I. REVIEW OF LINEAR ALGEBRA- EXERCISES

1) Prove that the matrix

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

is not diagonalizable.
2) Let $\mathbf{v} \in \mathbb{R}^{\mathbf{3}}$ be a vector with $\|\mathbf{v}\|=\mathbf{1}$ and $\theta \in \mathbb{R}$ any real number.

Prove that

$$
\exp (i \theta \mathbf{v} \cdot \sigma)=\cos \theta \mathbf{I}+\mathbf{i} \sin \theta(\mathbf{v} \cdot \sigma)
$$

where I is the identity operator on \mathbb{C}^{2} and σ is the Pauli vector operator of components $\sigma_{x}, \sigma_{y}, \sigma_{z}$.
3) Find the left polar and right polar decompositions of the matrix A defined in Ex. 1.
4) Consider two spin $1 / 2$ particles defined on the Hilbert spaces V, W and the corresponding sets of spin operators

$$
s_{x}=1 / 2\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), s_{y}=1 / 2\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), s_{z}=1 / 2\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

on V, and analogously,

$$
S_{x}=1 / 2\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), S_{y}=1 / 2\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), S_{z}=1 / 2\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

on W.
Write explicitly, on the tensor product space $V \otimes W$, the matrices $s_{j} \otimes I$, $I \otimes S_{k}, s_{j} \otimes S_{k}$, with $j, k=x, y, z$.
5) With the same definitions as in Ex. 4, consider in $V \otimes W$ the singlet state

$$
|\Psi\rangle=1 / \sqrt{2}\{|0\rangle \otimes|1\rangle-|1\rangle \otimes|0\rangle\}
$$

where $|0\rangle,|1\rangle$ are the eigenvectors of σ_{z} corresponding to the eigenvalues $1,-1$ respectively.
Show that the mean values over the state $|\Psi\rangle$ satisfy

$$
\left\langle s_{j}\right\rangle=\left\langle S_{k}\right\rangle=0 ;\left\langle s_{j} \otimes S_{k}\right\rangle=-1 / 4 \delta_{j k} .
$$

