., sin(k) # 0); this example with k singular is 
treated in the Appendix. 

By Eq. (2.12) the network has the spectral matrix 

(2.18) 

where 

u = -4 cos(k), x = exp($,), Y = exp(ih), z = exp($,). (2.19) 

Because of the periodicity in k and $, it is enough to consider the basic unit cell. 
Since CI is a monotonically increasing function of the energy for k E [O, 7~1, we 
loosely refer to it as energy as well. 

Since h(k, 4) has the form g(4) + cc(k), the zero vector problem for h is the same 
as the eigenvalue problem for x, with eigenvalue --c1. Since g has three eigenvalues, 
and its norm is bounded by 4, there are three energy bands with k E (0, ST). These 
energy bands are shown in Fig. 8 for 4, = C& = ix. Since h is traceless, these bands 
satisfy 

%($I + Q(4) + Q($) = 0. (2.20) 

This means that two-level crossings with GI < 0 involve the two lower levels, while 
crossings with c1> 0 involve the two upper levels. 

We find that there is one point of triple degeneracy at 

x=y=z= -1, u = 0. (2.21) 

There are three points where two levels cross. The top and middle levels cross at 

4,=4%=43=0, u = 2, (2.22) 

while the bottom and middle levels cross at 

4, = 41 = 4s = +2+, I%= -1. (2.23) 
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FIG. 8. The energy bands of the mesoscopic hubcap along the diagonal of the flux cube, which 
are the graphs of the three functions: U, = -(2 + 2 cos($)), q= 1-2 cos(d +2n/3), and a3 = 
1 - 2 cos(d - 2n/3). 

This can be seen as follows: For a triple crossing h must be the zero matrix. This 
gives (2.21). When two levels cross h has a two-dimensional kernel, so rank(h) = 1 
and all three rows are proportional. All the minors of h then vanish, implying 

a2= 11 +x1*= 11 +y(2= (1 +zj* (2.24) 

cr3=cY(1+j~2=(1+x)(1+y)(l+z). (2.25) 

The first equation says that either (I) x = J, or (II) x = y, with similar relations 
between x and z and between y and Z. In case (I), (2.25) says a = 1 + z, which forces 
z to be real, so x = y = z +1 and a = 0 or 2; a = 0 corresponds to the triple 
degeneracy (2.21); a = 2 gives (2.22). 

It remains to consider x = y with either z = j or z = y. If z = j we recover the 
situation of (I). If x = y = z, the second equation in (b) says that (1 + x)/l 1 + XI is 
a cube root of unity. This gives a = 1 and x = (- 1 f i ,/?)/2, hence (2.23). 

3. SPECTRAL PROPERTIES 

In this section we describe the spacing of eigenvalues, the $ dependence of energy 
bands and the location of eigenvalue crossings for networks with macroscopic 
components. The section is technical in character and prepares certain details that 
shall be needed later. It may be skipped by the uninterested reader. 
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A. Density 

In the limit that the lengths of the macroscopic components of a network tend 
to 00, there is a well-defined (integrated) density of states 

lim (# of states with E-c k2/2m) k =- 
I-m I IT’ (3.1) 

where I is the total length of all the links. The density of states is a “property at 
infinity” and is not affected by the connectivity of the mesoscopic parts at all [31]. 
This is the reason why in an interval Ak of size O(1) there are O(l) states. 

B. Flat Bands 

The energy levels, kj(+), tend to be almost flat; that is, kj($) = kj+ 0(1-l). Thus 
we can associate an essentially unique energy level, independent of 0, with a given 
energy. 

This flatness can be understood as follows. Consider a network with the macro- 
scopic components severed, as in Fig. 9. The spectrum of the disconnected network 
splits by component. The piece associated with a long lead has, of course, energy 
levels that are independent of 0. The piece associated with a long loop m has 
k-spectrum 

so the energy levels only vary in 4, by 0( l/1). Only the mesoscopic part has energy 
levels that vary by O(1). The three types of spectra are shown in Fig. 10. 

For the connected system, by the Wigner-von Neuman no crossing rule, the 
combined spectrum will have levels that typically cross at isolated points in 3-flux 
space so each level is trapped in an interval of size O(Z- ‘). 

FIG. 9. A disconnected network with a mesoscopic part (the hubcap), a macroscopic loop, and a 
macroscopic lead. 
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kt 

+ + + 

FIG. 10. The schematic spectra of the three components of the disconnected graph: (a) shows the 
mesoscopic spectrum; (b) the spectrum of the ring; (c) the spectrum of the lead. 

C. Adding a Lead 

The spectrum of a network with a lead is related to that without the lead. 
Assume that the lead is attached to the n th vertex and take A,,+ r = 0 for simplicity. 
N will denote the (mesoscopic) network, L the network with a lead attached, and 
R the reduced network with the n th vertex removed. Let h,(k, A) be the spectral 
matrix of N, h,(k, A) the spectral matrix of L and h,(k, A) the reduced spectral 
matrix obtained by deleting the nth row and nth column of h,. By Eq. (2.17), 

h, = h,+ tan(H) In)(nl, In) = (0, . . . . 0, l)T. (3.3) 

Expanding the determinants of h, and h, by minors on the last row we see that 

det(h,) = det(h,) + tan(H) det(h,). 

The eigenvalue equation is thus 

(3.4) 

det(h,) + tan(H) det(h,) = 0. (3.5) 

Assuming throughout that k is nonsingular, we have the following spectral informa- 
tion: 

(i) Away from the intersection of the spectra of N and R, the spectrum of the 
network with lead L is periodic in k with period nJ1, up to corrections of O(l-*), with 
one eigenvalue per period. 

(ii) Zf k is an eigenvalue of N and R, then it is an eigenvalue of L, regardless 
of 1. 

(iii) Points in the spectrum of the mesoscopic network with multiplicity 2 or 
more are in the spectrum of the network with the lead attached as well. 

(iv) If k is an eigenvalue for L with multiplicity two (or more), then k is an 
eigenvalue of both N and R. 
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FIG. 11. The reduced graph associated to the hubcap with a macroscopic loop. The pieces that were 
removed from the graph are shown in broken lines. 

The proof of these statements is: (i) The function tan(M) is periodic in k with 
period n/l. Over one period the functions det h,(k) and det h,(k) change by O(f-‘), 
so, away from the spectrum of R, the ratio det h,/det h, changes by 0(1-l), 
necessitating a mere O(Z-*) correction to the level spacing in tan(kl). Away from 
the spectrum of N we apply this argument to cot(kZ) and det(h,)/det(h,). Only at 
the intersection of the two spectra do both arguments break down. Finally, since 
tanfkl) is monotonic in each period, there is one eigenvalue per period. (ii) If 
det(h,) = det(h,) =O, then (3.5) is satisfied regardless of tan(kZ). (iii) If k is an 
eigenvalue of N with multiplicity two or more, then h, has corank 2 or more, and 
the rows of h, must be linearly dependent, so k must be an eigenvalue of R. Now 
apply (ii). (iv) hR is the reduction of h, as well as that of h,, so if h has corank 2 
or more then hR has determinant zero. By (3.4) this then implies that h, has 
determinant zero. 

EXAMPLE. The reduced network associated to the hubcap with a macroscopic 
lead is shown in Fig. 11 and has the spectral matrix 

h,(k, A) = [sin(k)]-’ 
[l:i ‘:z]p (3.6) 

whose spectrum is 

a = +2 cos(dJ2). (3.7) 

The set of points that satisfy Eq. (3.7) is a three-dimensional subspace of the (k, 4) 
cube that contains all the points of level crossings for h,. A more detailed analysis 
that is carried out in Section 6 shows that the degeneracies actually lie on a subset 
of this made of two lines and three isolated points, see Fig. 12. However, just from 
Eq. (3.7) we conclude that the hubcap with a single lead attached has no level 
crossings, provided either -4 < CI < -2 or 2 <a < 4. Also, with d3 fixed, level 
crossings occur only at the two energies given by Eq. (3.7). 

D. Adding as Many Leads as Vertices 

Adding leads of equal length to all vertices of a mesoscopic network is another 
case where the spectrum of the network with leads, L, with spectral matrix h,, can 
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FIG. 12. The locus of level crossings in the flux cube for the hubcap with a macroscopic lead is 
shown as fat solid lines and fat dots. The dashed lines are to guide the eye only. 

be understood by examining the spectral matrix h, of the network with no leads, 
IV. Taking, as usual, Neumann boundary conditions, we get from Eq. (2.17), 

h,(k, A) = h,(k, A) + tan(kl)Z. (3.8) 

So, if we let [,(k, $), . . . . {,(k, 4) be the n eigenvalues of h,(k),’ then h, will have 
determinant zero whenever 

tan(kl) + i,(k, $) = 0, (3.9) 

for some j. From Eqs. (3.8) and (3.9) we conclude that 

The spectrum and zero vectors for L are both approximately periodic 
in k with period z/l, with n eigenvalues per period. Furthermore, in the 
I + GO limit the eigenvalues for h, cross for those I$‘S for which h, is 
degenerate. 

With O(1) vertices, h, has, for fixed k, typically O(1) level crossings. Thus, as 
I-+ co, h, has its crossings located on 0( 1) smooth lines in the (k, I$) cube. 

EXAMPLE. For the hubcap with three leads the locus of degeneracies are straight 
lines with $ fixed. They all lie on the body diagonal of the flux cube, ~$r = $* = c$~, 
and are shown in Fig. 13. There is a line of line of triple degeneracies at d1 = rr, and 
three lines of double degeneracy: two at 4, = f2n/3, and one at d1 = 0. With 1 finite 
each line breaks so there is a point of degeneracy in each interval of size 
n/l + O(l-*). For the line of triple degeneracies they are given by tan(k1) = 4 cot(k). 
Similar results holds for the lines of double degeneracies (see Fig. 14). 

