THE INTERTIA TENSOR OF EQUILATERAL TRIANGLE

J.E. AVRON

Abstract. The solution to problem 4 in final, Fall 2002

1. Show that the frame is a principal frame

Since all three masses are on the $z=0$ plane

$$
I_{x z}=I_{y z} 0
$$

For the remaining

$$
I_{x y}=-m \sum x_{i} y_{i}=-m\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)
$$

m_{1} has $x_{1}=0$ and so does not contribute. For the remaining t20 $y_{2}=y_{3}$ and $x_{2}+x_{3}=0$ hence $I_{x y}=0$.
2. The inertia tensor in frame I

From the figure, and elementary geometry

$$
I_{x x}=m a^{2}\left(\frac{1}{4} 2\right)=\frac{m a^{2}}{2}
$$

the hight of the triangle is $h=\frac{a \sqrt{3}}{2}$ then

$$
I_{y y}=m h^{2}\left(2\left(\frac{1}{3}\right)^{2}+1\left(\frac{2}{3}\right)^{2}\right)=m a^{2}=\frac{3}{4} \times \frac{6}{9}=\frac{m a^{2}}{2}
$$

Since the triangle is thin

$$
I_{z z}=I_{x x}+I_{y y}=m a^{2}
$$

3. The Intertia tensor in a rotted frame

Since the top is symmetric, the inertia tensor is the same in all frames rotated in the x-y plane, i.e.

$$
I=\frac{m a^{2}}{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Department of physics, Technion, Haifa, Israel
E-mail address: avron@physics.technion.ac.il,

[^0]
[^0]: Date: February 23, 2002.
 Thanks to Dan Gorbonos.

