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Abstract

The world of states, witnesses and Bell inequalities of two qubits can be visualized geo-
metrically. Since it is represented by 4 x 4 Hermitian matrices, it is 16 dimensional. Thus,
visualization in three dimensions requires introducing an appropriate equivalence relation.
The SLOCC equivalence relation is often used for states and here we show that entan-
glement witnesses and CHSH Bell inequalities can be incorporated in this description as

well.

The geometric description is faithful to the duality between separable states and wit-

nesses, and allows one to give elementary and elegant proofs of non-elementary results.

This visualization allows us to give a “proof by inspection” that for two qubits, the
Peres test is ‘if and only if’. We show that the CHSH Bell inequalities, where both Alice
and Bob have two experiments to choose from, can be visualized as circles in the figure.
This allows us to solve geometrically the optimization problem of the CHSH inequality
violation. Finally, we give numerical evidence that, remarkably, allowing Alice and Bob
to use three rather than two measurements, does not help them to distinguish any new
entangled SLOCC equivalence class beyond the CHSH class.

The concept of entanglement witnesses has a practical meaning as well. If one wants
to prove the existence of entanglement, two approaches can be used. The first one is to
find the state explicitly and use the Peres separability test mentioned above. The second
is to measure the expectation value of a corresponding entanglement witness. The latter
is more economical, since the number of measurements needed is smaller, whereas in the
first approach no less then 16 measurements are needed. We present a set of product
projective measurements, optimal for proving entanglement. Our goal is to minimize the
number of measurements needed in order to find the expectation value of an entanglement

witness.
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1 Introduction

The field of Quantum Information has been rapidly developing during the past couple of
decades [1]. The special features of quantum mechanics are exploited for new algorithms
[2] that are possible only in the quantum regime. Since the famous EPR paper [3] a lot of
effort has been put into understanding the full potential of entanglement [4] of two qubits.
The Bell states, which are maximally entangled states of two qubits, are of extreme value
in quantum information. For instance, a Bell state is required for “Teleportation” [5],

which is one of the most important quantum algorithms.

Deciding whether a state of two qubits is entangled or not can be tricky. Peres [6] gave
a simple necessary condition for a state to be separable and it is reviewed is section 1.1.
This condition was proven to be sufficient by the Horodeckis [7], who used the concept
of “Entanglement Witnesses”. Every entangled state has a corresponding witness that

identifies it as entangled [7]:

Theorem 1.1. A state p is entangled if and only if there exists an observable W, such
that Tr(Wo) > 0 for all separable states o, and Tr(Wp) < 0. The operator W is called

an entanglement witness.

Another test for entanglement, which is only sufficient but not necessary, is Bell in-
equality [8]. If a state violates one, it is necessarily entangled, but the opposite claim is
false. The simplest Bell inequality in the case of two observers is CHSH inequality [9],
where both Alice and Bob have two dichotomic experiments to choose from. The statistics
of their mutual results must satisfy the CHSH inequality in the framework of local hidden
variable theory (LHV). Thus, all the separable states satisfy all the Bell inequalities [10].

In section 1.2 we give a procedure of finding all the Bell inequalities [11]. Asher Peres
described in [11] how to construct all the Bell inequalities for any number of observers,
each having any number of measurements to choose from, where each measurement has
any number of possible outcomes. We briefly review the main results and use them for
the CHSH [9] case, where we construct the corresponding Farkas vector. In addition, we
give a Farkas vector corresponding to a more general case, where both Alice and Bob have

three dichotomic experiments to choose from.

The visualization of the world of two qubits [12] is described in chapter 2. We start
with 16 dimensions and rely on notions of equivalence in order to reduce the number of
dimensions from 16 to 3. An effective notion of equivalence is SLOCC [13, 14]. It is often
used for states, but here, we broaden the notion of equivalence to entanglement witnesses.

Doing so, we can visualize Bell inequalities in 3 dimensions as well.



The measurement of the entanglement witness is explain in chapter 3. We develop a
tool that can effectively tell, using as few measurements as possible, if a quantum state is
entangled or not, without having to reconstruct the entire density matrix. We use the fact
that finding an expectation value of an entanglement witness requires less measurements
than reconstructing the quantum state completely. We give an example of an entangled
quantum state of two qubits, its corresponding witness, and the minimal set of local

measurements needed in order to prove it is indeed entangled.

1.1 The Peres Test for Separability

A quantum system of two qubits can be either entangled or separable. If the state of the
system is pure, 1), then it is separable if it can be written as a product of two one qubit

states:

[¥) = [¢%) ® 16" (1.1)
In that case, finding the Schmidt number of the state is a straightforward way to check
whether a pure state is entangled or not.

Generically, the state of two qubits is mixed, and identifying entanglement seems to

be more difficult a priori. A separable state of two qubits can be written in the form [6]:
p=> wip}®pf (1.2)

where w; > 0 and ) . w; = 1.

Let us define the operation of partial transposition on a general 4 x 4 matrix. In order

to partially transpose a 4 x 4 matrix, one has to transpose the four 2 x 2 blocks:

pt

ap as bl bQ ay as b1 bg
a3 ay bg b4 _ A9 Ay bg b4 (13)

C1 Co d1 d2 C1 C3 d1 d3

c3 ¢4 d3 dy Co ¢4 dy dy

In this case of a separable density matrix (1.2), the partial transposed matrix:
T

P = wip @ (pF) (1.4)
is also a legitimate density matrix, since (p®)T = (p®)* is a legitimate one qubit state if

pB is. This gives a necessary condition for a density matrix to be separable [6]: if the
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partial transposed matrix is not a state, meaning, one of its eigenvalues is negative, than
the original state cannot be separable. The sufficiency of the Peres test was first proven
by the Horodeckis [7] for systems of two qubits and for systems of a qubit and a qutrit

(dimension 2 x 3) as well.

1.2 Bell Inequalities

Bell’s Theorem [8] says that one can never formulate a full description of the predictions
of quantum mechanics by local hidden variables (LHV) theory. Bell’s inequality should
hold in the framework of such a theory, so if a state violates such an inequality, one cannot

describe it using LHV theory.

1.2.1 Constructing all the Bell Inequalities

A general Bell inequality can be written as [11]
Y FEPg >0 (1.1)
K

where { Pk} are the outcomes’ probabilities, that can be measured experimentally, and
{FX} are integer coefficients. The indices {K} run on all the possible measurements’
outcomes. Here we construct a way to find the coefficients {F} in the following case:
There are two observers, Alice and Bob, both having Ny = 2 and N = 2 experiments
to choose from, respectively, and their jth experiment has A; = 2 and B; = 2 possible

outcomes, respectively. This setup is illustrated in figure 1.

'
g9 gq rooor

'

’

a
a
b
b

Figure 1: System setup of a Bell inequality: Alice has two experiments to choose from (A
and B), Bob also has two measurements to choose from (@ and R). Each measurement

X has two possible outcomes x and z’.

A hidden variable A describes the outcome of every possible combination of two mea-

surements chosen by Alice and Bob. For example, if A = [ab; ¢'r'] then if Alice chose

5



experiment A and Bob chose experiment R, the measurements’ outcome K is K = ar’,

see figure 2.

9 q r 7
N — 19
a I l
Y =czm=cs
b : :

Figure 2: The hidden variable A = [ab; ¢'r'].

The number of possible outcomes is Ny = (3_; 4;)(>_; B;) = 16, which is exactly
the number of lattice points in figure 2. The number of hidden variables is Ny =
(I'T; A)(I1; Bj) = 16, which is exactly the number of different ways to build nets as
in figure 2. Since both Alice and Bob can choose one of N4 and Ny possible experiments

respectively, together they have N, = NyNp = 4 possible pairs of experiments.

We define a boolean matrix B;\( of size Nj, x N, in the following way:

N 1 The outcome K is possible for the hidden varible A

0 otherwise
For example:
Bl — (59 4 60)(8% 4 67) = 1 (1.3)
but
BT = (52 4 62) (07 +67) =0 (1.4)

For each hidden variable \, 3", B = N.. We define vectors B* whose components

are By. These vectors are not linearly independent, for example:
Blabia'r'l | plabiar] _ plabiar'] | plabia'r] (1.5)

In addition, none of the vectors B* can be expressed as a convex combination of the
others, so each vector B* can be considered as an extreme ray of a convex cone. The
matrix By can be described figuratively for each A by placing 0 or 1 in the lattice of
figure 2, see figure 3.