1 Note that these are eigenvalues of the matrix at fixed k, not values of k for which the matrix has 
determinant zero. 

595120612-14 
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3 4 -r 
FIG. 13. The locus of level crossings in the (a, 4) square for the hubcap with a three macroscopic 

leads. ( is the coordinate on the body diagonal of the flux cube where all the degeneracies lie. 
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FIG. 14. The conductance graph of the mesoscopic hubcap: (a) for the ground state; (b) for the 
second state; (c) for the third state. The same set of graphs then repeats periodically in the state index. 
Each graph is periodic in the flux and one period only is shown. Note that the conductances of the three 
graphs sums to zero at each value of the controlling flux and that each graph is antisymmetric. 
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4. CHARGES 

One basic technique for computing the Chern numbers relevant to conductances 
is to identify the points in flux space where the conductances jump and calculate the 
size of the jump. The points where the jumps occur are the points of level crossings. 
The size of the jump is the “charge” of the crossing. Our purpose in this chapter 
is to review the relation between these “charges” and the adiabatic conductances 
and describe in detail linearization techniques for computing the charges. 

A. Charges for Eigenvectors 

Consider a 3-flux Hamiltonian, H(A), and let &, be a point where two or more 
eigenvalues of H cross. Let PI($) denote the spectral projection on the Zth level 
(counting from below). Let 

nj = ch(P,, S’($,)) s & s 
SV40) 

Tr(Pj(dP,)(dPj)Pj) 

be the Chern number of the jth spectral bundle on a small 2-sphere around &,. 
We define the charge q(&) to be the string of integers 

4(4hd = (n,, n2, . ..I. (4.2) 

This charge describes all the spectral bundles near QO. It is also convenient to define 

Q(hJ = (N, > N,, . ..I. (4.3) 

where 

Nj= i nk. 
k=l 

(4.4) 

The basic properties of charges are: 

(a) If the jth level is not degenerate at &,, then nj = 0. 

(b) cjnj=O 

Cc) 4(40) = 4( -bcJ 

(d) C+ q(9) = 0. 

These properties are not hard to see. If the jth level is nondegenerate, P, is 
smooth at &, so S2 is a boundary, and by Stokes’ theorem the Chern number is 
zero. The sum over j of the Chern numbers nj is the Chern number of the total 
bundle, which is trivial. (c) follows from time reversal symmetry. As for (d), the 
sum is the set of Chern numbers for all the levels on any surface enclosing all the 
charges. The boundary of the cube [0, 2n13 is such a surface. By periodicity, the 
abiabatic curvature is identical on opposite faces of this cube, and so it integrates 
to zero. 
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The numbers nj are typically small integers. As will be shown in Section 8, one 
generically has 

q(90) = (0, .“, 0, Ti 1, + LO, . . . . 0). (4.5) 

Even with non-generic networks, we have not yet encountered an nj bigger than 2. 
The main use of the charges is to compute conductances. Let g,(l, dk) denote the 

quantized charge transport associated to the loops i and j, for level number 1, as a 
function of the remaining flux I$~, and let .X(4,) be the planar section of the torus 
as in Fig. 15. Then, for 0 < dk < Z, 

= c n,($o)+ i c nr($o). (4.6) 
0 < (40)k -=z dk (&I)!% = 0 

This, together with the fact that g,(l, bk) = -gil(l, -#k) allows us to compute the 
conductance for all values of dk (see 121) for details). 

The advantage of computing quantized conductance via Equation (4.6), rather 
than as an explicit integral, is that the computation of charges is a local problem, 
requiring only perturbation theory near $o. As with all perturbation theory 
problems, computing the charges is easiest when the degeneracy is broken to first 
order in 4. 

We therefore consider an N-fold level crossing, where the jth through (N+ 
j- 1)th levels clross, with the degeneracy broken to first order in $. Linearizing 
around +. we have H(&,+Q) =2H(4,)-H(+,-6+), and so, for 06 i<N, 
pj+i(~o+69)=PN+j-l-i(Qo-S9). The map Se + -S$ reverses orientation, 
and so 

nj+i= -nN+j-1-i. (4.7) 

FIG. 15. The surface Z(qS,) that slices the flux torus. 
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We now specialize further to the case where the linearization looks like Berry’s 
J . B example [32]. We suppose that, acting on the N-fold degenerate subspace, the 
linearization near &, of the traceless part of H is given by 

dH= 5 J,M, ddj, (4.8 1 
i,j= 1 

where M is a non-singular 3 x 3 matrix and the Ji are a spin-1 (irreducible) 
representation of the angular momentum algebra, with N= 2J+ 1. The matrix M 
maps the coordinates Q to the coordinates B of Berry’s example. This map is orien- 
tation preserving if det M > 0 and orientation reversing if det M < 0. We conclude 
that, for 0 d i < 25, 

nj+i=2(i- J) sgn(det M). (4.9) 

For N = 2, the linearization can always be written as (4.8), since the Pauli spin 
matrices span the 2 x 2 traceless Hermitian matrices. If the degeneracy is broken to 
first order, then det M#O and the theorem applies. In this case Eq. (4.9) is due to 
c331. 

For N= 3, one might not expect the linearization often to take the form (4.8) 
with J= 1, as the space of traceless 3 x 3 matrices is eight-dimensional. To see how 
this form does occur consider a 3-vertex network such that the flux 4i is associated 
to a link connecting vertices j and k. The networks in Figs. l-5 are of this form. 
See, e.g., Eq. (2.18) or (6.6). The linear variation with respect to the fluxes give 
three matrices that are proportional to 

where x = exp(@i), etc. The three matrices (4.10) generate the spin-l representation 
of the rotation group if xyz = & 1. So, provided the threefold degeneracy occurs on 
the planes xyz = f 1, the form (4.8) arises. When combined with the discussion of 
the next section this gives q = ( f 2, 0, T 2). 

Alternatively, we may get a reducible spin-4 @ spin-0 representation. If this breaks 
the degeneracy to first order, then the charge is q = ( f 1, 0, T 1). For the networks 
we have considered all linearizable 3-level crossings have proven to be of one of 
these two types. 

For N > 3 it is unlikely that dH would take the form (4.8), as there are many 
alternative mechanisms for breaking the degeneracy to first order. 

B. Charges for Zero Vectors 

Networks have special features that can be used to say additional things about 
the charges in general and can also be used to simplify computations. Consider a 
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network whose links have integer lengths and that have Neuman boundary condi- 
tions at the vertices (Li= 0). For such networks the spectral matrix is periodic in 
k with period 271, so it is enough to consider the charges in the basic interval 
kE [0,27c). We note also that the spectral matrix is odd in k, so h(k, A) has the 
same kernel as h( -k, A ). This implies: 

In a network with links of integer length and Neuman boundary condi- 
tions, the energy bands with k E (0, z) are in l-l correspondence with 
the energy bands with k E (71, 27~). Bands may touch, but not cross, the 
planes k =0 or k= z. Zf there are a total of 1 bands with ke (0,27c), 
then for any 2-surface S in flux space we have 

Ch(Pj, S)=ch(P,+,-jt S). (4.11) 

In particular, at every level crossing we have nj = n,, , _ j. 
As a result, it is sufficient to consider the interval ke (0, rc). We next develop 

formulas for the charges in terms of the spectral matrix h(k, A) rather than the 
Hamiltonian H(A). 

Since the reduction from H to h breaks down when sin(kli) = 0, we only consider 
the charges at level crossings where k does not take one of these special values. As 
before, we are mainly interested in systems where the degeneracies are split to first 
order in $. 

There are two important differences between H and h. First, h depends on four 
parameters (k, $) rather the three parameters $. Second, we are looking for zero 
vectors of h, not eigenvectors. As a result we need to consider all of h, not just the 
traceless part. 

We therefore consider an N-fold level crossing, with N = 2J+ 1 and with the 
degenerate levels numbered j, j + 1, . . . . N + j- 1. We suppose that the linearization 
of h is 

dh=x.J+x,, 

x,= 1 M&P,, I* = 0, 1, 2, 3, (4.12) 
“=O 

where M is a non-singular 4 x 4 real matrix, drj, means dk, and the J, are a spin-J 
(irreducible, Hermitian) representation of the angular momentum algebra. Then for 
0 < i < 2J, we claim that 

nj+ i = -2(i - J) sgn(det M). (4.13) 

To see this, first suppose that M, = 0, j = 1,2,3. The zero-vector problem then 
reduces to an eigenvector problem, with -x0 being the eigenvalue. If Mm < 0 then 
the eigenvalue -x0 is a positive multiple of dk, and Eq. (4.12) reduces to Eq. (4.8), 
and (4.13) follows. (Note that sgn(det M) = sgn(M,) sgn(det M,), with M, the 
obvious 3 x 3 matrix). If Moo > 0 then the order of the eigenstates is reversed. By 
(4.5) this changes the sign of all the charges, and (4.13) still holds. 
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Now consider the general case, Moi # 0; det h = 0 when (x0) = m lx), m = 
--.I, -.I+ 1, . . . . J. This gives x-space a structure similar to Minkowski space, with 
the speed of light replaced by (ml -I. Since there are precisely N solutions to the 
original Schriidinger equation for every value of 4, the transformation M that sends 
(dk, d$) to (x,, x) must preserve the light-cones structure. In particular, M can be 
deformed into a matrix with Moi = Mi, = 0 preserving 

sgn(det M) = sgn(M,,) sgn(det M,), 

and preserving the charges. 

5. THE HUBCAP-CHARGE ANALYSIS 

In this section we study the spectral properties, charges, and the Chern numbers 
associated to a mesoscopic network with as many long leads as vertices. In 
particular, we study in detail the hubcap with three long leads. As a prelude to this 
analysis we discuss the mesoscopic hubcap with no leads. 

A. The Mesoscopic Hubcap 

The general mesoscopic hubcap is parametrized by six lengths of the edges and 
three vertex potentials, and mesoscopic means that all lengths are O(1). 

With links of equal lengths (one, in appropriate units), and Neumann boundary 
conditions, the analysis simplifies in two ways. First, the system is periodic in k 
with period 271. By the analysis of Section 4 it then suffices to consider k E (0, n], 
since all the Chern numbers are even functions of k. Second, the reduction from the 
Schrodinger equation to a matrix problem breaks down whenever sin(kZ,) = 0 for 
any link. Here, this only occurs at k = 0 (mod rc). 

This is not without a price. The hubcap exhibits symmetry when 4, = & = &, 
which leads to non-generic behavior (such as the presence of three-fold level 
crossings). This may make it difficult to appreciate what is special and what is 
general. For this reason we discuss generic behavior in Section 8. 

