THE LAGRANGIAN OF A TOP

J.E. AVRON

Abstract. The solution to problem 1 in Moed B, Fall 2002

1. Conjugate momenta

$$
\begin{align*}
p_{\theta} & =I_{1} \dot{\theta} \\
p_{\phi} & =\left(I_{1} \sin ^{2} \theta+I_{3} \cos ^{2} \theta\right) \dot{\phi}+I_{3} \cos \theta \dot{\psi} \\
p_{\psi} & =I_{3}(\dot{\phi} \cos \theta+\dot{\psi}) \tag{1.1}
\end{align*}
$$

2. Constants of motion

ϕ and ψ are cyclic coordinates so their conjugate momenta are constants of motion.

The Lagrangian is time independent so the energy is a constant of motion.

3. Euler-Lagrange

$$
\begin{aligned}
\dot{p}_{\theta} & =\left(I_{1}-I_{3}\right) \dot{\phi}^{2} \sin \theta \cos \theta-I_{3} \dot{\phi} \dot{\psi} \sin \theta-K \sin \theta \\
\dot{p}_{\phi} & =0 \\
\dot{p}_{\psi} & =0
\end{aligned}
$$

4. Special solution

From the constancy of p_{ϕ} it follows that θ is a constant of motion if $\dot{\phi} \neq 0$. If $\dot{\phi}=0$ this follows from the constancy of p_{ϕ} provided $\dot{\psi} \neq 0$.

Assuming that at least one of $\dot{\phi}, \dot{\psi} \neq 0$, we get from the remaining equation of motion

$$
0=\left(I_{1}-I_{3}\right) \dot{\phi}^{2} \sin \theta \cos \theta-I_{3} \dot{\phi} \dot{\psi} \sin \theta-K \sin \theta
$$

which implies that either $\sin \theta=0$ or θ is a solution of

$$
\left(I_{1}-I_{3}\right) \dot{\phi}^{2} \cos \theta-I_{3} \dot{\phi} \dot{\psi}=K
$$

It remains to consider the case that $\dot{\phi}=\dot{\psi}=0$. The equation for θ reduces to

$$
\dot{p}_{\theta}=-K \sin \theta
$$

which is the equation of motion of the physical pendulum.
Department of physics, Technion, Haifa, Israel
E-mail address: avron@physics.technion.ac.il,

[^0]
[^0]: Date: May 12, 2002.
 Thanks to Dan Gorbonos.

