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Abstract. We obtain partial results on the conjecture that for the almost
Mathieu operator at irrational frequency, α, the measure of the spectrum,
S(α,Λ,,θ) = |4 — 2\λ\\. For \λ\ή=2 we show that if an is rational and αM-^α
irrational, then S+(απ,λ,0)-»|4 -2|λ||.

1. Introduction

In this paper we will discuss the almost Mathieu operator, also called Harper's
equation. This is the operator, hΛιλfθ on /2(Z) defined by

(vu) (n) = λ cos (2πocn + θ)u(ή) ,

where λ, α, θ are real parameters. This is the simplest of almost periodic Jacobi
matrices and there has been considerable literature studying it [1, 2, 4-6, 14, 17,
18].

We will be interested in S(α, λ, θ\ the Lebesgue measure of the spectrum σ(h^λ^\
It is a fundamental result (e.g. [2]) that for α irrational, S is independent of θ for α, λ
fixed but this is not true if α is rational. In that case we define S±(α, λ) to be the
Lebesgue measure of σ+(α,/l) where

As explained in [2], (J σ(α, λ, θ) is the more natural object in that it has a set
β

theoretic continuity in α.

* Research partially supported by U.S. NSF grant number DMS-8801918 and by BSF under
grant number 88-00325
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We are interested here in a conjecture that goes back at least to Aubry and
Andre [1] that

S(M,0) = |4-2|/l|| α irrational. (1.1)

By symmetry we can suppose λ^O which we henceforth do. Thouless [17] has
proven the following lower bound:

2Λ) α rational; A^O,

and he argued that therefore

S(α, λ, θ) ̂  (4 - 2λ) α irrational λ ̂  0 .

While a proof of this was not given, we will see it is not hard to prove from the
rational case. In a subsequent work, Thouless [18] presented the result that

limίs(-,2,0>)=32/?(2)/π,
4-co \q )

where β(2) is Catalan's constant. In that paper, the issue of gap edges ordering that
we discuss in Sect. 3 is also discussed. We will prove

Theorem 1. For α rational and 0<λ<2:

For λ^2: S_=0.
As for S+, we will prove that

Theorem 2. For p, q relatively prime and 0 ̂  λ < 2,

We recall Andre- Aubry duality [1,2] which implies that

λ ( 4\
S+(α,Λ)=-S+( α,- I α rational, λ>0,

2 \ λj

/ 4 \
S(α, A, θ) = - S α, -, 0 ) α irrational, λ > 0 .

2 \ λ J

This implies with Theorem 2 that if pn,qn are relatively prime and qn-*oo, then

lim S+ \—9λ] ->\4-2λ\

This strongly supports the conjecture (1.1) but as we will explain we have not
succeeded in proving it.

In Sect. 2, we prove a result on the Mathieu operator that can be considered the
continuum analog of Theorem 1 [or of the conjecture (1.1)]. In Sect. 3, we reduce
the proof of Theorem 1 to a result on the ordering in terms of symmetry of levels of
certain operators. In Sect. 4, we prove a result on degenerate perturbation theory
which we use in Sect. 5 to prove the theorem on the ordering of level α. In Sect. 6 we
prove Theorem 2. Finally, in Sect. 7, we discuss the problems with extending the
result to prove (1.1).
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2. The Mathieu Equation: A Warmup

As a warmup for the main theorem, we want to prove the following theorem about
the Mathieu equation:

Theorem 3. Let Hλ= — —^ +/lcos(x) on L2(— oo, oo). Let eQ(λ) = infσ(H λ) and let

(μrtj_(/ί),μΠ)+(/l)) be the nth gap in the spectrum. Then

oo

Proof. Let μD)M be the nih Dirichlet eigenvalue for the Mathieu operator on (0,2π).

