TWO MASSES ON A HOOP

March 3, 2002

1 The Lagrangian

The kinetic energy is

$$
T=\frac{m R^{2} \dot{\varphi}_{1}^{2}}{2}+\frac{m R^{2} \dot{\varphi}_{2}^{2}}{2}
$$

From the Cosine Theorem, the potential energy is

$$
U=\frac{k}{2}\left(\sqrt{2 R^{2}-2 R^{2} \cos \left(\varphi_{2}-\varphi_{1}\right)}-\ell_{0}\right)^{2}=\frac{k}{2}\left(2 R \sin \left(\frac{\varphi_{2}-\varphi_{1}}{2}\right)-\ell_{0}\right)^{2}
$$

So the Lagrangian is

$$
L=T-U=\frac{m R^{2} \dot{\varphi}_{1}^{2}}{2}+\frac{m R^{2} \dot{\varphi}_{2}^{2}}{2}-\frac{k}{2}\left(2 R \sin \left(\frac{\varphi_{2}-\varphi_{1}}{2}\right)-\ell_{0}\right)^{2}
$$

The E.L. equations are:

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\varphi}_{i}}\right)=\frac{\partial L}{\partial \varphi_{i}} \quad(i=1,2) \\
m R^{2} \ddot{\varphi}_{1}=k R\left(2 R \sin \left(\frac{\varphi_{2}-\varphi_{1}}{2}\right)-\ell_{0}\right) \cos \left(\frac{\varphi_{2}-\varphi_{1}}{2}\right) \\
m R^{2} \ddot{\varphi}_{2}=-k R\left(2 R \sin \left(\frac{\varphi_{2}-\varphi_{1}}{2}\right)-\ell_{0}\right) \cos \left(\frac{\varphi_{2}-\varphi_{1}}{2}\right)
\end{gathered}
$$

2 Equilibrium

$\varphi_{1}=$ const and $\varphi_{2}=$ const are solutions of the equations iff

$$
\sin \left(\frac{\varphi_{2}-\varphi_{1}}{2}\right)=\frac{\ell_{0}}{2 R}
$$

or

$$
\varphi_{2}-\varphi_{1}=\pi
$$

The first equation is for stable equilibrium (The spring is not streched) and the second is for unstable equilibrium (The spring is streched to its maximum).

3 Small Oscillations

When $\ell_{0}=\sqrt{2} R$

$$
\sin \left(\frac{\varphi_{2}^{0}-\varphi_{1}^{0}}{2}\right)=\frac{\sqrt{2}}{2}
$$

φ_{i}^{0} is the angle in stable equilibrium $\left(\varphi_{2}^{0}-\varphi_{1}^{0}=\frac{\pi}{2}\right)$ and ϕ_{i} is the small deviation from it ($i=1,2$).
$\sin \left(\frac{\varphi_{2}^{0}+\phi_{2}-\varphi_{1}^{0}-\phi_{1}}{2}\right)=\sin \left(\frac{\varphi_{2}^{0}-\varphi_{1}^{0}}{2}\right)+\frac{1}{2} \cos \left(\frac{\varphi_{2}^{0}-\varphi_{1}^{0}}{2}\right)\left(\phi_{2}-\phi_{1}\right)+O\left(\phi_{1}^{2}, \phi_{2}^{2}\right)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{4}\left(\phi_{2}-\phi_{1}\right)+O\left(\phi_{1}^{2}, \phi_{2}^{2}\right)$
So the Lagrangian in this approximation is

$$
L=\frac{m R^{2}{\dot{\phi_{1}}}^{2}}{2}+\frac{m R^{2}{\dot{\phi_{2}}}^{2}}{2}-\frac{k R^{2}}{4}\left(\phi_{2}-\phi_{1}\right)^{2}
$$

4 Normal modes and frequencies

From the last form of the Lagrangian

$$
\begin{gathered}
K=\frac{k R^{2}}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
M=m R^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
\operatorname{det}\left(K-\omega^{2} M\right)=0 \Rightarrow\left(\frac{k}{2}-\omega^{2} m\right)^{2}-\left(\frac{k}{2}\right)^{2}=0
\end{gathered}
$$

The solutions for the frequencies are:

- $\omega_{1}=0$ with the normal mode $\frac{1}{\sqrt{2}}\binom{1}{1}$ (The two masses move together in the same direction)
- $\omega_{2}=\sqrt{\frac{k}{m}}$ with the normal mode $\frac{1}{\sqrt{2}}\binom{1}{-1}$ (The two masses move in opposite directions with the same amplitude and frequency $\sqrt{\frac{k}{m}}$)