Collecting the results about the spectral analysis from Section 2F and the 
appendix we have (see also Fig. 8): 

For all $ # 0, there are three energy bands kj(+), j = 1, 2, 3 with k, E 
(0, 7~). These bands cross at four points in the (k, $) cube, all on the 
body diagonal $I = & = 1+5~. There is a triple degeneracy at di = 71, the 
upper two levels cross at bi=O, and the lower two levels cross at 
bi = +2x/3. In addition there is a flat band that is threefold degenerate 

for k = nz 

We next compute the charges for k E (0,~). Since all level crossings lie on the 
body diagonal 4, = & = I+&, we label the points by this single value. From the basic 
properties of charges we know that q(2n/3) = q( -2x/3) = (nl, -n,, 0) for some 
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integer n, and that q(0) = (0, n,, -n2) for some integer rr2. Since the sum of all the 
charges must be zero, q(z) must equal (-2n,, 2n, -n2, n2). So if we can compute 
q(x) the other charges come for free. 

Near $= (n, n, n), dh is of the form (4.10), with xyz= -1. Equations (4.8) and 
(4.9) then apply, with sgn(det M) = sgn(sin(k)) = 1, and we conclude that q(x) = 
(-2,0,2). This means that n, = 1 and n2 = 2. 

To sum up, for k E (0, z), the charges for the hubcap are 

q(27c/3)=q(-271/3)=(1, -1,O) 

q(O) = (0,2, - 2) (5.1) 

dn)=(-2,0,2). 

Using Eq. (4.4) we can now compute g&i, &), the averaged conductance (i.e., 
Chern numbers), associated to loops 1 and 2 for thejth, band: 

gn(L 43) = 
0 for 0 < & < 2rr/3; 
l for 2x13 < I& < rc. 

for 0<&<2~/3; 
for 27113 < #3 < rr. 

(5.2) 

81,(3? 43) = -1 for O<&<n. 

These conductances are shown in Fig. 14. Cyclic permutations give g,, and g,, . 

B. The Hubcap with Three Leads 

With three leads of length I attached to the three vertices, Fig. 3, the spectral 
matrix is still given by Eq. (2.18), only now with 

TV = -4 cos(k) + sin(k) tan(kl). (5.3) 

Since doz/dk is always positive for 0 < k < rr and I > 1, this amounts to a resealing 
of the k-axis with basic period 0( l/Z) instead of 0( 1). The analysis of the previous 
section carries over and Eqs. (5.1)-(5.2) still hold. We can therefore translate the 
results for the mesoscopic hubcap to this case: 

The hubcap with three leads of length 1 attached to the three vertices 
has its charges on the body diagonal b1 = & = d,, repeating peri- 
odically with period 3, and are the same as the charges without leads. 
Namely, 

Q(k2rr/3)=(1, 0, 0, l,O, 0, 1, . ..) 

Q(O) = (0,2,0,0,2,0,0, . ..I 

Q(rc)=(-2, -2,O, -2, -2,O, -2, . ..). 

Note that we choose to display the Q charges rather than the q charges. 

(5.4) 
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The limit I + GO has nice lines of degeneracies in (k, $) space, as discussed in 
Section 3D. However the charge distribution on these lines does not have a nice 
limit. For example, for 4 = 2x/3 the line of degeneracies is made of three interlacing 
lines of charges, two neutral and one with charge one. This is characteristic to the 
real scenario that we now proceed to describe. 

C. The Real Scenario 

The real scenario occurs for networks with as many leads as vertices, in par- 
ticular, for the hubcap with three leads. First, we want to note that the results of 
the previous section generalize. Indeed, by Section 3D the zero bundle for the 
network with leads corresponds to the eigenbundles for the spectral matrix with no 
leads. These are approximately periodic in k with period rc/l, and there are as many 
states as vertices in each period. Networks whose vertices have a fixed valence (i.e., 
the same number of links attached to each vertex) have the additional special 
property that h(k, 4) takes the form E(g) + cr(k), for some function u(k). As a result, 
the eigenbundles have the same structure as the zero bundles. In these cases, the 
(zero vector) Chern numbers of the network with leads are a repetition of the (zero 
vector) Chern numbers of the network without leads. 

The periodic repetition of Chern numbers on small energy scales can lead to real 
(i.e., non-integer) transport. Let pj E (1 + exp[ j?(k,? - k$)/2m]) ~’ be the Fermi- 
Dirac occupation probability for the jth state. We are interested in temperature 
ranges that are small on energy scale of O( 1) but large on the scale of 0( l/1), i.e., 
x2/m12 + fl-’ 4 z’jm. Take 0 <k,< 7~. The averaged conductance of noninteracting 
electrons (g12)(&, fl, kF) is given by 

(5.5) 

Consider, for example, any three-vertex network. The Chern number of the 
(3n + i)th state is the same as that of the ith state. We can then write Eq. (5.5) as 

(gn)(h, BA)=~ EgdL &)(~sn+, -~sn+d+ g&2, M(~sr+z-~3n+dl 
n 

where 

(5.7) 

with a similar equation for o~~(&, /I, kF). The o~(&, fi, kF) are (real) weights with 
0 < oZ3 < 0,x < 1. They have well-defined limits as I + co and T + 0. The limiting 
conductances depend on & and k, through both the Chern numbers and the 
weights. As the conductances are not quantized there is no reason for plateaus. 
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However, there are still discontinuities because the Chern numbers have integer 
jumps as & varies. 

In particular, for the hubcap with three leads the Chern numbers are given in 
Eq. (5.2) and so the l-2 conductance is bounded by 1 and is discontinuous at b3 = 
0, f 2~/3: 

for 0 < d3 x 21rn/3; 
for 2n/3 < b3 < n, (5.8) 

To sum up, in the real scenario a finite fraction of the states have non-zero Chern 
numbers. The Chern numbers come in n-tuples where n is the number of vertices 
and the Chern numbers of each n-tuple add to zero. The average conductance 
obtains a contribution only from the slight difference in occupation probability of 
the states near the Fermi energy. Summing over n-tuples gives the non-integer 
conductance. In this scenario the only thing that survives from the analogy to the 
Hall effect are the sharp jumps in the conductance as the “controlling” flux is 
varied. These jumps are separated on scale of 0( 1). 

6. SECTIONS 

A. Sections, Singular Sets and Degrees 

An alternate method of calculating Chern numbers is to stay away from level 
crossings and focus on the zeroes of fields of eigenfunctions. To each zero we 
associate an integer valued degree, analogous to the integer charges associated with 
level crossings. This is similar to the approach of [34]. 

For a given energy level, k,(Q), with the associated smooth projection P,(d), we 
are interested in the spectral bundle associated to the surface 

z(4i) = {di, 4ji, 4k I O d 4ji, 4/c G 2n13 (6.1) 

(see Fig. 15), and in the associated Chern numbers gjk(di, I), where i, j, and k are 
cyclic permutations of 1,2, 3. C(di) must, of course, avoid crossings of the Ith level. 

A section V of the bundle is a smooth map from C to the bundle, sending each 
point Q into the range of P,(4). In other words, V is a field of (unnormalized) 
eigenfunctions on C. 

It is a basic fact (see, e.g., [35]) that if V fails to vanish on C, then the bundle 
over C is trivial and the associated Chern number vanishes. If V has isolated zeroes 
on .Z, then, by the Hopf degree formula (which we recall below), the Chern number 
is the sum of the degrees of the zeroes. 

HOPF DEGREE FORMULA. Let C(C$,) be a planar slice of the 3-torus offluxes, and 
let V be a section of the spectral bundle. Suppose that V has isolated zeroes on Z(4,). 
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Then the Chern numbers gij(qSk) are given by the sum of integers 

gijtdk) = c nm,kr (6.2) 
zeroes 

n m.k= z Im( V 1 dV). (6.3) 

where y, is an oriented loop on X(4,) around the mth zero. 

The degree (6.3) is the winding number of V/j\ VI] around the mth zero. If a 
section is defined on the entire +-space and has isolated zeroes in that space, then 
we can assign three degrees to each zero, one for Z(d,), one for Z(#,), and one 
for -Wd. 

It is especially easy to compute the degree if Im(a, V 1 a, V) # 0. In that case dV 
is nondegenerate, since for any direction (a, fl) on C we have 0: aj V+ p 8, V # 0. We 
can then linearize around the zero and perform the integral (6.3) directly on a small 
circle, obtaining 

nm,k = sgn h(ai v 1 a, v). (6.4) 

The analysis of Chern numbers via sections cannot completely avoid analysis of 
degeneracies, since the spectral bundle is defined only for surfaces Z that avoid level 
crossings. What is avoided is the analysis of charges. 

The nice thing about our network problems is that, given the spectral matrix 
h(k, A), one can easily find a section V(k, $), once k is chosen to be a band 
function. To each vertex m in an n vertex network, we associate a vector-valued 
function I/,(k, $), which is the vector of minors of h with respect to the mth row 
(equivalently, the n-dimensional cross product of the other n - 1 rows). From the 
definition it follows that V, is orthogonal to all but the mth row of h and that V, 
dotted into the mth row gives det h. In other words, 

(hV,)j= (det h) S,,. (6.5) 

V,(k, I$) is defined for all k; however, if k($) is a band function, det h(k(+), $) = 0, 
and so V,,,(k(4), 4) is a section. 

We call the set of points in (k, 4) space, where V,(k, $) vanishes the singular set 
with respect to the m th vertex. The singular set depends, of course, on m. In practice 
one tries to choose a distinguished vertex m that makes it as simple as possible. 

The singular sets convey spectral information on the energy bands and on level 
crossings. Indeed, if V, = 0, then by Eq. (6.5) det h = 0. Furthermore, at level 
crossings h has rank at most n - 2, so the cross product of any n - 1 rows must 
vanish. We therefore conclude that: 

(1) Each singular set is contained in the spectrum. 