There is a general sum rule that for general — -^ + V(x) (with a period 2π) [13] =
00

eo + Σ [A, + + μn, - ~ 2μD, nl—2 v(0). (2.2)

Since all quantities in (2.1) are even in λ (on account of translation of x to x + π), we
can suppose λ > 0. Since cos(x) is even, one of μΠs +, μΠj _ is μDtn and the other is the
Neumann eigenvalue μNtn. (We count so the Dirichlet eigenvalues start at n = 1 but
the Neumann at n = 0.) Thus (2.2) becomes

00

i V / \ *"> 1 /^ O\eo+ Σ (A%,n-/*!>,«) = 2,1. (2.3)

Suppose that we prove that for all

μN,n-μD,n>Q (2.4)
Then for n=l,2, ...,

and (2.3) is precisely (2.1).
It is a standard fact [15] that for all /IΦO, μn t+(λ)ή=μn _(/l) (special to the

Mathieu equation). Thus it suffices to prove (2.4) for λ large.
The gap edges μn ± are well known [15] to be precisely the eigenvalues with

periodic and antiperiodic boundary conditions for 2 -f V(x) on L2(0, 2π).
ttX

Equivalently, these are the periodic B.C. eigenvalues for the operator on
L2( — 2π, 2π). If one looks at cosx on ( — 2π, 2π), this is a classic double well problem
with minima at ± π and reflection symmetry about x = 0. In terms of eigenfunc-
tions being even or odd under that symmetry, it is known that in the λ large region
the ordering is [10, 16]; E, O, E, O, . . . . Since even means Neumann on (0, 2π) and
odd means Dirichlet, we see that for each n and λ large μn,D<μn,N (recall the
numbering conventions E, O, E, O, . . . means μNf 0 < μD< ± < μNt ^ < μDt 2 < - - •)• D

Equation (2.1) can be reinterpreted in a way that shows why it is a warmup.
Consider the sets σ(Hλ)\σ(H0) and σ(HQ)\σ(Hλ). The first is [e0, 0) with the negative
gaps in σ(Hλ) removed. The second is the union of the positive gaps. Thus, with
I I = Lebesgue measure:

\σ(Hλ)\σ(H0) \ - \σ(H0)\σ(Hλ)\ = - e0-
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so (2.1) says that

\σ(Hλ)\σ(H0)\ - \σ(H Q)\σ(H λ)\ = - 2\λ\. (2.5)

For finite measure sets \A\B\ - \B\A\ = \A\ - \B\, so that formally (2.5) says

\σ(Hλ)\ = \σ(H0)\-2\λ\ (formal!),

which is the continuum analog of Theorem 1 where |σ(/ι0)| = 4. Π

Theorem 3 has the following amusing consequence:

Proposition 4. Let Hλω= — —-^ + λ cos (cox), and let |G| (λ, ω) be the total measure

of its gaps. Then

|G|μ,ω) =

in particular lim |G| (A, (ω)) = 31, and lim |G| (λ, ω) = 2λ.
(Q~*Q CD~* 00

Remark. This is interesting because HA j 0 is just the shifted Laplacian which, of
course, has no gaps in the spectrum. So, the limit of the gap measure (as ω->0) is
larger than the gap measure of the limit. The misbehavior of the measure is related
to the difficulties we have encountered in proving the Aubry-Andre conjecture (see
Sect. 7).

Proof. By scaling

from which it follows using (2.1), that

2A
~2

since =2A-ω%(«,

the result follows. Π

3. Proof of Theorem 1 up to Level Ordering

In this section we prove Theorem 1 assuming some facts about level ordering
which we will not prove until Sect. 5.

Let oc=p/q with p, q relatively prime. In finding the spectrum of hp/qfλtθ, a key
role is played by the discriminant of the problem. Recall that if v(n) has period q,
one defines the transfer matrix

£-ι>(0) -l\/£-β(l) -
T(E)= i o j l i o



Measure of the Spectrum for the Almost Mathieu Operator

D(E)
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Fig.l

and the discriminant

For hp/qίλ θ we will use Dplq(E,λ, θ). If one follows D(E) as a function of E from E
near 4- oo downwards it is large for E large and then falls monotonically to below
— 2 (could be equal to —2). It then turns around and crosses —2 in arriving
monotonically to -f 2, etc. There are q regions where it passes monotonically from
2 to —2 [15]. Schematics are shown in Fig. 1 (for q odd).

