EXERCISES FOR LECTURE II- 26/10/2004

1) Hilbert-Schmidt inner product

Let L_{V} be the set of linear operators on a Hilbert space V. It is easily seen that L_{V} is a linear space. Show that the function \langle,$\rangle on L_{V} \times L_{V}$ defined by

$$
\langle A, B\rangle=: \operatorname{tr}\left[A^{\dagger} B\right], A, B \in L_{V}
$$

is an inner product. Show that if the dimension of V is d, the one of L_{V} is d^{2}. Find a basis of hermitian matrices for L_{V}, orthonormal with respect to the above inner product.
2) Consider the two-qubit singlet state

$$
|\Psi\rangle=1 / \sqrt{2}\{|0\rangle \otimes|1\rangle-|1\rangle \otimes|0\rangle\}
$$

where $|0\rangle,|1\rangle$ represent the vectors of the computational basis, and let

$$
\rho=|\Psi\rangle\langle\Psi|
$$

be the corresponding density operator.
Show that

$$
\rho=1 / 4\left(I \otimes I-\sum_{m} \sigma_{m} \otimes \sigma_{m}\right)
$$

where I is the identity and $\sigma_{m}, m=x, y, z$ are the Pauli operators.
3) Using only CNOTs and Toffoli gates, construct a quantum circuit that performs the transformation

$$
A=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

4) Consider the operator $\sigma \cdot \mathbf{v}$, where $\mathbf{v} \in \mathbb{R}^{\mathbf{3}},\|\mathbf{v}\|=\mathbf{1}$. Show that $\sigma \cdot \mathbf{v}$ has eigenvalues ± 1 and that the projectors onto the corresponding eigenspaces are $P_{ \pm}=\frac{1}{2}(I \pm \sigma \cdot \mathbf{v})$. Compute the probabilities of obtaining +1 for a measurement of $\sigma \cdot \mathbf{v}$ when the initial states of the system are $|0\rangle,|1\rangle$.