(2) Points of level crossings are contained in each singular set. Indeed, they are 
the intersection of the singular sets with respect to all the vertices. 
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B. The Hubcap with a Macroscopic Lead 

For the hubcap with one long lead, Fig. 2, the spectral matrix is 

h(k A)= -& 

x = exp($i), y = ev($2), z E exp( iq43), 

CI 55 -4 cos(k), fi E sin(k) tan(H), 

(6.6) 

and as usual it is sufficient to consider k E (0, rc). We shall call E, k, and a energies 
as they differ only be scaling. It is convenient to take 1 to be an odd integer. This 
is because if 1 is odd there are no triple degeneracies. (This can be seen as follows: 
At a triple degeneracy h = 0, which requires x = y = z = -1, c( = p = 0. /? is zero 
when c1= 0 for I even, but is not for 1 odd). 

The hubcap with a long lead has a distinguished vertex, namely vertex 3, where 
the lead is attached. V,(k, 4) is given by 

V,(k,~)=((1+x)(1+z)-a(1+y),(1+y)(1+~)-cc(1+x),a2-~1+z~*). (6.7) 

We consider the singular set with respect to this distinguished vertex. V, vanishes 
when 

ct2= 11 -tz(‘, cr~l+x~*=a~l+y~*=(1+X)(1+y)(l+z). (6.8) 

This occurs on three one-dimensional pieces (“strings”) and one two-dimensional 
sheet in the (a, I$) cube, see Fig. 16. The strings are 

I: x=y,z=x-*,a=x+X, 

II: x=y,z=1,a=2, (6.9) 

III: x = y = -1, u = +2 cos($,/2) 

and the sheet is 

z= -1, cc = 0. (6.10) 

The sheet and string III obviously satisfy Eqs. (6.8). It remains to consider the 
case where the second equation is not just 0 = 0. Note that 

(1 +x)(1 +y)(l +z)= f8(xyz)“* fi COS(djP ). (6.11) 
j=l 

Since a is real, we conclude that either the second equation of (6.8) is trivial or 

xyz= 1. (6.12) 
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4 
FIG. 16. The flux cube showing the singular set for the hubcap with a macroscopic lead, which is 

made of three straight lines ( =strings), denoted by I, 11, and III and a sheet. The dashed lines are to 
guide the eye only. 

Also, if a # 0 we have 11 + XI = 11 + yJ, implying either x = y or x = 7. These alter- 
natives, together with (6.12) give strings I and II, respectively. 

As noted above points of level crossing must lie on the singular set. They must 
also lie on the singular set with respect to the other two vertices. This gives the 
additional requirements 

a(a+/?)=Il+x12=Il+y12. (6.13) 

This identifies the set of level crossings as follows: 

The set of level crossings is made of three isolated points at 

and 

fj,= -qS2= +2n/3,&=n,a=2 (6.14) 

fj1=fj2=&=7c,a=0. (6.15) 

In addition there are U(Z) points of crossings, spaced 0( l/f) apart, that 
are located on the strings Z and ZZZ of Eq. (6.9), see Fig. 12. 

The first two points result from imposing Eq. (6.13) on string II, the third from 
imposing it on the sheet. 

We are now ready to show that most energy levels are associated with trivial 
bundles (i.e., have zero Chern numbers, i.e., do not conduct). Fix an energy level 
near k and fix the “controlling” flux d3 # 0, rc. C(d,) avoids the singular set with 
respect to vertex 3 if 

a # 52 cos(fjJ2). (6.16) 

Thus V,(k, 4) has no zeroes on ,X(4,), and so the bundle has Chern number zero. 
This is the case for most k’s. With d3 fixed, there can be only few conducting levels, 
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namely, those k for which (6.16) fails, so that Z(&) can intersect the singular set. 
(Such k’s automatically lie on an energy band.) Of course, C(4,) must still avoid 
the set of degeneracies for the Chern number to be defined. As the latter set is 
discrete (as long as 1 is finite) by twiddling & we can avoid it without falling off 
the singular set. 

It is actually nicer to consider the total conductance of all levels below the Fermi 
energy. The reason is that the associated spectral bundle is well defined even when 
levels below the Fermi energy cross. Therefore, the associated conductance, 
g,(k,, dk), is an integer as long as inequality (6.16) holds at k,. The procedure is 
to sum the Chern numbers for all energies less than kF. The state responsible for 
the conductance would then be the state with kc k, for which (6.16) fails. This 
conducting state can lie deeply, i.e., O(l), below the Fermi energ. It also follows 
that there are wide, i.e., 0( 1 ), plateaus. 

Similarly, with fixed k, and fixed di # 0, rc the g,, conductance is well defined if 

2 cos(k,) # -cos(&). (6.17) 

This is the condition for ,X(4,) to avoid the level crossings that accumulate on 
string I. 

It remains to determine the actual values of the integer conductances. For this we 
need to compute the three degrees (n,, n2, n3) for each zero, as in (6.3). By direct 
computation 

a,V,=(ix(l+z), -iclx,O)+a,CI(-(l+j), -(l+x),2cl) 

~TJ,V,=(iacj, -ij(l+f),O)+a,a(-(l+Y), -(1+x),2&) (6.18) 

a,V,=(iz(l+Z), -i$l+j),i(z-z))+LJ,tl(-(l+j), -(l+x),2a). 

Using (6.8) we then find 

Im(a,V, 1 a3V,)=cr21my 

Im(a,V,) a,V,)=0121mx 

Im(a, Vj 1 d, V3) =2 Im(a@(l +Z)), 

(6.19) 

and so 

~1, - sgn Im(a, V, 1 fZJ3 V,) = sgn(sin(#2)) 

n, = sgn Im(a, V, ) 8, V,) = sgn(sin(di)) (6.20) 

n3 z sgn Im(a, V, I a2 V,) = -sgn(a(sin(4i + b2) + sin(b, + & + d3))). 

Applying this to each string we conclude that 

wW(h))(l, 1, - 1) on string I 

h, n2, n3) = sgWn(il))(- 1, LO) on string II (6.21) 

sgn( --a sin(43))(0,0, 1) on string III. 
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t 
a 

FIG. 17. A cross section of the (a, $) cube with c+$ = 2rr/3 showing the singular set for the hubcap 
with a macroscopic lead. The set is made of four points at two different energies. Two fixed energy levels 
are shown as solid lines. The total charge at each energy vanishes. The dashed lines are to guide the eye. 

Remark. Because of symmetry this example is pathological in that the zeroes on 
the sheet are not isolated, and so we cannot compute their degrees. As we shall 
show later this behavior is not generic. 

Figure 17 shows the (LX, di, q&) cube for fixed d3 = 2n/3. Since z # +l, string II 
of (6.7) and the sheet (6.8) do not contribute, and all zeroes have d1 = &. The 
zeroes at the edges of the cube, d1 = rc come from string III of (6.7), while the other 
zeroes come from string I. From (6.21) + 1 and - 1 degrees occur in pairs at the 
same energy, so we conclude that 

gn(k 43) = 0. (6.22) 

Summing over k <k, gives total conductance 

g,dk,, 43) = 0. (6.23) 

The (LX, q&, q&) cube with fixed $i = n/3 is shown in Fig. 18. The solid line at GI = 0 
comes from the sheet (6.8). We cannot associate a degree to this line but, as we 
shall see, we can avoid the difficulty this creates at the fixed energy c( = 0. The zero 
with degree - 1 comes from string I and the zero at q& = 0 with degree + 1 comes 
from string II. 

Since the degrees plus the contribution of the singular line must add up to zero, 
the singular line cannot contribute anything.2 We conclude that for XC q5i < 3rc/2, 

g,,(4,, kd = -; 
a > 2 or c( < 2 cos(q5i) 
otherwise. 

(6.24) 

’ Under a generic perturbation of the system, the singular line breaks into an even number of discrete 
zeroes, half with degree + 1 and half with degree - 1. 
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FIG. 18. The singular set in the (a, &, 4,) cube for & 7r/3, for the hubcap with a macroscopic lead. 
The set is made of two points and a line at a = 0. The two points lie at different energies, and the charge 
of the cube is neutral. The dashed lines are to guide the eye. 

The other ranges of 4, may be analyzed similarly and similar formulas result. 
Equations (6.23) and (6.24) are, of course, the main results of this subsection. 

We have seen that the total conductance g,, is an integer-valued piecewise con- 
stant function of di. However, which state is doing the conducting is (in the I+ cc 
limit) a continuous function of di. There are O(Z) level crossings beneath the Fermi 
surface, and at each one the non-zero Chern number is passed along a string from 
one state to the next. The total conductance changes only when the Chern number 
is passed across the Fermi surface, i.e., when the Fermi surface intersects a string. 
Because there are very few non-zero Chern numbers which are passed around the 
O(I) states, we call this the bucket brigade scenario. 

C. The Integer Scenario 

Consider a general n-vertex network with a long lead of length 1 attached to the 
nth vertex. V,(k, $), being a function of the first n - 1 rows, does not depend on 
1. In particular, the singular set is independent of f, and has 0( 1) components. As 
will be shown in Section 8, this set is generically one dimensional, composed of a 
number of strings. As I grows the energy bands are confined to intervals of size 
0(1-l) in k. This says that V,,(k, 9) for k fixed is an approximate section for large 
1. The surface Z(b,) would not intersect the singular set for most k’s, giving zero 
Chern numbers to most levels. Only a few levels below the Fermi energy, O(l), 
intersect with C(b,) and will conduct. As I + co, the total number of states in any 
energy interval grows as O(I), but the number of conducting states remains 0( 1). 
The strings, being the solutions of trigonometric equations, are continuous and are 
dotted by points of level crossings. Thus, as & is varied, the non-zero Chern 
numbers are passed continuously from state to state along the string. This is the 
bucket brigade. 
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It follows that, even though the problem has a large parameter 1 and has O(I) 
electrons, the conductance stays of order 1 and is affected only by O(1) changes in 
the Fermi energy and the parameters. 

The integer scenario has some of the interesting features of the integer Hall effect, 
which we now summarise: 

(a) There are wide plateaus of quantized, integer valued, conductances. 

(b) The plateaus are separated by sharp integer jumps. 

(c) The conductances are O( 1). 

(d) The conducting states are few and may lie deep below the Fermi energy. 

7. NETWORKS WITH A MACROSCOPIC LOOP 

In this section we study the Chern numbers for mesoscopic networks with a 
macroscopic loop, such as Fig. 4. Two different physical settings are when the 
macroscopic loop is used to drive the system and when it is used to control it. 
Namely, if ‘pi is the flux through the macroscopic loop, gij(dk) describes macro- 
scopic driving while gjJqli) describes macroscopic control. As we shall see these give 
rise to different scenarios. 