The spectrum of h0 + v is the inverse image under D of the interval [ — 2,2]. The
band edges are the points where D(E) — ±2. D(E) = 2 are the eigenvalues of the
operator /ι0 + v with periodic boundary conditions and D(E) = —2 are the
eigenvalues of the same operator with antiperiodic boundary conditions.

As with so much else in the study of the almost Mathieu equation, our analysis
depends on a remarkable formula of Chambers [6] and Butler-Brown [5] giving
the θ dependence ot Dp/q(E,λ,θ). Let Ap/q(E,λ) = Dp/q(E,λ,θ = π/

Proposition 3.1. // p9q are relatively prime:

= Δp/q(E,λ)-2(-\ COS(qθ). (3.1)

Sketch. For the reader's convenience, here is a sketch of the proof. Imagine writing
out cos(2πα/ + 0) and multiplying the matrices defining T. It is clearly a sum of
terms whose θ dependence is eimθ, m=—q,—q + \, ,q — \,q. By cyclicity of the
trace, D is invariant under adding 2πp/q to θ. Since p is relatively prime to q, it must
be invariant under adding 2π/q to θ so that D must have a Fourier expansion eimθ

with m divisible by q. It follows that only m = 0, ±q are present. It is easy to
compute the ±q terms and (3.1) holds. Π

Henceforth we use A^O for convenience. As a direct consequence of this we
have [4].

Corollary 3.2. σ+(α,/ί) is the inverse image under A of the interval

αv
,2j
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Δ(E)

Fig. 2

2+2(λ/2)q

:0=0
2-2(λ/2)q 0=ιτ/q

-2+2(λ/2)q 0=0
-2-2(λ/2)q

:0=q

// λ > 2, σ _ (α, λ) is empty, if λ = 2, σ _ (α, λ) is a discrete set, and if λ < 2, σ _ (α, λ) is the

Γ ίλ\q /iVl
f I -2 + 2ί - J , 2-2^-J J; see Fig. 2.inverse image of

To study S_, particular relevance is associated to the cases where
(λ\q ίλ\q

A = ±2 + 21 - 1 which gives the edges of S_. The case A = — 2 + 21 - 1 corre-

sponds to 0=0 and antiperiodic boundary conditions. That is if we take the sites

,9-1

= -1, |i-j| = 9~l.

(Note : The only pairs with |ΐ —7) = 9 — 1 are i = Oj* = q — 1 and its symmetric pair.) If
q is odd, we can take the points

n= — _j_ι
' *> 5

and still take ha with /ί0 = — 1 for the ( — coupling. If 9 is even we

9 9 9 /9 9 \
take «= — -+!,..., + - — 1,^ and the I ̂ , - ^ +1 ] coupling negative. We define

2 2 2 \ 2 2 )

the symmetry:

^
(Ru)(ri) = u( — n)9 q odd or I 9 even and

= -u(n), 9 even, n=-.

'2 r

With this strange Λ, it is easy to see that both /z0 and v are invariant under the
fq\

symmetry R, that is, they commute with R. The minus in — u I - 1 is needed to turn

(*o)«/2-ι,«/2 into (ho)-q/2 + ι,qi2 Since /z is invariant, we can classify all its
eigenvalues as even or odd. In Sect. 5 we will prove:
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Theorem 4a. For q odd, the order of levels for 0 = 0 with antiperiodic boundary
conditions is

E 0 E O...E.

For q even, 9 = 0, and the same boundary conditions, it is

0 E 0 E...E.

* ι ™ π (q— l\2π t _ π
Suppose now that q is odd. Then — = π — ——— — so that θ = — and θ = π are

« V 2 / 4 4
translates and we may as well take θ = π, Le. — Λcos(2παw). This potential is
obviously invariant under (Ru)(n) = u(—n) if we take

If q is even, θ = - is equivalent to taking n half-integral with the potential cos(2παn)

with
1 1 (q~\

2 /"•' 2'2'""V 2

and again we have invariance. In Sect. 5, we will also prove.