If denote by w, the probability of the hidden variable A then the probability of the

outcome K is:
Px =Y PAP(K[\) =) w\Bx (1.6)
A A

6



)
~

el [en] Junl) fan) Foa
(el fa] Jawl) funl

=g Ll Re o

(=l Ll Re o

S R

Figure 3: The entries of the boolean matrix By for A\ = [ab; ¢/r'].

The vector P with components Py is a convex combination of the boolean vectors B?,
which is a necessary and sufficient condition for the existence of the hidden variables A. In
order to determine whether a vector P lies inside the convex cone defined by the vectors

B*, one can use Farkas’ lemma [15, 16]. The Farkas lemma in our case is:

<E|w,\ >0, > w\By = PK> — (wff {Z BXFX >0=> PyxFX> o}) (1.7)
A K K

If a local hidden variable theory that is consistent with the probabilities of the measure-

ments’ outcomes { Py} exists, meaning, there are wy > 0 such that

A
then for every vector FX such that
> BrFf >0 (1.9)
K
then
> PgFX >0 (1.10)
K

Equation (1.10) is a Bell inequality, and the vector F¥ is a Farkas vector. The Farkas

vectors can also be described figuratively as the matrix By in figure 3.

Now we need to construct as many Farkas vectors as possible. A Farkas vector with
positive entries is not interesting, since the probabilities { Pk} are positive equation (1.10)
holds trivially. Thus, we are interested in Farkas vectors with some negative entries.
Trivial Farkas vectors are described in figure 4. We denote them as Z¥, and they have
the property that for every hidden variable A\, >, B Z% = 0.

There are 7 independent trivial Farkas vectors in our case, see figure 5.



> o> Q

Figure 4: Trivial Farkas vectors Z%. The red cells represent the value —1, the green cells
represent +1 and the white cells represent 0. The value of >, By Z® is calculated by
looking at this figure of the Farkas vector ZX and figure 3 of the matrix Bj. One can
convince oneself that for every A, >, B Z% = 0. This equality holds for the outcomes’
probabilities as well, Y, PxZ% = 0. For the vector given here, the latter means that
the probability that Alice got the outcome a is independent of which measurement Bob

chooses to perform.

If FX is a Farkas vector, and ZX is a trivial one, then for every real z, GX = FK 27K
is a Farkas vector as well. We can therefore define equivalence classes of Farkas vectors
using this relation.

The procedure of finding a relevant Farkas vector is illustrated in figure 6. In our case

there are 64 Farkas vectors that are divided into 8 equivalence classes, see figure 7.
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Figure 5: Top: The 7 trivial Farkas vectors in our case. Bottom: the 8th trivial Farkas

vector is a linear combination of the first 7.
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Figure 6: Constructing a Farkas vector. We start with one negative entry (F7). We
need the inequality (1.9) to hold, but (Bj) is an example of a matrix By for which the
desired inequality does not hold. Adding a positive entry to the Farkas vector (F5) is not
enough, due to (Bs). Another positive entry (F3) is still not enough, since (B3) violates
the inequality. Finally, (F}) is a legitimate Farkas vector, for which the inequality (1.9)
holds for all By.
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1.2.2 Farkas Vector of CHSH Inequality

Let us choose the Farkas vector that was constructed in figure 6:
-1 K=uaq
FK = 1 K e{ar' brbq} (1.11)
0 otherwise
The Bell inequality (1.10) is written in the form:
Pyr + Py + Pyg— Py >0 (1.12)
By adding and subtracting Py, + F,,, we have
P,+P+P,—FPy—Py—F,,>0 (1.13)
Substituting Py, by 3(I +Z-7) ® 5(I + - &) we find the CHSH inequality [9]:
<6-5®(F+q‘)-6—5-6®(7?—cj)-6)§2 (1.14)

The inequalities corresponding to different equivalence classes of Farkas vectors are CHSH
inequalities as well, and they are obtained by swapping one or more outcomes x « z’ in
equation (1.14).

In [17], Collins and Gisin looked for all the Bell inequalities for the setting described
here, two observers, each with two dichotomic measurements to choose from. They found
numerically that the CHSH inequality is the only relevant Bell inequality in this case.
They found 8 versions of CHSH inequality corresponding to the 8 equivalence classes of
Farkas vectors. The fact that the CHSH inequality is the only relevant one in the given
setting was also proven analytically in [18]. With the description of Farkas vectors, we
gain very good intuition of this idea. In fact, one can convince oneself that no other

Farkas vectors can be found.

1.2.3 Farkas Vector of a more general Bell Inequality

Gisin and Collins [17] gave an explicit form of a Bell inequality, where both Alice and Bob
have three dichotomic experiments to choose from. This inequality is denoted as I3390 and

is discussed in section 2.5.

The relevant Farkas vector for 3390 is given in figure 8 and the inequality that it

describes is:

Paq’_2Par_Par’+Pas’+Pb/q+Pb/r+Pbs+Pc’q+Pcr20 (115)

12
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Figure 8: Farkas vector for I3305. The dark red color stands for —2.

The inequality can be written using different notations. The experiments have two possible
outcomes, say the outcome x stands for 0 and 2’ stands for 1. We denote by P(A;B;)
the probability that both Alice and Bob got the outcome 0, when Alice chooses the
1th measurement and Bob chooses the jth measurement. Renaming Alice’s experiments
Ay, Ay, A3 and Bob’s experiments By, By, Bs respectively, we can substitute, for example,
P, by P(A1By) and P,y by P(A;) — P(A;, By). The inequality with these notations is

given in equation (2.37).
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2 Visualizing Two Qubits and Bell Inequalities

2.1 Introduction
Any 4 x 4 hermitian operator W can be represented by a 4 x 4 real matrix w as follows:
W =w,o"®d" (2.1)

Greek indices run on 0, 1,2, 3, Roman indices on 1,2,3. ¢° is the identity and ¢/ are the
Pauli matrices. Summation over a pair of repeated indices is always implied, and indices
are raised and lowered using the Minkowski metric tensor n = diag(1,—1,—1,—1). To
reduce the number of components from 16 to 3 one relies on notions of equivalence. In
particular, forgetting about the overall normalization of operators reduces the dimension
by 1.

An effective notion of equivalence comes from allowing Alice and Bob to operate on

their respective qubits
p—pM=MpM!, M=A®B, (2.2)

We shall focus on the case A, B € SL(2,C) where the operation is invertible but not trace
preserving. The physical interpretation of this is that states which are accessible by local,
reversible filtering are identified. It is known as SLOCC [13, 14] and is briefly reviewed in
section 2.2. Since dim SL(2,C) = 6 the SLOCC equivalence reduces the dimension by 12.
As a consequence, the SLOCC equivalence classes of unnormalized 2 qubits states can be

visualized in 3 dimensions.

As we shall see, the SLOCC equivalence classes of entanglement witnesses are repre-
sented by the cube, the states by the tetrahedron and the separable states by the octa-
hedron of Fig. 9. The octahedron and tetrahedron have been identified as the SLOCC
representation in [19, 20]. Adding the cube as a representation of the SLOCC equiva-
lence classes of entanglement witnesses shows that the natural duality relation between
witnesses and separable states is preserved in the visualization of the SLOCC equivalence
classes: The cube is the dual of the octahedron in the usual sense of duality of convex
sets [21]. In particular, the number of faces in one is the number of vertices in the other.

The tetrahedron is, of course, its own dual.

Since the work of the Horodeckis, [22], Fig. 9 has been widely used in quantum infor-
mation theory for the special cases of states with maximally mixed subsystems [23, 24].
This is a 9 dimensional family of states with wy; = wjo = 0 in Eq. (2.1). Since this family

has a lower dimension, it can be visualized in 3 dimensions using a more restrictive notion

14



of equivalence than SLOCC: Alice and Bob are allowed to perform only unitary opera-
tions on their respective qubits with A, B € SU(2) in Eq. (2.2). This in arguably the
most fundamental notion of equivalence in quantum information theory and is known as
LOCC [1, 4]. It is trace preserving, which expresses the fact that, unlike SLOCC, it is not
lossy, (no state is ever discarded). Since dim SU(2) x SU(2) = 6 the LOCC equivalence
classes of this 9 dimensional family of states can be represented in 3 dimensions [22]. It is
remarkable that both the visualization and the interpretation of Fig. 9 remain the same
when one goes from the 9 dimensional family to the 16 dimensional family of general 2

qubits states. All that changes is the notion of equivalence.

