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1 The Lagrangian

The kinetic energy is

T =
mR2 _'1

2

2
+
mR2 _'2

2

2
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So the Lagrangian is
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The E.L. equations are:
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2 Equilibrium

'1 = const and '2 = const are solutions of the equations i�
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The �rst equation is for stable equilibrium (The spring is not streched) and the
second is for unstable equilibrium (The spring is streched to its maximum).
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3 Small Oscillations

When `0 =
p
2R

sin(
'0
2
� '0

1

2
) =

p
2

2

'0
i
is the angle in stable equilibrium ('0

2
�'0

1
= �

2
) and �i is the small deviation

from it (i = 1; 2).

sin(
'0
2
+ �2 � '0

1
� �1

2
) = sin(

'0
2
� '0

1

2
)+

1

2
cos(

'0
2
� '0

1

2
)(�2��1)+O(�21; �22) =

p
2

2
+

p
2

4
(�2��1)+O(�21; �22)

So the Lagrangian in this approximation is
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4 Normal modes and frequencies

From the last form of the Lagrangian
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The solutions for the frequencies are:
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