Theorem 4b. For q odd, θ = π, periodic boundary conditions the ordering of levels is

E 0 E O...E.

For q even, 0 = —, periodic boundary conditions, it is
q

0 E 0 E...E.

The next step in the proof of Theorem 1 concerns the difference between traces
over the even and odd spaces. For each of these Hamiltonians, H, let Γ(H)
= Tr(HpQ~Tr(HfJf0), where tfe (respectively Jf0) is the subset of states on
which jR= -f 1 (respectively —1), then:

Proposition 3.3. Γ(H) has the following values:
(a) q odd; 0=π, periodic B.C. Γ(H)= -λ + 2,
(b) q odd; 0=0, antiperiodic B.C. Γ(H) = A-2,

(c) q even; 0= -, periodic B.C. Γ(#) = 4,
q

(d) q even; 0=0, antiperiodic B.C. Γ(H) = 2λ.

Proof, (a) A basis for the even states is

1/2

and for the odd states < J r~~*\ - The terms from the potential

v= — λcos(2πocn) cancel exactly for j = l, ...,(g —1)/2 but (δ0,vδ0)= — λ con-
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tributes. h0 has a diagonal matrix element because h0δ(q _ 1)/2 = δ _ (q _ 1)/2 -f <5(ί - 3)/2-
This diagonal matrix element is 1 on the even space and — 1 on the odd so Γ = — λ
+ l-(_l) = 2-λ

(b) The basis is the same as in (a) but now v = λcos(2πocn) so ((50,vδ0) = λ.
Because of the antiperiodic boundary conditions the diagonal matrix elements of
/z0 have opposite signs so Γ = λ —!—(+!) — λ — 2.

(c) As noted above, the reflection is natural in terms of a basis δp

Then a basis for even states is < J'
I 1/2

states

<5;-<5-;

and for the odd

<5/±<5-j - ._!

. For the even states each such matrix element is 1 and for the odd states — 1.

The potential terms cancel exactly but h0 has diagonal terms for

(« + l)

Since l + l-(-l-l) = 4, Γ(H) = 4.
f(5.+(5_.l («~2 ) / 2

(d) A basis for the even states is {<50} u < J J > and for the odd states
(. 1/2 J j = ι

«-2)/2

δq/2 is odd as discussed above. h0 has no diagonal matrix elements. The v matrix
elements canceled except for δq/2 and δ0. Since λ — ( — λ) = 2λ, we have that Γ(H)
= 21

Proo/ o/ Theorem 1. Consider first the case q odd. Then the ordering of levels gives
the picture in Fig. 3.

S_ is the sum of the bands. Half the bands actually ί — — ) run from even

antiperiodic up to even periodic while half the bands actually — r— j run from

Δ(E)

Fig. 3

2+2(λ/2)q

-2-2(λ/2)q
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odd and periodic up to odd and antiperiodic. Thus, by Proposition 3.3,

5_ =(even periodic)— (even anti) + (odd anti) — (odd periodic)

= Γ(H, periodic) — Γ(H, antiperiodic)

The argument for q even is similar: Γ is positive at large negative E so the first
band runs from odd to odd. But

Γ(H, periodic) -Γ(H, antiperiodic) = 4 -2λ

still holds. Π

4. Degenerate Perturbation Theory

In understanding where we will need the theorem below, think of R as reflection
symmetry, A as the potential v, B as /z0, μ as λ'1 and φn as a renumbering of
Kronecker delta functions.

