EXERCISES FOR LECTURE III- 02/11/2004

1) B-C-H Identity

For A, B hermitian operators on some Hilbert space H, with $[A, B] \neq 0$, show that if

$$
[A,[A, B]]=[B,[A, B]]=0
$$

then

$$
\exp (A) \exp (B)=\exp (A+B) \exp ([A, B] / 2)
$$

2) Show that any 2×2 real projector with unit trace can be written as

$$
P_{\theta}=1 / 2\left(I+\sigma_{x} \sin \theta+\sigma_{z} \cos \theta\right)
$$

3) Consider the problem of perfectly distinguishing between the two states

$$
|u\rangle=\binom{\cos \alpha}{\sin \alpha},|v\rangle=\binom{\sin \alpha}{\cos \alpha}, \alpha \in(0, \pi / 4)
$$

assuming that they are given with equal prior probabilities $p_{u}=p_{v}=1 / 2$. Construct a suitable $P O V M$ with three elements, E_{u}, E_{v}, E_{0}, where 0 labels the inconclusive answer, to identify these states.
4) Consider the action of the $C N O T$ gate on the two-qubit basis defined by the vectors $\left\{| \pm\rangle \equiv \frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)\right\}^{\otimes 2}$. Show that, with respect to this new basis, the state of the target is not changed, while the state of the control is flipped if the target starts as $|-\rangle$, otherwise it is unchanged. Draw this circuit using a CNOT gate and two Hadamard gates at the input and at the output, and its equivalent circuit represented by a swapped-CNOT gate (as proven by the above calculations).
5) Let C be a $C N O T$ with qubit 1 as control and qubit 2 as target. Show that:
i) $C X_{1} C=X_{1} X_{2}$
ii) $C Z_{1} C=Z_{1}$
iii) $C Y_{2} C=Z_{1} Y_{2}$,
where 1,2 refer to the first, second qubit respectively.