Fig. 9 turns out to play a significant role also in the theory of quantum communica-
tion. Namely, it characterizes the stochastic properties of certain single qubit quantum
channels as shown in [25, 26, 27]. This rather different interpretation of the figure follows
from a deep relation, known as the Choi-Jamiolkwosky isomorphism [28], between linear
operators acting on the Hilbert space of Alice and Bob, and linear maps on single qubit
states. Using this, one finds [25, 26, 27] that (for unital' and trace preserving channels)
the octahedron represents channels that destroy entanglement, the tetrahedron represents

the completely positive maps and the cube represents the positive maps.

Figure 9: Three dimensional view of the world of two qubits: The cube represents the
equivalence classes of potential entanglement witnesses, the tetrahedron represents the

states, and the octahedron represents the separable states.

In section 2.3 we shall review the SLOCC interpretation of Fig. 9 from a perspective

that focuses on the duality relations between the sets in the figure. The main new re-

LA unital map is one that maps the unit operator to itself.
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sults concern the visualization of entanglement witnesses, duality and of the CHSH Bell

inequalities.

2.2 Local operations

The local mapping of a two qubit state p given by Eq. (2.2) preserves positivity and takes
a product state p4 ® pp to a product state. It therefore maps any separable state—a
convex combination of product states—to a separable state. This makes the equivalence
p ~ pM, a useful notion in studying the entanglement of two qubits [19, 20]. Since the
operation does not preserve the normalization of the state, it is convenient to consider
states up to normalization. The operations performed by Alice and Bob can be interpreted
as probabilistically reversible filtering associated with the POVMs
an _ MM (a1

(M) _

(EéM) is not a local operator; local POVM would require 4 E;’s). The probability of
successfully filtering the state p™ /Tr(p™) is strictly positive and is given by T r(pEﬁM)) >
0. (If M is unitary the filtering succeeds with probability one). It is probabilistically
reversible since the original state p can be recovered, with non-zero probability, from p

using the filter EiMﬁl).

One can broaden the notion of equivalence under SLOCC from states to observables
and in particular, to witnesses W. We take the action on witnesses to be contragradient
to that of states:

W— WY = (MY TWM, M=A®B, ABEeSLE2.C) (2.3)

(If M is unitary, states and observables transform the same way). The motivation for this
choice is to have pW transform by a similarity transformation so its trace, and therefore

the associated expectation and probability, is left invariant.

2.2.1 Potential witnesses
We shall say that W, is a potential entanglement witness if>

Tr(Weps) >0 (2.4)

2For a definition of witnesses that goes through the Choi-Jamiolkowsky isomorphism, see e.g. [29].

16



for all separable states ps. Since the set of separable states {ps} is a convex cone in the
space of 4 X 4 matrices, the set of potential entanglement witnesses {W,} is the dual
convex cone of {p;}. The set of states, {p}, is a convex cone as well, and the three convex

cones are evidently nested
{ps} C{p} c{We} (2.5)

The cones {p}, {ps} and {W.} all lie in 16 dimensions, which is not very useful for

visualization.

SLOCC takes a potential entanglement witness to a potential entanglement witness.

This follows from
Tr(Wp,) = Tr(Wap™) > 0 (2.6)

which shows that W is an entanglement witness if W, is.

SLOCC allows one to reduce the study of states, separable states, and (potential)
entanglement witnesses to the study of the corresponding equivalence classes. As will be
explained in section 2.3, the equivalence classes of the three cones are described by the

three polyhedra shown in Fig. 9.

Similar ideas can be used to visualize Bell inequalities, as we now proceed to show.

2.2.2 Bell witnesses

Every Bell inequality has a corresponding witness [30]. Let Wg be a witness for a specific

Bell inequality. A state pj, satisfies this Bell inequality if
Tr(Wppn) > 0 (2.7)

Since the separable states satisfy all types of Bell inequalities [30, 4], it is clear that Wy
belongs to the family of potential entanglement witness. The set {p}p of states satisfying
(2.7) for a specific type of Bell inequalities (e.g. the CHSH family) forms a convex cone.

However, in general it is larger than the cone {ps} of separable states.

2.2.3 CHSH witnesses

The CHSH Bell inequalities describe a situation where Alice may choose to measure her
qubits in one of two directions, (a,a’) and Bob may similarly choose one of the directions,
(b,b). It is represented by the witness [30]

1
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where Beggm is the CHSH operator [9]:
Bensu(a,d',b,b)=a-0@ (b+0) - 0c+d -cx((b-10) 0 (2.9)

a- o = a;o’. The CHSH Bell inequality then takes the form of Eq. (2.7).

The family of all CHSH witnesses is an a-priori 8 dimensional family associated with
the 4 directions Alice and Bob choose. (In fact, an implicit degeneracy in Eq. (2.9) makes
it only 7 dimensional.) LOCC takes a CHSH witness corresponding to the directions
(a,a’,b,b") to a witness associated with rotated directions while keeping a - a’ and b - ¥/
fixed. This reduces the dimension by 6 and allows us to visualize the equivalence classes
of CHSH witnesses. As we explain in section 2.4, they turn out to be the three circles

shown in Fig. 11 on page 25.

2.2.4 Bell inequalities and SLOCC

Local operations (Eq. (2.2)) are guaranteed to take separable states to separable states.
This reflects the fact that no entangled state can ever be (locally) filtered from a sep-
arable state. This is not the case for states that satisfy Bell inequalities. In fact, [31]
gave examples of states satisfying all the CHSH inequalities whose filtration violate the
inequality. This is consistent because the positivity of Tr(Wgpp) does not imply positivity
of Tr(Wgpi). SLOCC does not act nicely on CHSH. This can also be seen from the fact
that the family of CHSH witnesses s not mapped on itself by SLOCC. It is therefore not
possible to represent the states that satisfy CHSH inequalities in terms of their SLOCC

equivalence classes.

It seems clear, however, that if a state p™, filtered from p (using only local operations),
breaks a certain Bell inequality then the properties of p itself are inconsistent with (more
general) local hidden variables. Indeed, if p would have been describable in terms of
hidden variables, that would have implied that the results of any experiment done on it
including one involving local filtration (which is also a type of measurement) should be

explainable in terms of these hidden variables?.

This motivates the introduction of a notion of states that satisfy Bell inequality in a

SLOCC sense by requiring that not only the state py, satisfy the Bell inequality Wg (2.7),

3Tt turns out that the combined experiment done on p consisting of filtration plus subsequent spin
measurement can be described using hidden variables, only if the choice of Alice whether to measure a or
a’ can influence the result of the filtration which was completed prior to it. This breaks natural causality
assumptions. The fact that p does not itself break Bell’s inequality may then be traced to the fact that

the standard derivation of Bell’s inequalities does not involve these causality assumptions.
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but also that all states that can be probabilistically filtered from p, do. This is clearly a

SLOCC invariant notion. Mathematically, it is expressed by the requirement
inf Tr(Wgph') >0 (2.10)

We shall denote this set {p}3F0¢C. It is, of course, a smaller set, {p}3F°¢C C {p}p, but it
is not empty. This set is SLOCC invariant and so may be visualized in three dimensions.
The corresponding 3-dimensional set is the intersection of 3 cylinders shown in Fig. 12
on page 26, as we shall explain in section 2.4. For any fixed witness Wpg the equivalence

class {p}3FO¢C is a convex cone since
ijr\14f Tr(Wa(pr + p)™) > i]r\14f Tr(Wgp)) + i]r\14f Tr(Wgpy") (2.11)

Since the intersection of convex cones is a convex cone, it follows that the states that satisfy
a family of Bell inequalities in the SLOCC sense also form a convex cone. In particular,
this is so for the CHSH family. The intersection of the cone with the hyperplane Trp =1

is then evidently a convex set.

Similarly, the dual (convex) cone to {p}3?¢C is SLOCC invariant by Eq. (2.6), i.e.
if Wp is a witness for a given SLOCC family, so is WJ!. These notions of witnesses and
states conform to the notion of SLOCC. They can therefore be represented in terms of

their equivalence classes and can be visualized in three dimensions.