Theorem 4.1. Suppose that A and B are finite self-adjoint real matrices and R a
unitary matrix which obeys R2 = \ and

Suppose that E0 is a doubly degenerate eigenvalue of A for which there are
orthogonal eigenvectors <p0><Pι so that

Let φ2,...,φnbea labelling of other eigenvectors of A to yield a complete set and let
Aφm = Emφm. Let E±(μ) denote the eigenvalues of A + μB whose eigenvectors

approach φ± = —;=(<Po ± φ\} as μ->0. Because of the symmetry, R, we know φ± are
1/2

the limiting vectors. Suppose that for all l<p and all φnι, ...9φnι_ί we have that

Then, as μj,0:

where

y (φl9Bφnί)...(φnp_ί9Bφ0)

Proof. We begin standard eigenvalue perturbation theory [12,15], namely we
consider the projection P(μ) onto the eigenspaces for E±. Then, for μ small:
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Clearly

E±=(φ±,(A + μB)Pφ±)/(φ±9Pφ±)

= E0 + μ(φ±,BPφ±)/(φ±,Pφ±). (4.1)

By expanding [z — (A + μB}]~^ in a geometric series with remainder in the usual
way [12, 15], one sees that

(4.2a)

(4.2b)

For (4.1), we look at

so (4.1)-(4.2) implies

E ± = EO + μl(φ<» BPφ0)/(φθ9 Pφ0)] ± γμ*/(φθ9 Pφ0) + 0(μp + *) .

Since (φ0, Pφ0) = 1 + 0(μ), the theorem is proven. Π

5. The Ordering of Levels

We want to prove Theorems 4a, b (from Sect. 3) using Theorem 4.1. The levels in
Theorem 4a,b are non-degenerate for /IΦO, oo. This is because the gaps can only

/ fλ\q\
close in principle for the case where A = ± I 2 + 2 1 - 1 not for the case

A = ± ί 2 — 2 ί - of interest to us. In fact [9, 14], (except for the middle gap if q is

even) the gaps don't even close for A = ± ί 2 + 2 ί - J J but we will not need this
subtle theorem. \ \ / '

We write h0 + λv = λ(v + λ ~ ̂ h0) and think of h0 as a perturbation of v. Levels of
v will be degenerate and symmetric so we can apply Theorem 4.1.

Case 1: 0 = 0, antiperiodic B.C., q odd. The potential is

v(ri) = cos(2πpn/q).

The top level with n = 0 is non-degenerate and even. The others are degenerate due
to w-> — n symmetry and the ordering of levels (Theorem 4a) says that they split
even odd, i.e. the quantity γ of Theorem 4.1 is negative. /ι0, the perturbation, links
only neighboring levels. δm and 0 _ m will be linked first via one of these chains going

through n = 0 or n= ± I J. For the n = 0 chains all h0 matrix elements are

positive. All energy denominators come in pairs except for (Em —En = 0)~ί which is
negative because En=Q = 1 is the largest eigenvalue, oft?. If the chain goes through
<5±(g-i)/2 all en^rgy denominators come in pairs but one hQ matrix element
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because of the antiperiodic boundary conditions. So y is always negative and we
have the claimed E 0 E 0 ... E 0 E ordering.

Remark. We see that the 0 = 0, periodic B.C. splitting (not one we need!) is
complicated. y<0 for chains going through n = 0, while for chains through
n = ± (q — 1)/2 we have y > 0.

Case 2: 0 = 0, antiperiodic B.C., q even. The potential is now

) = cos(2πpn/q).

n = 0 and n = q/2 are non-degenerate with n = 0 even and n = - odd as explained in

Sect. 3. n = q/2 is the bottom level, n = 0 the top. All other levels are degenerate and
we want to show that y<0 so the spiking is even below odd and we get
0 E 0 E O...E. Again chains can go through n = Oorn = q/2. The ones through
(50 have all /ι0 matrix elements positive and all energy denominators paired except
for (Em— En=0)~ί which is negative. For chains through n = q/2, one matrix
element is negative. The energy denominators are all paired except for
(Em — En=q/2)~i which is positive. So y<0.

Case 3: 0 = π, periodic B.C., q odd. The potential is

v(n) = — cos(2πpn/q) .