As in the rest of this work we address the questions: How can one compute the 
many Chern numbers that arise with macroscopic components? When is the 
average charge transport quantized to be an integer? When does one get the real 
scenario and when the integer scenario? 

A. The Hubcap with a Macroscopic Loop 

We consider the mesoscopic hubcap with unit links and one macroscopic loop, 
of length I an odd integer, enclosing flux 4 i . We look for level crossings and their 
charges3 in order to compute the Chern numbers. 

The 3 x 3 spectral matrix associated with this network is 

h(k, A) = - 

where, as usual, 

l+z l+j’ 
a -- 

S S 

1+z ~, 
S 

;+; 

l+v 1 x A -+- (y 
S s s’ . . 

(7.1) 

x = exp($i), Y = exp(&), z = exp( id3). (7.2) 

3 For a two-level crossing, the charge 4 = (0, . . . . 0, n, --n, 0, . ..) depends on a single integer n. We will 
frequently use the term “charge” to means the single number n, rather than the complete sequence 4. If 
Eq. (4.13) applies, then this charge is n = sgn(det(M)). 

595,206/2-15 
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We use the menemonic 

c = cos(k), 

and let 

s E sin(k), c‘ = cos(kl), s’ = cos( kl), c3 = w&d, (7.3) 

01 = -4c/s, d f -3c/s - d/s~. (7.4) 

As we shall see, there is one isolated point of triple degeneracy and two sets of 
one-dimensional strings with double degeneracies. One set of strings has y = z and 
the other has y = 5. The two types meet at the triple degeneracy. The strings carry 
well-defined charges; i.e., sgn det M is constant on intervals of length 0( 1) on the 
strings. 

First we look for level crossings at the discrete set of energies c =O. If I E 1 
(mod 4), then s’ = s = f 1, and there is a triple degeneracy at x = y = z = -1. If 
1 E 3 (mod 4) then s’ = --s and there is a triple degeneracy at -x = y = z = - 1. The 
linear variation at these points is 

where J,, y, z are the spin-l angular momentum matrices. By the results of Section 4, 
the charge is i (2,0, -2), the sign depending on the signs of s and s’. 

We henceforth look for crossings at c # 0. If !Y is a zero vector of h, then the first 
line of hY = 0 implies 

1+z 1+u, Y1=- !P’,+- 
4c 4c 3. 

Plugging this into the last two lines we obtain that ?i( 2) = 0, where 

K= 

[ 

I1 +z12 3c c’ 
4sc s s’ 

(1 +Y)u +z)+i+^ 
4sc s S’ 

(1 +a1 +-‘i)+i+x 
4sc 

ll+ylZ 3c scls . -_--- 
4.x s s’ !I (7.7) 

Before getting into the analysis of level crossings, let us consider the linear varia- 
tion of 3i, which we need to compute the charges: 

A=-$[_oi. ;]4,+&[y(;+z) -‘,“;‘)]dh 

+i 
I 

z--z 
4x z(1 +y) 

-‘(lo+ “1 dq5, +& ([ ;“] + O(Z-‘)) dh. (7.8) 
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This determines the 4 x 4 matrix M of Section 4B, to leading order in Z, to be 

21 

(s1)2 
0 i(Y - Y) 

4sc 

i(z - 2) 
4sc 

-c’(x+X)l i(x-2) i[y(l+z)-y(l+z)] i[z(l+y)-?(l+y)] 

w* s’ 4sc 4sc 
- ic’(x - X) I -(x+X) y(1 +z)+j(l +z) z(l+y)+Z(l+j) 

w* s‘ 4sc 4sc 

0 0 -0-Y) 
4sc 

i(z - 5) 
4sc 

The determinant of this matrix has the same sign of the determinant of 

(7.9) 

1 2 

&f’= -c’(x +x) i( x - X)/S i[y(l+z)-j(l+Z)] i[z(l+y)-Z(l+j)] 
-ic’(x-2) -(x+X)/s’ [y(l+z)+j(l+Z)] [z(l+y)+Z(l+j)] . 

0 0 -icy-3 i(z - 2) i 
(7.10) 

Note that this matrix depends on s’, so sgn(det M’) is a rapidly varying function 
of the energy. From this one may be tempted to conclude that the charges on the 
strings are rapidly oscillating and there is no nice limit as I+ co. As we shall see, 
this is not the case. 

We now return to the search for level crossings. At a crossing, h has corank 2; 
i.e., h is the zero matrix. As the two diagonal terms must be equal, we must have 
11 + y( = ( 1 + z(, and so either y = z or y = Z. We first analyze the easier case, y = Z. 

If y = Z, then x must be real, so 4, = 0 or rr. Setting a;,, and g,, equal to zero we 
obtain 

- 2csx 

s’ = 1 + c3 + 2c’ 
c, = s, 1+ ~3 - 6~’ 1 + c3 - 6c2 

2cs = -x l+c,+2c’ 
(7.11) 

where we have used the fact that 11 + zI * = 2 + 2~~. We may then eliminate s’ and 
c’ to get 

1 = (s’)2 + (c’)2 = 
4c2sz+ (1 + c3 - 6c2)* 

(1 +c3+2c)* ’ 
(7.12) 

A bit of algebra then gives 

SC3 - 3c - 1 
c3 = 

3c+l 
(7.13) 
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FIG. 19. The graph of Eq. (7.13) for the hubcap with a macroscopic loop carrying flux 4,. The graph 
shows the locus of level crossings in the plane (cos(k), cos($,)) where the remaining coordinates are 
y=? and x= +1. - 

Two other convenient forms for this expression are 

c =1+2(c-l)(2c+l)2 8c3 
3 

=-- 1 
3c+l 3c+l . 

(7.14) 

Of course, both c and c3 must lie between - 1 and + 1. As shown in Fig. 19, 
there is an isolated solution at c = - f, c3 = 1, and a continuum of solutions of 
c 2 0, with c3 going from - 1 to + 1 as c goes from 0 to 1. This gives the trajectory 
of a curve where the level crossings lie. (This curve in (c, c3) space actually 
represents TWO curves in (k, $) space, since & = -4, may equal either +cos-’ c3). 

However, level crossings do not occur at every point on this curve. s’ is con- 
strained by the relation s’ = sin(l sin -l(s)) (with a similar relation for c’). Since x 
may be chosen of either sign, this gives a level crossing every rr/f along the 
curve (7.13). Since the spacing between levels is approximately rc/l, this gives one 
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level crossing per gap along each piece of the trajectory (7.13). Of these, every other 
crossing is at x = 1 (i.e., b1 = 0), and the remaining ones are at x = -1 (i.e., ~$r = n). 
The orientation-preserving approximate symmetry k + k + n/l, d1 + d1 + 7c shows 
that all these crossings have the same charge and that the crossings at x = - 1 are 
in precisely the gaps that alternate with the x = + 1 crossings. 

It remains to actually compute the charges. The expression (7.10) for M’ sim- 
plifies with the substitutions y = Z and X = x. There is only one non-zero component 
in the second column. Adding the third column to the fourth column leaves only 
two non-zero components in the fourth column. Expanding by minors about the 
second and fourth rows we find 

det M’ = 4ix(z - ‘1 det 2 - i(z - 2) 
s’ - 2c’x -i(z-5) 3 

= -8x[i(z - 2)12 (1 + c’x)/s’. (7.15) 

By the first equation in (7.11) we know that s’ and x have opposite signs for c > 0,4 
so this expression is always positive, and these charges are all + 1, even though 
sgn(det M) is a rapidly oscillating function ! 

We next consider the degeneracies with y = z. Setting i?,, = i;,, = 0 gives 

s’ = 
- 2csx c,=s, 1 +c3-6c2 _ 1 + c3- 6c2 

z( 1 + c,) + 2c’ 2cs = -xz(l+c,)+2c’ 
(7.17) 

where we have used the fact that (1 + z)~ = 24 1 + c~). Setting 1s’1’+ \c’12 = 1, as 
before, gives 

c: + (1 + 3c)c, + (3c - 8c3) = 0, (7.17) 

or equivalently, 

c3 = 
- I- 3c f ,/( 1 - 3~)’ + 32c3 

2 2 (7.18) 

while 4r is given by 

x = * 141 + c3) + 24 

z(l+c3)+2c ’ 
(7.19) 

The graph of c3 as function of c is shown in Fig. 20. Let y be the real root of 
(1 - 3~)~ + 32y3 = 0 (y is approximately -0.6262266). For c < y there are no solu- 
tions. For c between y and 0, both roots of Eq. (7.18) lie between - 1 and + 1. For 
c between 0 and 1 only the plus branch is meaningful, and c3 goes from 0 to 1 as 

4 Since k E (0, a). s > 0. For k in (n. 2n), s’, and x have the same sign and the charges are - 1. 
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FIG. 20. The graph of Eq. (7.18) for the hubcap with a macroscopic loop carrying flux 4,. The graph 
shows the locus of level crossings in the plane (cos(k), COD), where the remaining coordinates are 
y =z and x is determined by (7.19). 

c goes from 0 to 1. For each of these solutions there are two values of y = z that 
give rise to the same cj and c, namely q& = d3 = fcos-‘(c,). 

As with the y = z crossings, x can take either of two values for any given value 
of c and z. Half the level crossings, filling every other gap, occur with x given by 
the plus sign in (7.19) while the other half, filling the remaining gaps, occur with 
x given by the minus sign in (7.19). The symmetry k + k + n/f, x --, --x interpolates 
between these two sets of degeneracies and shows that both have the same charge. 

Let us compute this charge., Substitute y = z into the expression (7.10) for M’, 
and add the third column to the fourth column. This leaves only one non-zero 
component in the fourth column, so 

[ 

2 0 i(z - 5) 
det M’ = 2i(z - 5) det - c’(x + 2) i(x -X)/s’ i[z(l +z)-q1 +z)] 

-ic’(x-X) -(x+X)/s’ z(1 +z)+Z(l +q I 

= 2i(z - Z)[4i[xz(l + z) - E( 1 + Z)]/s’ + 4ic’(z - Z)/s’]. (7.20) 
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However, from Eq. (7.16) we know that 

xz -(l+c,+2c5) x2 -(l+c,+2cz) c’ (l+c,-6~‘) -= 
s’ 2cs ) 7= 2cs ’ 2= 2cs . 