2.3 Lorentz Geometry of Two Qubits

To describe the SLOCC equivalence classes of qubits it is convenient to use their Lorentz

description. Any single qubit observable () can be written as
Q = g, 0" (2.12)
The observable @) is then represented by the real 4-vector q.

(@ is positive, and so is a state, if its trace and determinant are positive. Since Tr@Q =
2¢p > 0 and det Q = ¢,¢" > 0, states are described by 4-vectors ¢ that lie in the forward

light-cone. Consider
QM = MQM' = q, (Mo"M"), M € SL(2,C) (2.13)

Since g,¢" = det Q = det QM it follows that the action of M € SL(2,C) on the observable
@ can be implemented by an (orthochronous) Lorentz transformation of the four vector
q. Namely, [32],

QM = g, (Mo" M) = (Ayq)u0”, Anr € SOL(1,3) (2.14)
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Similarly, any observable W in the world of 2 qubits can be represented by a 4 x 4 real
matrix w as in Eq. (2.1). This representation allows a simple geometric characterization
of potential entanglement witnesses in terms of matrices w that map the forward light-
cone into itself. This follows from the fact that W is an entanglement witness iff for any

product state, represented by time-like vectors p,, pp:
Tr(Wpa @ py) = dwuwplpy = 4pg(wpp)u = 0 (2.15)

This characterization of potential witnesses will play a role in the following.

To describe the SLOCC equivalence classes we shall consider invariants under the
action (2.2). The pair A, B € SL(2,C) associated with M = A ® B gives rise to a pair of

Lorentz transformations A4 and Ap such that [20]:
w" = AjqwAL (2.16)

Since det Ay = det Ap = 1, detw is an invariant.

A more interesting and powerful invariant is constructed as follows: The Minkowski
adjoint of w is defined as:
w* =nw’n (2.17)

where 7 is the Minkowski metric tensor. w* transforms contragradiently to w under M.

This follows easily from the defining relations of the Lorentz transformation AnA? = n:

()" = (™)™
(AA(,()AT>

= (nAgn)(nw™n)(nAln)
= (Ap)"w (M)~ (2.18)

It follows that w*w undergoes a similarity transformation under the action of M, so its

spectrum is a SLOCC invariant.

For a general observable, w*w is not guaranteed to be a hermitian matrix, and its
spectrum therefore may not be real. However, if W is a potential entanglement witness, a
simplification occurs. In particular, the eigenvalues of w*w are guaranteed to be positive
[20, 19]. This can be seen from the following argument: Suppose W is a strict witness of
entanglement, so that Eq. (2.15) holds with strict inequality. w*w then maps the forward

light-cone into its interior, since for any causal vector p

0 < (wp)u(wp) = pu(wwp)” (2.19)
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This implies, by a fixed point argument, that the largest eigenvalue of w*w is positive
and has a time-like eigenvector. The Lorentz orthogonal subspace to this eigenvector
is a space-like invariant subspace. Restricted to this subspace, the Minkowsky adjoint
coincides with the ordinary adjoint. This makes the remaining eigenvalues positive as

well?.

Up to sign the Lorentz singular values [20] are defined as the roots of the eigenvalues
of w*w. We denote them by w,. They are the Lorentz analog of the singular values of a
matrix®. As the above argument shows, the largest singular value which will be denoted
wp corresponds generically to a timelike eigenvector (and in degenerate cases to a null
one) while wy,ws,ws generically correspond to a spacelike eigenvector (or possibly a null

one in degenerate cases).

Defining w, as the square roots of the (necessarily positive) eigenvalues of w*w still
leaves a sign ambiguity. A unique determination of w, is achieved by letting ws take
the sign of detw and choosing all others non-negative. Furthermore, one orders them
according to

Wo > Wy > we > |ws|, sign(ws) = sign(detw) (2.20)

Unless wg happens to vanish the SLOCC equivalence class may be characterized, up to

scaling, by the three vector

W= i(wl,wg,w;;) (221)
Wo

The SLOCC equivalence classes of potential entanglement witnesses would then be rep-
resented by the pyramid
{(z,y,£2) o =2y > 2 >0} (2.22)

Remarks:
e If W is a strict potential witness (implying wy > |w;|) then it turns out [33] that

in analogy to the usual singular value decomposition one can find a pair of Lorentz

transformations that bring w to its canonical form

Z Wao* ® 0 (2.23)

This in turn implies that the singular values w, completely determine W’s SLOCC

equivalence class.

4If one replaces < by < above then it might happen that the largest eigenvalue has an eigenvector
which is light-like. This case is much more complicated, but for our aims here can be handled by a
limiting argument.

5wa are not the covariant components of a Lorenzian 4-vector.
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e However, if wy = maz(|w;|) (corresponding to a non-strict potential witness) then
there is no a-priori guarantee that such a pair of Lorentz transformations exists.
Witnesses W associated with this boundary case split into nonequivalent classes:
those having the canonical form (2.23) and others having more complicated canon-
ical forms [20]. Thus in the boundary case w, do not completely determine the

SLOCC equivalence class.

Note that the condition wy > |wy], |wa|, |ws| is enough to guarantee that w = diag(wg, w1, ws, w3)
takes the forward light-cone to itself and hence to guarantee that a potential entanglement
witness W = > w,0%* ® ¢ having w,, as singular values exists.

Operators W = > w,0*®c® which differ by permutation of wy,ws,ws or by flipping a
sign of a pair of w;’s are SLOCC equivalent. There are 24 such operations, corresponding
to the tetrahedral group. Strictly, therefore, the SLOCC equivalence classes of W are
represented by the pyramid of (2.20). However for the purpose of drawing pictures it is
more aesthetic to symmetrize and give up (2.20). Now each (generic) equivalence class is
represented by 24 points in the w;’s space (2.21). In particular, the potential entanglement

witnesses are then represented by the unit cube.

2.3.1 SLOCC and duality

The following fact [33] allows one to translate the duality relation between potential

witnesses and separable states from 16 dimensions to 3:

Theorem 2.1. Let W and W' be two potential entanglement witnesses. Then:
Al/}l]f\‘] Tr(WNW™) = 4 (wowh — wiw) — wawh + wsw}) (2.24)

where w, and W, are the Lorentz singular values of W and W' respectively, ordered ac-
cording to Eq. (2.20).

From a geometric point of view it may be more aesthetic to use an equivalent formu-
lation of the theorem which allows using any of the 24 possible representatives w, (not
necessarily satisfying (2.20)). This is easily achieved by replacing the r.h.s. of Eq. (2.24)
by

: / / / /
4 min {wow( + wiw; + wawlh + wiws }

where the minimum is taken over the 24 possible representatives w,.
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In particular, given a potential witness W and a separable state p,, we have for any

representative as in Eq. (2.21), & and g, the inequality
0<4(1+&-p) (2.25)
Fig. 10 demonstrates this inequality for a particular choice of W.

Since the positivity of the right hand side is the standard duality relation between
convex sets in 3 dimensions [21], we see that the theorem translates the duality, Eq. (2.4),
between the 16 dimensional cones, to the duality between convex sets in 3 dimensions
[21].

Figure 10: The red dot in the lower right corner is an entanglement witness associated
with . The green triangle lies on the plane p- & = —1. One may think of points near
the corner of the tetrahedron that lie beyond the green triangle as representing the states
that are incriminated as entangled by . The chosen witness is optimal in the sense that

no other entanglement witness detects a larger set of entangled states.

Letting the tetrahedral group act on the pyramid of Eq. (2.22) gives the unit cube.
Since the cube is the dual (also known as Polar [21]) of the octahedron, one learns from
Eq. (2.25) that the SLOCC equivalence classes of the separable states are represented by

the octahedron (up to the tetrahedral symmetries).

The 16 dimensional set of states is self-dual. By Eq. (2.25) the corresponding SLOCC
equivalence classes must be represented by a self-dual convex set in three dimensions,
which turns out to be the tetrahedron. To see this, note that an operator p in the
canonical form, Eq. (2.23), is a sum of mutually commuting operators with one relation,

([Jo* ® o = —1). Tt follows that its eigenvalues are

{po + €1p1 + €ap2 — €162p3} (2.26)
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where €,65 € {+1,—1}. Requiring p to be positive restricts it to the intersection of
four half-spaces, which evidently yield the tetrahedron. This completes the derivation of
Fig. 9.