The bottom level is n = 0 and is even. We claim y > 0 so the ordering of each of the
other pairs is 0 E and overall we have E 0 E 0 E ...E. h0 only has positive
matrix elements. All energy denominators are paired except for (Em — En=0)~l

which is positive so y > 0.

Case 4: θ= — , periodic B.C., q even. As noted the basis is {δn} with

All states are paired, h0 has only positive matrix elements and all energy
denominators are paired so y>0, odd is below even and the ordering is
O E 0 E ... O E as claimed. Π

6. Proof of Theorem 2

By the analysis in Sect. 3, S+/S_ is the inverse image under Δplq of the intervals

fλ\*
S+/S- will be small because ( - I is small. Consider one connected piece of the

inverse image under Ap{q of
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We want to think of this instead as the inverse image under D vlQ(-, λ,0 = 0) of
/ fj\q \

( 2 — 4 1 - 1 , 2 1 and in particular as a part of the spectrum of /zp/ί>Λ>0 = 0. Let r(E)

= πk(E) be the rotation number for this problem where k is the integrated density
of states. We know that r(E) is determined by

(6.1)

On the other hand, Deift-Simon [7] have proven that on the spectrum

έ4
Proof of Theorem 2. For simplicity, suppose that D(E) is increasing on the piece of
inverse image in question. Let E0 be the point where D(E) = 2 and £0 — δE the point

fλ\q 4
where D(E) = 2-4( - j . D(E) = 2cos(qr) and for \δz\ <π, 2cosz^2 -- ^(δz)2 near

a point where z = z0 + <5zcos(z0) = l. Thus

By(6.2), <5£^2<5r. Thus

There are 2q bands in S+/S- so Theorem 2 is proven.

7. The Irrational Case

In this final section, we want to make some remarks about the irrational case. We
begin with a theorem about the continuity of gaps:

Proposition 7.1. Let f be a C1 function on the unit circle. Let σ(α, θ) be the spectrum
of

and let σ(α) = (J σ(α, θ). There exists C>0 so that if Eeσ(α) and |α-α'|

ooΓ1, then there is E'eσ(α') with

Remarks. 1. One could decrease 6 somewhat with little effort.
2. Our method is related to that of [9] who used a sharp cutoff in place of our test
function below and so obtain |α — α'|1/3.
3. The result extends to functions with several frequencies.

Proof. The basic idea is to take an approximate eigenfunction for ft(α, θ) — E and cut
it off over a distance L. The cutoff introduces error of order L~ 1 in the kinetic
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energy and the potential energy difference is of order L|α — α'| H/ΊL. The sum is
optimized by the choice L = O([|α-α'| | |/Ίloo]~1 / 2)

Explicitly given ε, find Oφφεe/2(Z) and θ so that

\\(h(x,θ)-E)φε\\^ε\\φε\\.

Let η0yL be the test function

and let

^,L(») = ίo,L(«-7)»

the test function centered at j. We want to show that for each L and some j

\\(h(^θ)-E)ηjtLφε\\^lε + 0(L-^-] \\j>Lφε\\ .

Note first that

j

is independent of n. Clearly:

Since \\u + v\\2^(ί +δ) \\v\\2 + (\ +5'1) \\u\\2,

Now

[^.L.ΛO]JJ±I = C(.AL if \i\,\i±ί\^

=0 otherwise

with each c; Λ L= + — . It follows that
J-/

SL
with j8L ̂  8L for L large. Since αL ~ — we see that

.
j j j

if L ̂  L0(<5). Thus for some j, ηjt L φε φ 0 and :

\\(h(^θ)-E)η^Lφε\\ ^(ε2(l +

Next given α' near α, let 0' be such that
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Then on supp(j/ΛLφε)

so that

\\(h(x\θ')-E)ηjtLφε\\^c\\ηj>Lφε\\,

where

Let
c = |/Ϊ2L-1+(2π)||/1|00|α-αΊL,

whose minimum value is

Take for L= VΊ^βΣπJ^II/'ll^lα-αΊ172]"1. Since 2\/\2]/2^<6 and ε can be
taken arbitrarily small, the result is proven. Π