(7.21) 

Plugging this into Eq. (7.20) we find that 

det M’ = *(‘-‘)* (3c + 2c, + 1). 
S 

(7.22) 

The first factor is always negative. By Eq. (7.18) the second factor is positive on the 
plus branch and negative on the minus branch. 

Thus, for ke (0, rr), the charges on the plus branch of the solution (7.18) are all 
- 1, and the charges on the minus branch are all + 1. This is consistent with the 
general theory of charges, which says that the sum over $ of the charges for a fixed 
energy level must be zero. For c>O the y= z charges (plus branch) balance 
the y = Z charges. For c < 0 the charges all come with y = Z, and the plus branch 
balances the minus branch. 

Finally, we consider the conductances. If the long loop is used to drive the 
network, i.e., we are looking at g12 or g,,, we have the bucket brigade, with a 
Chern number being passed along the strings (7.13) and (7.18), but with the 
peculiar feature that the crossings occur alternately at very different values of d,. 
For fixed 43 E (0, rr), the total conductance g,? is - 1 if (cos k,, cos ij) is in the 
shaded region of Fig. 21, and zero otherwise. If, however, the macroscopic loop 

FIG. 21. The charges for the hubcap with a macroscopic loop and the region where g,*(&) #O. 
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encloses the controlling flux; i.e., we look at g,,, then in any small range of x we 
only see charges in every other gap, giving us the real scenario. The g,, Chern 
number of a level depends on whether it lies just above or just below the relevant 
charge. 

B. General Networks with One Long Loop 

This general behavior may be expected in any network with one long loop of 
length 1 enclosing a flux q4i. The contribution of this loop to the spectral matrix is 
to add (-c’/s’) to two of the diagonal entries and x/s’ and Z/s’ to two off-diagonal 
entries. All these contributions are periodic in k with period 27t/I and are unchanged 
by the substitution k + k + n/l, x + --x. We expect pairs of lines of charges to form, 
with the symmetry interpolating between the two lines in a pair. Since the 
approximate level spacing is n/l, each line has a level crossing in every other gap, 
specifically in the gaps where the other line does not have level crossings. Because 
of the symmetry, the charges are the same on the two lines. 

When we look at g,, or g,, we treat q3i as a free variable, and so we may identify 
the two lines of a pair. We then have one level clrossing par gap, all with the same 
charge, giving us the bucket brigade mechanism and the integer scenario. When we 
look at g,,, q3, is constrained and the two lines of each pair act separately, giving 
us the real scenario with period two. 

If a long loop does not enclose any flux at all, then there is no automatic 
symmetry relating k and k + rc/l, only one relating k and k + 241. We thus expect 
to see the real scenario, with period two, for all three conductances. However, if the 
system possesses other symmetries, or if the charges cancel in a special way, it is 
possible to get the integer scenario for one or more of the conductances. 

8. GENERIC BEHAVIOR 

The explicit examples built around the hubcap are, of course, special. For 
example, we took all the mesoscopic links to have the same length, and there is a 
great deal of symmetry. As a result the examples (perhaps like all examples) are 
non-generic, and one would like to complement the information learned from them 
with the information available from the analysis of the generic situation. Such an 
analysis is presented here. 

A. Generic Rules and Codimensions 

In this section we consider generic spectral matrices h(k, 4). By this we mean that 
the family of Hermitian matrices obtained by letting k and Cp vary is embedded in 
the n*-dimensional space of n x n Hermitian matrices in a “general position.” If an 
event (say, det h = 0) occurs in a codimension-1 set in the space of all Hermitian 
matrices, we assume it occurs in a codimension-1 set in the space of spectral 
matrices. 
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The first result concerns the frequency of level crossings and of zeroes of vector 
fields: 

In the space of n x n Hermitian matrices, 

(a) The set of matrices with d-dimensional kernel (i.e., rank n - d) 
has codimension d2. 

(b) The set of matrices where the cross product of any n - 1 rows 
vanishes (i.e., all the minors with respect to the remaining row 
vanish) has codimension 3. 

For 3-flux networks, part (a) says that level crossings occur generically at 
isolated points in (k, $) space. Part (b) then says that singular sets with respect to 
any vertex are codimension 3, hence dimension-l objects in the (k, 4) cube. A slice 
of fixed 4, will therefore intersect the singular set at isolated points. 

Note that we make no claims about how many (connected) components each set 
might have. In particular, with macroscopic components of length I the number of 
components can proliferate. This will be treated in the next section. 

The proof runs as follows: 

(4 is little more than the Wigner-von Neumann rules. A Hermitian matrix 
with corank d is determined by the n - d non-zero eigenvalues, and by a diagonaliz- 
ing n x n unitary matrix. The latter is unique up to an element of U(d)( U( l))“-‘, 
so 

dim(kerd)=n-d+dim(U(n))-dim(U(d))-dim(U(l)”-’j) 

=n-d+n*-d2-(n-dd)=n2-d2. (8.1) 

(b) Let h’ be the (n - 1) x n matrix made of the first n - 1 rows of the n x n 
hermitian matrix h, and let h” be the first n - 1 columns of h’. We are interested in 
the set where h’ had rank n - 2 or less. For this to occur we first need h” to have 
determinant zero, a codimension-1 event. If h” has a rank n - 2, we need the last 
column of h’ to be linearly dependent on the columns of h”. (Alternatively, h” may 
have rank n- 3 or less, but by (a) that is already a codimension-4 event.) The 
component of the last column of h’ in the direction orthogonal to the first n - 1 
columns must be zero. This event has complex codimension 1, or real codimen- 
sion 2. Added to the codimension of det h’ = 0, this gives codimension 3. 

Our second result concerns the distribution of charges among all possible 2-level 
crossings: 

In the (n* - 4)-dimensional space of all possible 2-level crossings, 

(a) The charges f 1 are generic. That is, they, and only they, occur 
on sets of codimension zero. 

(b) Zero charges have codimension 1. 
(c) All other possibilities have codimension 4 or more. 
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This is seen as follows: Consider a 2-level crossing at a point (4, k). Restrict the 
spectral matrix to the two-dimensional degenerate subspace, and linearize the 
problem in a neighborhood of (I$, k). The space of Hermitian 2 x 2 matrices is 
four-dimensional, and we have four parameters (4, k). A 4 x 4 (real) matrix M, 
then maps (de, dk) to the components of dH. 

If M, is invertible (the generic situation), then by Eq. (4.13) the charge is &- 1. If 
A4 instead has rank 3 (a codimension-1 event), we must use higher order perturba- 
tion theory to get the remaining component of dH as a function of a single variable, 
the zero vector of M. If this component is to lowest order an even function of this 
variable, then the charge is zero; if it is an odd function the charge is + 1. For the 
charge to be anything other than - 1, 0, + 1, the matrix ii4 would have to have 
rank 2 or less, a codimension-4 event. 

Since by our first result threefold (or more) level crossings have codimension 5 
relative to 2-level crossings, this second result is easily extended to all level 
crossings: 

In the (n’ -4)-dimensional space of all possible level crossings, the 
charges q = (0, . . . . 0, + 1, T 1, 0, . . . ) are generic, the charge q = (0, 0, . ..) 
occurs with codimension 1, and all other possibilities have codimen- 
sion 4 or more. 

B. Degeneracies for Macroscopic Components 

For finite networks degeneracies occur at isolated points in the (k, 4) cube. 
However, as we have seen for the networks in the previous chapters, the number 
of degenerate points is O(Z) and in the limit I + cc they coalesce to form 0( 1) lines 
in the (k, 4) cube. We give here an alternate generic argument that shows why this 
is the case. 

Macroscopic components that are all of the same length 1, introduce into the 
spectral matrix the angle kl, which varies rapidly with k. The associated entries in 
the spectral matrix then run from - 00 to + cc in intervals of k of order 0(1/l). 
Since the angle is practically independent of k we regard it as a free parameter. (The 
incommensurate case gives rise to several angles kli that can be viewed as inde- 
pendent parameters. This is, however, outside the scope of the present work.) 

The rules in the previous section for counting the dimensions of various sets 
imply also that every free parameter reduces the codimension of an event by one. 
In particular with one free angle, level crossings are codimension 3 in the (k, $) 
cube, i.e., are lines in the I+ cc limit. Because this takes care of the large parameter 
in the problem, one expects only 0( 1) of them. 

C. The Two Scenarios 

The real and integer scenarios and the circumstances that lead to them can be 
understood heuristically as follows. 

Consider the situation discussed in the previous section, where, in the I -+ cc 
limit, points of level crossing accumulate on a line L. There are two possibilities. 
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FIG. 22. Schematic energy bands diagram for a network with macroscopic components where the 
locus of degeneracies has eigenvalues of fixed multiplicity. This gives the bucket brigade scenario. The 
Chern numbers are all zero for zero controlling flux and for, say, 4 = n/2 have + 1 separated by many 
zeroes. 

-1’ 
0 
1 

-1 

0 

-: 

0 
1 

-1 

0 
1 

-1 

0 

1 
-1 

FIG. 23. A schematic energy bands diagram for a network with macroscopic components where the 
locus of degeneracies has eigenvalues of different multiplicities. Here crossings are pair creation events. 
The Chern numbers are all zero for zero controlling flux and turn to lots of 0, + 1 for, say, 4 = n/2. This 
gives rise to the real scenario. 
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The simple case is when every pair of adjacent energy levels crosses on L, as shown 
in Fig. 22. The second and more complex case is when levels that do not enter level 
crossings are sandwiched between levels that do, as shown in Fig. 23. 

One might expect the first possibility, in which states with similar energies behave 
similarly, to always occur. It does not, however, because states that are nearby in 
energy may not be nearby in other properties that are relevant for crossings, such 
as the support of the wave function. In a network with several macroscopic com- 
ponents there may well be states, supported largely on separate components, that 
have similar energies. We thus expect both situations to occur with frequency. 

If L is simple, since each crossing has generically charge + 1, we are in the bucket 
brigade situation where a unit of conductance is transported from one level to its 
immediate neigbor. There are only few levels that carry a unit of conductance for 
any fixed d,, and most of the levels are “insulating.” This is the integer scenario. 