One nice consequence of the geometric construction is a “proof by inspection” that for
2 qubits the Peres separability test is iff [19]. It is easy to see [6] that if p is a separable
state, then its partial transpose is positive. The converse is not true in general, but is true

for 2 qubits. However the proof [7] rests on non-elementary facts from operator algebras®.

The proof by inspection goes as follows [19]: Denote by p?* the partial transposition

of p. Since 09 is antisymmetric, while the remaining o, are symmetric, one has

—ppu2, for v =2

(") = (2.27)

P, Otherwise

On the SLOCC equivalence classes of states p = 0,0“® 0, the partial transposition then
acts as a reflection in the 2 axis: Replacing oo with —p,, Since the octahedron of separable
states is the intersection of the tetrahedron with its reflection through the oo = 0 plane

the result follows.

2.4 Visualizing the CHSH inequalities

The CHSH witnesses and inequalities were described in section 2.2.3. For the sake of

simplicity in notation we shall now stick with the plus sign in the witness of Eq. (2.8).

If a state violates a CHSH inequality then it is necessarily entangled, but the opposite
claim is false; There are entangled states that do not violate any CHSH inequality. Our

aim is to visualize these.

The CHSH witnesses have the property that (wgp)o; = (wp)jo = 0. This family is
invariant under the action of LOCC. The associated equivalence classes then live in three
dimensions and are in 1-1 correspondence with the 3 singular values of the 3 x 3 matrix
wp

(WB)ij = (wB)ij (2.28)
The singular values are the square roots of the three eigenvalues of Jjjrgcb B.

To find the explicit dependence of the singular values on the LOCC invariants cos a =

a-a and cos 3 =b-b'—the angles between the two directions Alice and Bob choose—we

6See [29] for the history of this problem.
"The minus sign corresponds to flipping 3, v
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Figure 11: The circles represent the CHSH Witnesses

introduce the pair of 3 x 2 matrices:
A= (a,d) B = (bV) (2.29)
One checks that

11
20p=a®@(b+b0) +d@Ob-V)" =A B" (2.30)
1-1

Since @;3(1)3 is manifestly a 3 x 3 matrix with rank 2, one of its eigenvalues is zero. Its

remaining nonzero eigenvalues equal to those of the 2 x 2 matrix

1 1 1 1
1(B"B) (AT A) (2.31)
1 -1 1 -1
Evidently
1 cosa 1 cos
ATA = , B'B= & (2.32)
cosa 1 cos@ 1

The matrix in Eq. (2.31) now takes the form

cos?(%)  cosFsin*(§)

(2.33)
cos fcos?($)  sin®*(§)
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It has a unit trace, so the singular values of &p lie on the unit circle w? + w? = 1, ws = 0.

Solving for the eigenvalues we find:

Wi, =1+ \/1 —sin*asin® 8, w3 =0

As v and [ vary from 0 to 27 this gives one eighth of the unit circle where 1 > w; > wy > 0.
If we adjoin to it the twenty four representatives of the same equivalence class, we get
the three mutually intersecting unit circles, shown in Fig. 11, representing the LOCC

equivalence classes of CHSH witnesses.

The dual set to the three unit circles (more precisely, to their convex hull) then repre-
sents the LOCC equivalence classes of the states that satisfy all the CHSH inequalities®.
To describe this geometrically, note that the dual set of the unit circle in the x — y plane,
for example, is the cylinder along the z axis, with a unit radius. The LOCC equivalence
classes of states that satisfy all the CHSH inequalities is the intersection of three cylinders
along the x, y and z axes, with a unit radius. This set (see Figure 12) is bigger than the

set of separable states represented by the octahedron.

Figure 12: The set of states that satisfy all CHSH inequalities in the SLOCC sense is the

intersection of three cylinders.

8 A-priori, only states with completely mixed subsystems are accommodated in a 3-D LOCC diagram.

However, it is easy to see that pg; and pjo do not affect Tr(pWpg).
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2.4.1 Optimizing the CHSH Inequality

In [34] R. Horodecki, P. Horodecki and M. Horodecki solved the problem of finding the
optimal CHSH witness? for a given (normalized) state p. They show that

YTr(pWg) > 1— /03 + o3 (2.34)

and the inequality is saturated for an appropriate choice of angles «, 3. Here p; o are the
two largest singular values of the 3 x 3 matrix p constructed from the spatial components
of the matrix elements p,, as in Eq. (2.28). In particular, the state p violates a CHSH
inequality if and only if p? + p3 > 1.

This result can be derived, essentially by inspection, from the geometric description
of the previous section. Recall (see footnote 8) that the state p may be assumed, without
loss of generality, to be one where the subsystems are completely mixed. The LOCC
equivalence class of p is represented by the three singular values of p, which we denote by
p. A Bell witness is represented by the three singular values of wg, which we denote by
@p. The vector Wp takes values on the three circles in the figure. For a normalized state
p

Tr(pWg) =1+ g (2.35)
It is clear that the optimal choice of a witness (a minimizer) is to choose the witness wp
so that the vector g is as anti-parallel to p’ as possible. (Recall that &p is constrained

to lie in one of the principal planes.) The minimizer is then the smallest entry among
(=%, 1= |Fxgl,1— |5 2]} (2.36)

This reproduces the result of Horodecki et al.

2.4.2 SLOCC interpretation

Fig. 12 also admits the following SLOCC interpretation: The states represented by points
lying in the intersection of the three cylinders have the property that they, and all that can
be filtered from them, satisfy all the CHSH inequalities. This is an immediate consequence
of theorem 2.1 which guarantees that Tr(p*®BW}g) attains its minimum value when p

takes its canonical form.

The SLOCC equivalence classes of states that lie outside the intersection of the cylin-
ders have the property that they can always be filtered to yield states that violate some
CHSH inequality.

9See also [35].
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2.5 More can be less

The CHSH inequality constrains Alice and Bob to two dichotomic tests each. A general
theory of Bell inequalities allows Alice and Bob n4 and npg tests, having m4 and mpg
possible results. (A geometric framework for deriving such generalized Bell inequalities is
described in [11].) Let I(nangmamp) denote a corresponding Bell inequality. The CHSH
inequality is then /(2222). Von Neumann tests on qubits restrict the outcomes of each

test to two, my = mp = 2; however, the number of tests, n4,ng can be arbitrary.

One naively expects that by increasing the number of tests one might be able to
incriminate some of the entangled states that pass the CHSH test. Indeed, D. Collins and
N. Gisin [17] present an example of a state p that violates an /(3322) inequality but does
not violate any CHSH inequality.

Here we shall present numerical evidence which shows that when Bell inequalities are
interpreted in the SLOCC sense, then 1(3322) (with three dichotomic tests) is strictly
weaker than [(2222). It follows that the state found by Collins and Gisin can be filtered
to a state that violates CHSH.

The 1(3322) inequality derived by D. Collins and N. Gisin [17] takes the form

—2P(By) — P(By) — P(A1) + P(A1By) + P(A1By) + P(A, By)+
P(AyB)) + P(A3By) — P(AsBs) + P(A3By) — P(A3B,) < 0

(2.37)

where P(A;B;) is the probability that when Alice chooses the ith measurement and Bob
chooses the jth measurement, they both get the outcome 0.

Allowing Alice and Bob three experiments to choose from gives them more freedom.
In particular, they are always free to disconnect the third experiment. This means that
the CHSH, or 1(2222), must be a special case of 1(3322). Indeed, the CHSH 1(2222)

inequality,
P(A1By) + P(ABy) + P(A3B;) — P(AyBy) — P(By) — P(4,) <0 (2.38)

is obtained from 1(3322) by Alice disconnecting her third experiment, P(A3) = 0, and
Bob disconnecting his first experiment, P(B;) = 0. Renaming By and Bz as By and B,
respectively gives CHSH.

Dichotomic, von Neumann, tests of Alice and Bob are described by projection opera-
tors, namely setting in the above
1—|—ai~0® 1+0bj-0

2 2

P(A;B;) — (2.39)
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where a; and b; are interpreted as directions in a measurement of the spin projection.
Note that the case of a disconnected experiment is not of this form: It is not a dichotomic

von Neumann measurement.