Theorem 7.2. Under the hypothesis and notation of Proposition 7. ί, let E±(a)

= . f σ(α). Then E+ are Holder continuous of order % and, indeed, for |α — α'| small
mi

Proof. Fix α. By Proposition 7.1 for |α — α'| small,

so

Interchange α and α' to get the £_ result. The E+ result is similar. Π

Recall [3, 8, 1 1] that gaps in σ(α) are labelled by integer m with k(E) = (met) in the
gap. One definition of m is as follows. Fix E0 in the gap. For each 0, there is a unique
function u+(n,θ) solving

(/ι(α, θ) — E0)u + = 0 (difference equation)

with u + 12 at + oo . m is just the winding number of the vector (u + (0), u + (1 )) in R2, i.e.
as a map of S1 to R2\{0}. Let £^(α) be the edges of this gap and Gm(α) = £^(α)
-£^(α)its size.

Theorem 7.3. Under the hypothesis of Proposition 7.2, if Gm(α)>0, then for |α — α'|
small enough (how small only depends on Gw(α) and \\ fa || ll2), we have GOT(α') > 0 and

Proo/ Since ft(α, 0) has no spectrum in (El (α), £ΐ(α)), we have that for |α' — α| small,
/ι(α', θ) has no spectrum in
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which is non-empty (for |α — α'| small). Let E0 be the middle of the gap. A simple
continuity argument shows that the winding number on m at E0 is constant on the
interval from α to α'. Symmetry implies the result. Π

Now fix λ and let S(α) be the S+(α,A). Then

*)• (7.1)
m

The only bar to proving that S(α) is continuous, given the last two theorems, is the
fact that the sum in (7.1) is infinite. If we obtain a summable bound on the
individual terms, we could prove continuity in α. That this is not trivial is seen by:

Fact 1. S(α) is discontinuous at every rational α (at least for 0 < λ < 2)1 For given α
rational, put u»=pjqn with qn-+vo and αw-»α. We have proven that S(απ)-»4 — 2λ

It must be in this case that the total of £ Gm(αJ contributes to lim (£ Gw(απ))
αn->α

but not to £ Gm(α) (!). We believe that S(α) is continuous at irrational α but have not
found a proof. Let us try to explain why irrational α differs from rational α and
explain how if one could prove Holder continuity of order χ > 1/2 uniformly in m,
one could prove continuity at most irrational α.

Fact 2. Among all reals, the rationale are worst approximated by rationals (!). To
be precise if α is real and pn/qn-+a (with p,q relatively prime) and gπ-»oo, then

Bffiί,, qn

for if (X=p0/qo and pn/qn^p0/qQ (qn>q0) then \Cf.-pn/qn\^i/qnqQ so that lim is
larger than ί/q0. On the other hand any irrational α has a set of canonical rational
approximations [19] pjqn so that qn+ι>qn and

l« - pn/qn\ ̂
Suppose we know that |Gw(α) — Gm(α')|^C|α-α'|* with χ>l/2. Since

Pn_Pk

<1« Ik

Pn

In

^ι/9rf

Pn + 1

<?„+!

, we hiand for

If 2\m\>qn, then Gm(απ) = 0 so it follows that

\Gm(^k)\^Cq^q-+\ , fe^n; \m\>qn/2.

SoforqJ2<\m\<qn+1/2:

for all αk [since Gπ(αk) = 0 if fe ̂  ri]. Thus, to get continuity of S(α) as αk->α we only
need that
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Since qn ̂  2n/2, this follows if

0» + ι^«2
y y

with β < . Since > 1, this holds for a.e. α. Alas we do not even know if the
i-% i-χ

estimate is true with χ> 1/2.
Note that upper semi-continuity of σ+ is easy given continuity of Gn so that the

lower bound on σ+ follows from the rational case.
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