On a complex L, however, the simple eigenvalues prevent the conductance from 
being passed up the line. Instead, each crossing can be viewed as a pair creation 
event. In this case, the levels associated to level crossings on L would carry say 
Chern number f 1 while the levels associated to the simple eigenvalues would carry 
0. As a consequence, a finite fraction have nontrivial Chern numbers. This is, of 
course, the real scenario. 

9. CHERN NUMBERS, CHARGE TRANSPORT 
AND THE SCATTERING MATRIX 

A. The Scattering Matrix 

Until now we considered mesoscopic networks with macroscopic, but still finite, 
components. In this chapter we study mesoscopic networks with infinitely long 
leads directly. Such networks give rise to a natural scattering problem. On each 
lead there are incoming and outgoing amplitudes, related by 

Here !Pivi, is the m-vector of incoming amplitudes, !PO,, is the vector of outgoing 
amplitudes. The scattering matrix S(k, A) is a unitary m x m matrix, where m is the 
total number of modes in the leads. We consider single mode leads, so m equals the 
number of leads. 

For example, a network with two leads, such as the network in Fig. 24, has a 
scattering matrix of the form 

s=(; :;,>, ItI’+ (r12= 1, Izl = 1, (9.2) 

where t and r are the reflection and transmission amplitudes. 
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c 
FIG. 24. A network with two leads connecting to a flux carrying ring. 

It is natural to expect that the S matrix gives rise to a geometric theory of trans- 
port that parallels the geometric theory of transport for finite systems described in 
the preceding chapters. Such an expectation draws, in part, on ideas originally due 
to Landauer [3638]. 

B. Relation to the Special Matrix 

In this section we relate the scattering matrix S to the spectral matrix h of the 
networks without leads. This formula, Eq. (9.6) below, says that the scattering 
matrix can be read off almost directly from the graph.’ 

Consider an n-vertex network, Fig. 25, where m leads are attached to the first m 
vertices. Let pi” and YOU, be the m-vectors of the amplitudes of the ingoing and 
outgoing waves on the leads. Then the n-vector of amplitudes on the vertices is 

with @ the (n - m)-vector of amplitudes on the remaining vertices. 
The boundary conditions (2.2) now read 

(9.4) 

FIG. 25. The mesoscopic hubcap with two infinite leads 

5 There are related results in 139,401 where the scattering matrix for the graph is related to the 
scattering matrices of its components, i.e., the links and the vertices. 
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or, for k # 0, 

(h + m y,,t, ~) = -(h - i~)( vl,“) O), (9.5) 

where p is the projection onto the first m components of Y. From (9.5) follows: 

The scattering matrix S is the m x m matrix 

S= -p(h + ip)-’ (h - iP)p. (9.6) 

Remarks. (a) A particularly simple case is n = m, and p = 1. Then (9.6) 
simplifies to 

s= 22. (9.7) 

S is manifestly unitary, being the Hilbert transform of the Hermitian matrix h. It 
also follows that 

ST(k, A) = S(k, -A), (9.8) 

as one expects by time reversal (T = transpose). Furthermore, since h is Hermitian 
(h + i) is always invertible (so long as k is nonsingular) and S inherits the smooth- 
ness of h. If m <n, however, this need not be the case, as we shall see below. 

(b) In microwave theory there are similar formulas that relate the “voltage 
reflection coefficient” to the “normalized load impedance,” see, e.g., [41]. 

(c) S(k, A) and S(k, A’) with d(A)-d(A’) =0 mod 27~ are related by a 
diagonal unitary matrix (a gauge transformation), just as h(k, A) and h(k, A’) are. 
It follows that the diagonal entries of S are periodic in #;, while the off-diagonal 
entries have magnitudes that are periodic in ii, all with period 27~. 

(d) (h + ip) fails to be invertible if and only if the network supports solutions 
that vanish on the m vertices where the leads are attached. These solutions are 
bound states that are embedded in the continuum. For points (k, $) that support 
such states S can be singular. With m =n an analogous thing can happen for 
singular k’s. In potential scattering bound states embedded in the continuum are 
rare and require ingenious choices of the potentials [42]. Here, in contrast, such 
states are rather common. 

(e) S is, of course, unitary, although this is not manifest in the expres- 
sion (9.6). To see that 1 ul,,l = I’!PO,,I for all ‘Pi,,, take (9.4) and left-multiply by Yt. 
The imaginary part of the resulting expression (which must equal zero) is k times 
(I~outl’- Iyin12)~ 

C. Examples 

As applications of Eq. (9.6), here we rederive results due to [43] that we derived 
independently but became aware of while this manuscript was being written. These 
examples were motivated by works on mesoscopic systems (see also [44,45]). 



ADIABATICQUANTUMTRANSPORT 485 

FIG. 26. A network with one lead connecting to a flux carrying ring. 

EXAMPLE 9.1. For the network in Fig. 26 with I = 0 and loop of unit length, the 
spectral matrix with the lead removed is, by (2.14), the function 

and the S matrix is the complex number 

s= 2[cos(k) - cos(d)] + i sin(k) 
-2[cos(k) - cos(qS)] + i sin(k)’ 

(9.10) 

S lacks smoothness at the points 

sin(k) = 0, cos((b) = cos(k), (9.11) 

that is, when k is a multiple of R and k + 4 is a multiple of 271. For cos(q5) fixed and 
near 1, the phase of S changes by 271 as sin(kl) passes through zero. This can be 
thought of as an example of Levinson’s theorem in scattering theory [46], for at 
the values (9.11) of k and 4, the network supports a bound state on the loop that 
does not leak to the lead (see the Appendix for a discussion of singular loops). 

Since 4, exp(ik), and S are all rssociated with the circle S’, one can ask the 
degree of the maps 4 + S with k fixed and k + S with 4 fixed. From (9.10) we see 

deg(k + S) = 2 

deg( 4 -+ S) = 0. 
(9.12) 

EXAMPLE 9.2. Consider the network in Fig. 24, where the two arcs each have 
unit length. The spectral matrix of the network with leads removed is 

h = (sin(k))-’ 
- 2 cos(k) x+Y 

X+j - 2 cos(k) > (9.13) 
x = exp($,), Y = exp(W, xj = exp( i#). 
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From Eq. (9.7) we have 

-c-z -c-5 
s=- x+y 

( 

x + y x+y -l 
-c-z >( x + j -c--z > 

-1 

( 

Ic+z12-lx+y12 (z-2)(x + y) 
=(c+2)*+(x+y)2 (z-z.)(X$j) > lc+zl’- Ix+y12 ’ 

(9.14) 

where c-cos(k) and z-exp(ik). Note that, while S is not a function of the 
threading flux 4 alone, the diagonal entries of S and the magnitudes of the 
off-diagonal entries are. (See Remark (b) of the previous section). As in the 
previous example, when the network supports a bound state that has no amplitude 
on the leads (i.e., s = 0, x = y), S becomes singular. Using the Landauer formula, 
Eq. (9.17) below, the conductance of the network can be read from Eq. (9.14). 

D. Topological Questions 

Bound states are described by finite dimensional projections in L2(R3) while scat- 
tering states are not. As a consequence the Chern numbers of scattering states when 
considered in L2(R3) may be ill-defined. In fact, this is one of the reasons why the 
identification of the Chern numbers with adiabatic transport coefficients holds in 
generality only for finite systems [2]. 

In networks, however, scattering states aYe associated with finite dimensional 
projections in C” (n = # of vertices), and one can study their Chern numbers. 
Something analogues to this occurs in the TKN* study [S, 73, where the Bloch 
states, once reduced to fixed quasimomentum, are associated to finite dimensional 
projections in L2 (Unit Cell) with meaningful Chern numbers. As it turns out these 
Chern numbers are conductances as well. 

In this section we describe, on a formal level, geometric objects and Chern 
numbers that are naturally associated with a scattering problem. In the next section 
we shall discuss their physical interpretation as transport coefficients. 

Consider an n-vertex network with m leads attached to m vertices, and let ij be 
the projection onto these vertices. The eigenfunctions at fixed k are the solutions of 

(l-p)h(k,+)!P=O. (9.15) 

The bundle of scattering states has as its fibers the vector spaces spanned by the 
solutions to Eq. (9.15) with (k, $) fixed. The fiber has dimension 

corank[ (1 - P) h(k, $)] 2 m. (9.16) 

For most k, h has full rank and so this dimension equals m. Thus the bundle of 
scattering states on m leads has m-dimensional fibers, as expected. 

One can now ask two geometric questions. First, how is the bundle of scattering 
states embedded in C”? Second, what are the Chern numbers associated to the 
eigenbundles of the scattering matrix considered as an m-dimensional unitary 
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matrix? The second question, in particular, is the obvious analog of questions asked 
about the eigenbundles of Hermitian Hamiltonians. 

Two extreme situations are when the network has n leads and when it has a 
single lead. In the case of n leads the bundle of scattering states is trivial because 
the fibers span C”. However, the n eigenstates of S can have n interesting Chern 
numbers. With a single lead the situation is in a sense reversed. The scattering 
matrix is a complex number and has only trivial eigenbundles. However, the 
one-dimensional fiber of scattering states can twist in C”. 

E. Physical Interpretation 

The geometric questions of the preceding section suggest that there are 
interesting integers that one can associate with scattering problems for networks. It 
is, however, not clear from this discussion what their physical interpretation is. In 
particular, it is not clear that they have anything to do with charge transport. 

There is another angle that suggests a connection between scattering and trans- 
port but which appears to have no topological content. This is the Landauer- 
Biittiker theory of quantum transport [36-38,471. See also [48] for a review. For 
a two-lead situation, the Landauer formula gives the conductance g in terms of the 
entries of the scattering matrix in (9.1): 

g= Itl’/jr12. (9.17) 

(The multimode case is more complicated.) This equation has no recognized 
topological content.6 Also, the conductance in this formula and the adiabatic 
conductances of the preceding chapters are objects of rather different nature. 
Specifically, the first is associated with dissipation in systems coupled to baths and 
the latter is nondissipative in isolated systems. Nevertheless, there are reasons to 
believe that a geometric interpretation of the Landauer formula exists. For example, 
related formulas make contact with the Hall effect [SO, 511. 