The witness corresponding to 1(3322) with three dichotomic von Neumann measure-
ments for both Alice and Bob is then

Wigoo =4I QI+ 1® (by +b2)-0— (a1 +az) - o@1
—(a14a) 0@ (b +by)- 0 —(ay—ay) - c@bz-0 (2.40)
—az-0® (b —by) -0

Tr (pWise2) < 0 implies that the state p violates a Bell inequality.

W300 represents an (a-priori) 12 dimensional family of witnesses. It has six LOCC
invariant parameters, the angles cos(w;;) = a; - a; and cos(5;;) = b; - b;, 1 # j € {1,2,3}.
We can visualize this family in 3 dimensions by representing Wisoo = (ws392) 0" ® 0¥ by

its canonical form under SL(2,C).

Let us introduce the following direction matrices

10 0 O 10 0 O
0 a1z A2, G3, 0 b1, bay b3,
. 1z A2, A3 B_ 1z b2z 03 (2.41)
0 A1y CLQy agy 0 bly bgy bgy
0 a1, az, as, 0 b1, ba, b3,
and
4-1-1 0
1-1-1-1
Wy = (2.42)
1-1-1 1
0-1 1 0
SO wsz0e = AW,BT. The Lorentz singular values are the roots of the eigenvalues of

(BTnB)WI(ATnA)W, . One finds

1 0 0 0
0 —1 — cos(ag) — cos(a
ATpA = (012) (a13) (2.43)
0 — cos(a2) -1 — cos(aa3)
0 — cos(ai3) — cos(azs) -1
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1 0 0 0

B™nB = 0 -1 —cos(frz) —cos(fis) (2.44)
0 — cos(f12) -1 — cos(f323)
0 —cos(513) — cos(Ba3) —1

The Lorentz singular values were calculated numerically. The intersection of the resulting
set with the X —Y plane, shown in Fig. 13, is clearly contained in the CHSH unit circle.
Similarly all points outside this plane were found to lie inside the convex hull of the three
CHSH circles, implying that they represent weaker witnesses. This means that under
SLOCC the CHSH inequality is stronger than I33s0 (when Alice and Bob are constrained

to measure three spin directions).

Thus, if the two parties are allowed to filter, then by letting them choose from 3
possible experiments, we gain less information than by restricting them to choose from 2

possible experiments.

Figure 13: CHSH and [I3392 Witnesses in the X — Y plane: the circle represents CHSH
witnesses while all the dots inside represent I3399 witnesses in this plane. Since the dots

lie inside the circle they represent weaker witnesses.
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3 Measuring Entanglement Witness

3.1 Introduction

Manufacturing entangled states in the lab is highly important for quantum information
[1]. In order to prove the existence of entanglement, one can measure the entire quantum
state using tomography techniques. In the case of two qubits, the 4 x 4 density matrix is
positive semi-definite, Hermitian, and with unit trace. Thus, finding the state requires 16
linearly independent measurements, where one is for normalization. The measurements
we use consist of products of two local projective measurements. After reconstructing the
density matrix, the Peres test [6, 7] can be used to check whether the state is entangled

or not.

We want to develop tools that can effectively tell, using as few measurements as
possible, if a quantum state is entangled or not, without having to reconstruct the entire
density matrix. In light of theorem 1.1, one can measure an entanglement witness instead
of finding the state, and reduce the number of measurements needed. Every entangled
state has a corresponding witness which detects it, and states in its neighborhood, as
entangled, but there is no universal witness. In order to prove entanglement we need to

choose a suitable witness to measure.

In this work, we introduce an entangled mixed state, motivated by [36], and its corre-
sponding witness. This state is a result of a cascade of a four level quantum system with
two intermediate levels. The two different decay channels produce |H) and |V') polarized

photons, respectively (see Fig. 14).

—.

-

\ o \
|HJ RN |V..
! . !

.

Figure 14: Four level quantum system with two intermediate levels. There are two possible
decay channels. One channel produces |H) polarized photons, while the other channel

produces |V) polarized photons

The wave function of the photon pair, assuming that the final state of the system is
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the same for both of the decay channels, is:
¥) = a|HH)|Py) + B|VV)|Py) (3.1)

Where |a]? + |3]* = 1 and |Py), |Py) are the wave packets of the photons.
The polarization density matrix after tracing out the wave packets is:

|a)? 00 re*

0 00 O
p = ; r >0, (3.2)
0 00 O
re= 00 |5]?

where re® = a3*(Py|Py).

The measurements needed for the entanglement witness are given for couple of cases.

In section 3.4.1, we restrict the allowed measurements to the standard set of:

1H) =10)
V)=
D) = J5(18) +1) .
D) = J5(H) = V)
L) = (8 +ilV))
1R) = H5(1H) = V)

In section 3.4.2, we assume that all measurements are allowed in the lab, meaning that any
polarization can be measured. Our goal is to find the minimal number of local projective

measurements required for measuring the expectation value of the witness.

3.2 Review of Two Qubits Tomography

In order to measure a density matrix, 16 independent measurements are needed. We use

16

projective measurements {F,},”;, where each of the measurements is a product of two

local projective measurements:
P, = p)Y e IpP) (02| (3.4)

Following the notation of James et al. [37], we introduce a set of 16 linearly inde-

pendent 4 x 4 matrices I',, that are orthonormal with respect to the trace inner product
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(A, B) = Tr(A'B) (see appendix A). By definition, for every 4 x 4 matrix p, we have:

16

p=> (Lunl, (3.5)

p=1
For a complete set of 16 projective measurements {P,}, we define a 16 x 16 matrix B,
such that
B,, =Tr(P,l,) (3.6)
The outcomes of the measurements of a density matrix p are:

16 16
nu=NTr(P,p) =N > Tr(B,L,)Tr(Typ) =N > B,Tr,p) (3.7)
v=1 v=1
where N is a positive constant depending on the flux of photons and is used for normal-
ization of the density matrix [37].
By inverting Eq. (3.7):

16

1 -

Tr(Lup) = N Z(B Dty (3.8)
v=1
Substituting this into (3.5) and defining the 4 x 4 matrices M, = ZLGZI L.(B™ 1), we
have:
1 1 Js

— -1 —

p= ;::1 Lu(B™ iy = ; M,n, (3.9)

In order to measure an entanglement witness (W):

16
1
Tr(Wp) =+ ; Tr(WM,)n, (3.10)
From Eq. (3.10) we see that not all 16 measurements are necessarily needed. The mea-
surement P, is needed only if Tr(W M,) # 0. Since we are interested only in the sign of
Tr(Wp), we do not need to find'® the constant N.

3.3 Mutually Unbiased Bases

A density matrix of a quantum state in a Hilbert of d dimensions has d> — 1 param-

eters. Let M = > mP,, be a projective measurement, such that > P, = I and

10The constant N is important if one wants to know not only whether the state is entangled or not,

but also how much entanglement there is.
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PP, = 0pmP,. There are at most d eigenspaces of M, providing d — 1 indepen-
dent probabilities. Thus, in order to determine the complete density matrix, one needs
d + 1 projective measurements. An optimal choice of the measurements would be a set of
mutually unbiased bases (MUB) [38].

Definition 3.1. Let {By}i, be a set of orthonormal bases By, = {|¢F), .., |[Wk)}, such that

ok L
!<¢¢|¢j>|—\/a

foreveryi,j=1,..,dandl, k =1,..,m wherel # k. {B}}", is a set of mutually unbiased

bases.

MUB are optimal in the sense that the different measurements have minimal overlap
between them, so every measurement adds the maximum of new information possible. In
the case d = 4, one can find 5 mutually unbiased bases, but only 3 mutually unbiased

bases of separable states. The remaining 2 are entangled states.

Here are two examples of 3 mutually unbiased bases of separable states for the case
d=4:
B, = {|HH),|HV),|[VH),[VV)}

B, = {|DD),|DD),|DD),|DD)} (3.11)
By = {|LL),|LR),|RL),|RR)}

and:
B, = {|HH>’ |HV>7 |VH>’ |VV>}

B, = {|LD),|LD),|RD),|RD)} (3.12)
By = {|DL),|DR),|DL),|DR)}

In this work, we are interested in product projective measurement, so we cannot find

mutually unbiased bases for a complete determination of the state.

