EXERCISE 7- DUE BY 27/01/05

1) Factoring

Consider the algorithm which reduces factoring to order finding: for N odd, composite integer, choose at random $1 \leq x<N$, with $\operatorname{gcd}(x, N)=1$ and find the order r of x modulo N. If r is even and $x^{r / 2} \neq \pm 1(\bmod N)$, then compute $\operatorname{gcd}\left(x^{r / 2} \pm 1, N\right)$ to find a non-trivial factor of N. Use Euclid's algorithm to compute the $g c d$. Apply this procedure to factor $N=221$.

2) Quantum State Entropy

Consider the quantum state corresponding to the density operator

$$
\begin{equation*}
\rho=p|\psi\rangle\langle\psi|+(1-p)|\phi\rangle\langle\phi|, \tag{1}
\end{equation*}
$$

where $p \in(0,1) ;|\psi\rangle=\frac{1}{\sqrt{3}}|0\rangle+i \sqrt{\frac{2}{3}}|1\rangle$ and $|\phi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$. Compute the von Neumann entropy $S(\rho)$ and the Shannon entropy $H(p)$ of this state.

3) Schmidt decompositions

Consider the two-party quantum state $|\Psi\rangle_{A B}$ defined on the Hilbert space $H_{A} \otimes H_{B}$, of dimension 2×3, given by

$$
|\Psi\rangle=\frac{1}{2} e_{1} \otimes f_{1}-\frac{i}{\sqrt{6}} e_{1} \otimes f_{3}+\frac{1}{2} e_{2} \otimes f_{2}+\frac{i}{\sqrt{3}} e_{2} \otimes f_{3},
$$

where $\left\{e_{i}, f_{j}, i=1,2, j=1,2,3\right\}$ are canonical bases in H_{A}, H_{B} respectively. Find the Schmidt decomposition of $|\Psi\rangle$.