Putting all this together suggests that the coefficients of adiabatic transport (that 
are known to be geometric) must be related to the Chern numbers associated with 
the scattering problem. In the following two sections we shall describe Chern- 
Landauer type formulas for networks with one and n leads. 

F. Networks with One Lead 

Consider an n-vertex networks with an infinite lead attached to the n th vertex. 
The scattering matrix is just a complex phase. Specializing Eq. (9.6) to the case 
where p is rank one gives 

s= _ 1 -W’Ln 

1 + i(h-‘),,’ 
(9.18) 

6 Anderson and Lee [49] relate g to phases of the transmission amplitude in the vein of the relations 
derived below for the adiabatic conductances. 

595’206 2-16 
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Since S is one dimensional its eigenbundle is trivial. We can, however, ask how 
is the one-dimensional bundle of scattering states, the solutions of (9.16), embedded 
in C”. The vector F’,(k, 4) of Section 6 is a section of this bundle, since by Eq. (6.5) 
(h Vn)l is zero for j # n, regardless of k. Since the twisting of V, determines the trans- 
port coefficients at energy k, we conclude that: 

For a network with one infinitely long lead, the line bundle of scattering 
states with fixed energy has Chern numbers whose interpretation is the 
adiabatic transport coefficients at the energy k. 

G. Networks with as Many Leads as Vertices 

If a lead is attached to each vertex, then the scattering matrix is given by 
Eq. (9.7). As a result, the eigenbundles of S are precisely the eigenbundles of h. In 
Section 5D we saw that the zero-vector bundles of a network with n equally large 
but finite leads were the eigenbundles of h. We therefore conclude that: 

For fixed k, the n eigenbundles of the scattering matrix have n Chern 
numbers that correspond to the adiabatic charge transport of the n 
repeating eigenstates of the network with long but finite leads near the 
energy k. 

APPENDIX: THE SPECTRAL MATRIX FOR SINGULAR k 

In this appendix we treat the exceptional cases of Section 2, where the ordinary 
construction of a spectral matrix breaks down. We treat the cases where a lead is 
singular (i.e., cot(kZ) = --)1, + ,/k), where a link is singular (sin(kl) = 0), and where 
there are several singular links forming one or more loops. 

A. Singular Leads 

Consider a network with one singular lead attached to the nth vertex, i.e., a lead 
for which cot(kl)= -2,+,/k. Equation (2.15) then cannot determine Y,,, i, but 
does set ul, = 0. (If any nonsingular leads are attached to vertex n, this also implies 
that $ is zero on these leads). ul, + i can be determined from the boundary condi- 
tion (2.2) applied at vertex n, and is 

Y 
yj exp(-i4jn) 

n+l = -WW 1 sin(kl, ) y 
in 

(A.1) 

where the sum is over all links (but not nonsingular leads!) that connect to vertex 
n, where lj” is the length of the link and djn is the integrated vector potential along 
the link. The remaining n - 1 amplitudes ( Yy,, . . . . Yn- i) are determined by an 
(n - l)-dimensional matrix h,, obtained from the n-dimensional spectral matrix by 
removing the n th row and the n th column. (The n th row has already been used to 
determine Y,, + , , and the n th column does not contribute because Yn = 0). 
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If there are several (say m) singular leads attached to the nth vertex, then the 
analysis is as above with one exception. The boundary condition at n does not 
entirely determine the wave function on these leads, but merely provides one 
constraint to the m degrees of freedom. As a result there are (m - 1)-independent 
solutions supported entirely on the singular leads. 

Regardless of the number of leads, the reduced matrix can be associated to a 
reduced graph, as in Fig. 11. Delete the n th vertex and all links connected to the 
n th vertex, and introduce fictitious vertex potentials 

Aj = k cot(kf,), (A.21 

for all vertices j that connect to n. These results are summarized as follows: 

Suppose several leads are attached to the nth vertex of a network, and 
suppose that k is such that m > 1 of these leads are singular. Construct 
h, as above, by deleting the nth row and nth column of h. Then 

(a) Zf m > 1, or if det h, = 0, then k is in the spectrum with multipicity 
corank(h,) + (m - 1). (Zf m = 1 and h, is invertible then k is not 
in the spectrum). 

(b) There are exactly (m- 1) solutions supported entirely on the 
singular leads. That is, solutions with (Y,, . . . . ul,) = 0. 

(c) All solutions have Y,, =0 and have ( YI, . . . . Y,,- ,) in the kernel 
ofb 

B. Singular Links 

Suppose that a singular link runs from vertex i to vertex j. That is, sin(kf,) = 0. 
We call the link even if cos(kfV) = 1 and odd if cos(klV) = -1. By a choice of gauge 
we can always assume that 

exp($(l,)) cos(kZij) = 1. (A.3) 

On a singular link the wave function is not determined by its values at the 
endpoints, since we can fit a sine wave with nodes at both endpoints. However, 
since the wavefunction must take the form 

tj(x) = exp($(x))[A sin(kx) + B cos(kx)], (A.41 

we see that Yi= Yj. Adding the i and j boundary conditions (2.2) gives 

1 DI$ = Cni + Aj)+3 (A.5) 

where the sum is over all links that emanate from either i or j. The singular link 
connecting i and j appears twice in this sum, with the two terms adding to zero. 
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FIG. 27. Fusing vertices. 

This is seen from 

(0$)(x) = k exp[i#(x)][A cos(kx) - B sin&x)], (A.61 

which gives (D,ll/)i= -(D,$), (the minus sign coming from the convention that 
derivatives be taken outwards along the links). 

We can therefore treat i and j as a “fused” vertex, with boundary factor Ji + S. 
This is illustrated graphically in Fig. 27. In terms of matrices, identifying vertices i 
and j is the same as adding the ith and jth rows of the spectral matrix, and then 
adding the ith and jth columns, to form a new matrix of one less dimension. 
Repeating this procedure for each singular link, we get the following rule: 

Suppose k is such that a network of n vertices has m singular links that 
do not close to form any loops. Form a reduced network of n -m ver- 
tices by identifving vertices that are joined by singular links, and by 
then deleting the singular links. Let h, be the spectral matrix of this 
reduced network. k is in the spectrum of the original network if and 
only det h, = 0, and the multiplicity of k is the corank of h,. 

C. Singular and Dangling Loops 

Suppose now that k is such that the singular links form a closed loop i. Since the 
flux di through the loop is gauge invariant, the gauge choice (A.3) can typically be 
made for all but one singular link of a loop. The reduced network has the last 
singular link transformed into a singular dangling loop enclosing all of the flux ii 
(plus n if an odd number of odd singular links were remove); see Fig. 28. 

FIG. 28. Four dangling loops that result from fusion in the mesoscopic hubcap where all the links 
have the same length and so become simultaneously singular. 
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We must therefore consider how to treat a dangling singular loop, of length f, 
enclosing flux (6, attached to vertex n of an otherwise nonsingular network. The 
procedure depends on whether or not 

exp( id) = cos(kl). 

This is equivalent to the original large loop satisfying 

exp(i#j) = cos(kZ,), 

(A.7) 

(A.81 

with fi being the total length of the loop. 
The simpler case is when equality does not hold. In that case the amplitude B of 

the cosine wave (A.6) on the loop must equal zero, as must Y,, since B = !I’,, = 
B cos(kl) exp($). The amplitude A of the sine wave is determined by the boundary 
condition (2.2) at n. This is much like the case of a singular lead. We delete the nth 
vertex and all nonsingular leads and links attached to this vertex, adding the 
fictitious potentials (A.2). If m > 1 such loops are attached to vertex n, then there 
are m - 1 bound states supported on the loops, consisting of sine waves whose 
derivatives at n add up to zero. 

When (A.7) does hold, then B= !P” need not be zero, and A is not determined 
by other data. There exists a bound state supported entirely on the loop, with A # 0 
and Y, = 0 for all i. To find the other eigenstates, we delete the loop but not the 
vertex n, since Y,, need not be zero. 

Combining these cases we get the rules: 

Suppose k is such that there are 1 connected singular links, forming m 
loops and touching v vertices. 

(a) If all the loops satisfy (A.8), then there are exactly m solutions 
for which Yi = 0 for all i. To find the solutions with nonzero Yi, 
proceed as in Section B. Identtfy all the v vertices, but do not 
remove the (nonsingular) links connecting these vertices to the 
rest of the network. Form the reduced spectral matrix h, for this 
reduced network. The number of solutions with II/ nonzero on the 
vertices is the corank of h,. 

(b) If at least one loop fails to satisfy (A.8), then there are exactly 
m - 1 solutions with Y, = 0 for all i, and all solutions have +!t = 0 
on the v vertices touching the singular links. To get the reduced 
network, delete all v vertices, as well as all links touching these 
vertices, and form the resulting h,. The number of solutions with 
Ic/ nonzero on the remaining vertices is the corank of h,. 

Remarks. (a) If a network has singular links forming disconnected loops, then 
this reduction must be applied separately to each connected singular component. 

(b) If we set m = 0, we recover the rules of Section B. 
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(c) If m > 1, then k is in the spectrum, with multiplicity at least m - 1, 
regardless of the vector potential A. These “flat bands” solutions have a degeneracy 
that is stable under lots of deformations. 

As an application, we consider the hubcap with links of unit lengths. The singular 
k’s are k = mc, n = 1, 1, . . . . Here m = 4, with three loops of length two and flux li, 
and one loop of length three and flux zero. 

First suppose that (A.8) is satisfied for each of the loops. This occurs only at the 
points 4 = 0, k = 2~. Then there are m = 4 solutions with Y = 0 on the vertices. 
The reduced network consists of a single point with no links, so h,=O has 
corank 1, and we have one more solution, for a total of live. This last mode 
corresponds to a solution that is non-zero and constant on the vertices. 

At all points other than 4 = 0, k = 2nq (A.8) fails for at least one loop. There are 
then m - 1 = 3 solutions with !P= 0 on the vertices. These are the only solutions, 
as the reduced network is empty. To sum up, 

There are flat bands with a threefold degeneracy at the singular k’s At 
the special points 4 = 0, k = 2nq the degeneracy is fivefold. 
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