3.4 Measurements of the Witness

Let us introduce a family of states:

(e”|01) — |10)) (3.13)
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And a corresponding family of operators:

0 00 —e?
x 1] 0 100

WO = (eoe@)” =5 | (3.14)
- 00 0

where AP' denotes the partial transposition of the matrix A of the second subsystem. For
a legitimate one qubit state pp, its transposition p} is also a state. For a product state
p = pa @ pp, its partial transposition pP* = p4 ® pk is also a state. Thus, the following
holds for all product states:

Tr{W(0)pa @ pp} = (e(0)|pa © pple(d)) > 0 (3.15)

since the matrix pa ® p% is positive semi definite. The expectation value of W () for the
state (3.2) is
Tr{pW(0)} = —rcos(¢ — 0) (3.16)

Thus, the operators (3.14) are entanglement witnesses.

The partial transposition of the state (3.2), which is denoted as pP*, has a negative
eigenvalue, —r, with a corresponding eigenvector |e(¢)). Thus, the state (3.2) is entangled
following the Peres criterion [6, 7]. We see that W (¢) is the preferred entanglement witness
for the state (3.2), since Tr(pW (¢)) = —r.

The entanglement witness (3.14) can also detect states in the neighborhood of (3.2).

If we add some random noise p' = (1 —€)p + }ld then:

Tr{pyW(0)} = —(1—€)rcos(¢ —0) + ie (3.17)

So the better we tune the phase 6 of the witness closer to the phase ¢ of the state, the
better can we detect noisy states as entangled.

3.4.1 Measuring only with the Standard Set

Suppose that only the measurement H, V', D, D, L and R can be used. These measure-

ments are somewhat more common and standard. With the 16 measurements in table 1,
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i pi) (pipi?’| using the standard

Table 1: A complete set of 16 measurements P,

polarization basis.
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we can measure the expectation value of W (#) for 4 different values of the phase 6:

Py+ Py — P11 — Ppo)}

—(

W (3) ={P,+ Ps— (P + Ps — Pr — %)} (3.18)
(
(

W(r) = {Py+ Ps+ (Py + Pio — P — P12)}
W () ={Po+ Ps+ (Ps+ Ps — P, — Py)}

Eq. (3.18) indicates that for the witness W (0) for example, Tr(WM,) # 0 for v =
2,3,9,10,11,12. Thus, as was explained at the end of section 3.2, in order to find the

sign of Tr(pW (0)) only 6 measurements are needed.

If the phase of the state ¢ is unknown, we need 10 measurements { Py, Ps, Ps, .., P12}
(see table 1) and by using Eq. (3.16) we can find the 4 expectation values:

(3.19)

One of the above is negative, which proves that the state is entangled.

If the phase of the state ¢ is known, we can choose only 6 measurements. We need to
measure the expectation value of W(#) such that |# — ¢| is minimal. After choosing the
371'

phase § = 0, 7, m, or ¢, we can find the 6 measurements needed according to Eq. (3.18).

One may note that the 6 measurements needed for each entanglement witness in
Eq. (3.18) belong to three mutually unbiased bases. The measurements of W (0) and
W (m) are taken from the bases listed in Eq. (3.11): P, P3 € By, Py, Py € By and
Piy, Piy € Bs. Similarly, the measurements of W(Z) and W (28) are taken from the bases
listed in Eq. (3.12).

3.4.2 All Measurements are Allowed

Following the work of A. Sanpera et al. [39], O. Giithne et al. [40] gave a minimal
decomposition to sum of products of (|¢)(p|)", where |p) = a|00) + 3|11) with «, 3
real, such that o? + 32 = 1. The minimal decomposition consists of 5 terms of product
projections. The situation is different here, since the coefficients of the entanglement

witness (3.14) are not real.

37



Let us define the following:

1) = 75 (e7PIH) +ie™ PP BV))
o) = 75 (7P| H) +ie”"PemmB|V)) (3.20)
|f3) = 1f1) + 1 f2)

wlp)y o)

1| |H) |H)

20 V) V)

31 1Ay 1f2)

40 1f2  |f)

51 1fs)0  |fs)

Table 2: The 5 measurements needed for the decomposition of W(#), P, =
|p5¢1)p,gz)>(pftl)p,§2)|. |f;) are defined in (3.20)

With these notations and those of table 2, we have:

W(0) = {2(Py+ P+ Ps) — 3 (P + Py} (3.21)

We see immediately from Eq. (3.21) that if the phase ¢ of the state (3.2) is known, and
we can use the measurements listed in table 2, we need a total of 5 measurements in order

to find the sign of the expectation value of W (¢) and to prove entanglement.
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4 Summary

Many of the important concepts in quantum information, such as entangled and separable
states, entanglement witnesses, the CHSH Bell inequalities, etc., can be visualized in three
dimensions by introducing an appropriate equivalence relation. The visualization allows
us to give a “proof by inspection” of the non-elementary fact [7] that the Peres separability
test for 2 qubits is iff. It also allows us to “solve by inspection” the problem of optimizing
the CHSH Bell inequality, which was solved by analytical methods in [34].

We have introduced the notion of states that satisfy Bell inequalities in the SLOCC
sense. We gave numerical evidence which showed that allowing Alice and Bob an ad-
ditional dichotomic von Neumann test does not enable them to shrink the set shown in
Fig. 12, obtained by filtering and CHSH. It is an interesting open question whether four
or more dichotomic tests, or more general POVM tests, can further shrink the set shown
in Fig. 12.

In this work, we have given a recipe for measuring entanglement witnesses, minimizing
the number of measurements needed. The state was assumed to be a general state (3.2),
not necessarily pure, with a phase, not necessarily known. In case we use only the standard
measurements {H,V, D, D, L, R}, we need 10 measurements if the phase of the state is
unknown and 6 measurements if the phase of the state is known. If we know the phase and
we allow all measurements, we can further improve the result and use only 5 measurements

in order to prove the existence of entanglement.
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A Gamma matrices

Here we give a set of 16 linearly independent 4 x 4 matrices I',,, with the property:

Tr(T.)) =46,

This set spans the space of 4 x 4 matrices.

N =i®l Ty,=1®o,  Ts3=Lilgs, T,

F5:%U$®I Fﬁzéar@)aw F7zéar®ay I's

Fg = %O'y®l FlO = %O'y@O'I FH = %0y®0y Flg

(A.1)
= %[ ® o,
= lo-x X o,
2 (A.2)
= %O'y X o,

_ 1 _ 1 _ 1 _ 1
I'3=350.®1 Ty=350.®0, Ti5=350.®00, Ti=30.Q0,

B Matlab Program for calculating M matrices

Here is a Matlab code that calculates the M-matrices.

oo o ToTo Jo o o To o Jo oo To o o Jo o Jo o o Jo o Jo o o To o Jo o o Jo o o To o Jo o o Jo o Jo o o Jo o Jo o o oo Jo o o
%% Definition of |H>, |V>, [D>, |Dbar>, |L> and |R> %%
%% Notations: |H>=z_p |V>=z_m To o To T ToTo T To T To Toto o Vo To o Fo oo
T tohololotatoholohodete 1D>=x_p  |Dbar>=x_m %%hlklhltleletsletstotetaletsls
Tttt lototootohtele 1L>=y_p  |R>=ym oo o To o Jo o o To o Jo o o To o JoJo o o
oo o To o Jo o o To o Jo oo To o o Jo o Jo o o Jo o Jo o o To o Jo o o oo o To o Jo o o Jo o Jo o o o o Jo o o oo Jo o o

%% Choose alpha: %%
alpha=0* pi/180;

%% Choose phase: %%
alpha=0* pi/180;

z_p=[1;0]; z_m=[0;1];%

f1=1/sqrt(2) *(exp(-ixpi/3) *z_p+exp(-i*alpha/2) *exp(i*pi/3)*z_m) ;%
£2=1/sqrt (2) * (exp (i*pi/3) *z_p+exp(-i*alpha/2) *exp (-i*pi/3)*z_m) ;%

£3=f1+£2;7%
f4=1/sqrt(2) *(exp(-ixpi/3)*z_p
+exp (-i*pi/4) *exp(-i*alpha/2) *exp (i*pi/3)*z_m) ;%
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£5=1/sqrt (2) *(exp(i*pi/3)*z_p

