EXERCISE 6- DUE BY 04/01/05

1) Characterization of Maximally Entangled States

Consider the set of two-party pure states of a composite system AB defined on a product Hilbert space of dimension N^{2} with the property

$$
\rho_{A}=\rho_{B}=\frac{1}{N} I,
$$

where $\rho_{i}, i=A, B$ denotes the reduced density operator on each subsystem and I is the identity operator in N dimensions. Show that this set coincides with the set of states generated from one of its elements by applying singleparty unitary transformations $U_{A} \otimes I$, or equivalently $I \otimes U_{B}$.

2) Two-qubit Fourier transform

Consider the transformation representing the quantum Fourier transform for two qubits

$$
U_{2}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right)
$$

Give a decomposition of this operator into a product of two-level unitary operators.

3) Composite systems quantum measurements

Let $|\Psi\rangle_{A B}$ be a pure state of a composite system AB , shared between two parties, Alice and Bob, defined on a Hilbert space $H_{A} \otimes H_{B}$, with $\operatorname{dim}\left(H_{A}\right)=\operatorname{dim}\left(H_{B}\right)=N$. Consider the following measurements on the system described by $|\Psi\rangle_{A B}$:
i) Alice performs a measurement described by a POVM $\left\{E_{j}^{A}\right\}_{j=1, \ldots J}$, getting outcome j and then Bob performs a measurement described by a POVM $\left\{E_{k}^{B}\right\}_{k=1, \ldots K}$, knowing the result of the first measurement.
ii) Alice and Bob perform a joint measurement described by the POVM $\left\{E_{j}^{A} \otimes E_{k}^{B}\right\}$.
iii) Alice performs a measurement described by $\left\{E_{j}^{A}\right\}_{j=1, \ldots J}$ and then Bob performs a measurement described by $\left\{E_{k}^{B}\right\}_{k=1, \ldots K}$, without knowing the result of the first measurement.

Compute in each case the probabilities that the sequence of measurements gives result (j, k) for initial state $|\Psi\rangle_{A B}$. Compute, in each case, the probability that Bob gets result k, conditional on the result of Alice. What is in each case the state after the measurement?

4) Zero Fourier transform projector

Consider the Fourier transform of the state $|0\rangle$ in N dimensions given by

$$
|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle
$$

and define the operator $U=2|\psi\rangle\langle\psi|-I$.
Show that the action of U on a general state $|\alpha\rangle=\sum_{k} \alpha_{k}|k\rangle$ produces the state $\sum_{k}\left[-\alpha_{k}+2\langle\alpha\rangle\right]|k\rangle$, where $\langle\alpha\rangle \equiv \sum_{k} \alpha_{k} / N$.

5) Multiplicative inverse $\bmod \mathbf{N}$

Compute the multiplicative inverse of 17 modulo 24 .