+exp (-i*pi/4) *exp(-i*alpha/2) *exp(-i*pi/3)*z_m) ;%
f6=f4+£5;Y%
x_p=1/sqrt(2)*[1; 1]; x_m=1/sqrt(2)*[1; -11;%
y-p=1/sqrt(2)*[1;i]; y_m=1/sqrt(2)*[1; -i];%

T ToToTo oo To o To o ToToo o o ToTo o o o To o o o Jo To o o o To oo o o To o o o Jo To o o o ToFo o o o To o o o o o
%% Definition of projections of one qubit %hklkltetsttslsls
hh |H><H|=zp, |V><V|=zm, 1o 1o 6o o ToTo o o o ToTo o o o To o o o o To o o
%% 1D><D|=xp, |Dbar><Dbar |=xm %%kk%kh/leletslslslelstslslolelstslolele
%% |L><L|=yp and |R><R|=ym 1o 1o 6 To o ToTo o o o To o To o o To o Fo o o To o o
o161 1oTo oo o To o o To o Jo o o Jo o Jo o o Jo o JoTo o To o Jo 1o o Jo o o 1o o Jo o o Jo o Jo o o To o Jo 1o o o o Jo 1o o

xp=(x_p*x_p’); xm=(x_m*x_m’); yp=(y_p*y_p’); ym=(y_mxy_m’);
zp=(z_p*z_p’); zm=(z_m*z_m’); F1=(f1*f1’); F2=(£f2*£2’); F3=(£3*£3’);
FA=(f4xf4’); Fb5=(£f5%f5’) ;F6=(f6*f6");

ool Tl T ToToToTo ToToTo oo oo o o oo oo o o o o o o o T o To o T T o oo oo oo o oo oo o o o o o
%% Definition of projections of two qubits %%hkhhhhhhh

%% HH HV VH VW ..... Tototo o ToTo T 1o o To ToTo o o To Fo Jo oo To o Fo To o
%% DD DDbar DbarD DbarDbar ..... Do ot 1o To oS To o To o T ToTo To foJoToTh
%% LL LR RL RR ..... Tototo oo To T o o To ToTo o oo foJo oo o foTo oo

Tt oo o oo o To o To o oo o o o o o o o o o o o oo oo o To o ToToTo oo oo o oo o o o o o o o o oo

HH=kron(zp,zp); HV=kron(zp,zm); VH=kron(zm,zp); VV=kron(zm,zm);
HD=kron(zp,xp); HL=kron(zp,yp); HDbar=kron(zp,xm); HR=kron(zp,ym);
DH=kron(xp,zp); LH=kron(yp,zp); VDbar=kron(zm,xm); VR=kron(zm,ym);
VD=kron(zm,xp); VL=kron(zm,yp); DV=kron(xp,zm); LV=kron(yp,zm);
DbarH=kron(xm,zp); RH=kron(ym,zp); DbarV=kron(xm,zm) ;
RV=kron(ym,zm); DD=kron(xp,xp); DbarDbar=kron(xm,xm) ;
DDbar=kron(xp,xm); DbarD=kron(xm,xp); LL=kron(yp,yp);
RR=kron(ym,ym); LR=kron(yp,ym); RL=kron(ym,yp); DR=kron(xp,ym);
RD=kron(ym,xp); DbarL=kron(xm,yp); LDbar=kron(yp,xm);
DL=kron(xp,yp); LD=kron(yp,xp); DbarR=kron(xm,ym);

RDbar=kron (ym,xm) ;
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TotoTo o foto o To o Vo To oo To oo To fo o To To o To Fo o to o fo o To fo o To Fo o To Fo o Jo o fo o To fo o o To o Jo o o Jo o o
Y%hhhh Definition of the 16 measurements  %hllstststetetotstetsts
Ththts Here you can choose any set of %%listetololotslstolslotsletols
Hhhhhte 16 independent measurements  %hsslolslotosslolslotosloletotols
TotoTo o ot o To o Vo To oo To foJo To fo o To To o To Fo o to o fo o To fo o To Fo o To Fo o Jo Fo fo o To fo o o To o Jo o o Jo o o

a=zeros(4,4,16);

a(:,:,1)=HH; a(:,:,2)=HV; a(:,:,3)=VH; a(:,:,4)=VV;
a(:,:,5)=kron(F1,F2); a(:,:,6)=kron(F2,F1); a(:,:,7)=kron(F3,F3);
a(:,:,8)=kron(F4,F5); a(:,:,9)=kron(F5,F4); a(:,:,10)=kron(F6,F6);
a(:,:,11)=HD; a(:,:,12)=HL; a(:,:,13)=DH; a(:,:,14)=LH;
a(:,:,15)=LL; a(:,:,16)=RL;

TotoTo o fo T To To o Vo To oo o foTo o ToJo o To o To Fo o To o foTa o fo o To Fo o To Fo o Jo o fo o To fo o o Fo o to o fo Jo o o
Y%%hh%h Definition of the Gamma matrices %%%hlhltstsththtotstetsts
To 1o o1 Vo o oot To o To o to Yo o To o Jo To o fo oo To o fo o Jo To To fo o Jo To To fo o fo To To fo o fo To Fo fo o Jo To o fo oo

base=zeros(4,4,16);

base(:,:,1)=[1 00 0; 00 00; 0O00O0; 000 O0];%
base(:,:,2)=[0 0 0 0; 01 00; 000O0; 00O0O0 1;%
base(:,:,3)=[0 00 0; 0000; 0010; 000 O0];%
base(:,:,4)=[0 00 0; 00 00; 000O0; 000 11;%
base(:,:,5)=1/sqrt(2)*x[0 0 0 1; 00 0 0; 000 0; 1 0 0 0];
base(:,:,6)=1/sqrt(2)*[0 0 0 i; 0 0 0 0; 0 0 0 0; -1 0 0 0];
base(:,:,7)=1/sqrt(2)*x[0 0 0 0; 001 0; 01 00; 00 0 0];
base(:,:,8)=1/sqrt(2)*[0 0 0 0; 0 0 i 0; 0 -1 0 0; 0 0 0 0];
base(:,:,9)=1/sqrt(2)*[0 1 0 0; 1 00 0; 000 0; 00 0 0];

base(:,:,10)=1/sqrt(2)*[0 0 1 0; 0 0 0 0; 1 0 0 0; 0 0 O 0];
base(:,:,11)=1/sqrt(2)*[0 0 0 0; 0 00 1; 000 0; 01 0 O];
base(:,:,12)=1/sqrt(2)*[0 0 0 0; 0 0 0 0; 000 1; 0 0 1 0];
base(:,:,13)=1/sqrt(2)*[0 i 0 0; -1 0 0 0; 0 0 0 0; O O O 0O];
base(:,:,14)=1/sqrt(2)*[0 0 i 0; 000 0; -1 0 0 0; 0 0 0 0];
base(:,:,15)=1/sqrt(2)*[0 0 0 0; 0 0 0 i; 0 0 0 O; O -i O 0];
base(:,:,16)=1/sqrt(2)*[0 0 0 0; 0 0 0 0; 0 0 0 i; 0 O -1 0];
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ToTo oo ToTo JoTo Jo o Jo o Jo o fo o fo o oo oo o o oo o o o o o o o o o To o Jo o To o Fo o Fo o Fo o Jo o Jo o To o o
%hhhkh Definition of B matrix %h%hhhhhlsllshtdshhtsshtodsotssstodsts
Too 1o oo To o To o To oo To o To oo To o To oo To o Fo o o Jo o Fo o To Jo o Fo o To oo fo o Fo o To Fo 1o Fo o o Jo o Fo o o
B=zeros(16,16);

for k=1:16
for j=1:16
B(k,j)=trace( a(:,:,k) * base(:,:,j) )
end

end

ToToToTo oo To o To o ToTo o oo ToTo o o o ToTo o o Jo ToTo o o ToToTo o o To T o o Jo To T o o To T o o o To o o o o o
Jhhht Definition of M matrix U%hhlhshlhleletstslslslslolotolststslolsloloelh
oo ToToTo oo o o o JoToTo oo o o o Jo ToTo oo o o o o o To oo o o o o o To oo o o o o o To oo oo o o Jo T o

M=zeros(4,4,16); b=inv(B); b=b.*(abs(b)>1e-10);

for k=1:16
for j=1:16
M(C:, 0, k)=M(:, 0, k) +b(j, k) *base(:,:,3);
end

end
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