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Abstract

Quantum computation is one of the most popular and rapidly expanding research topics in past
two decades. The possibility of performing tasks that are believed to be unfeasible using classical
computation made quantum information wide spread even in popular culture, and there are
other - less widely known - applications of pure quantum systems. Unfortunately, experimental
realization of a system capable performing even basic calculations is still far from reality. One of
the main obstacles is the susceptability to unwanted interaction with the environment (noise) of
any quantum system (especially if it is large or for example should act as a measuring apparatus).
This interaction causes information stored in the system to “leak” to its sorroundings, thus reducing
the system quantum purity (creating decoherence). One possible method of battling this effect is
dynamical decoupling (DD) - the use of a deterministic field (control) to act upon the quantum
system and effectively reduce the effect of the environment. In the past 15 years dynamical
decoupling has proven itself as one of the main methods for maintaining quantum coherence. The
DD schemes became increasingly elaborate, the theoretical foundations strengthened and qubit
lifetime extension by more than an order of magnitude was measured.

Our research focuses on DD schemes under an energy constraint - a limiting factor mostly
ignored in the field until recently. Starting from fundamental principles and using a perturbative
approach, we develop a geometric framework for studying a general control scheme for combating
noise. We discuss higher perturbation orders - translating the problem to Feynman diagram calcu-
lation and proving convergence. We proceed to discuss several specific examples, notably showing
entropy reversal. Next we show that decoherence minimization is ill defined without adding con-
straints and introduce a constraint on the total amount of energy applied to the system. We study
the integro-differential equation for constrained optimal control and provide new insights. Using
simple geometric and algebraic tools we derive an upper bound on the improvement (decoher-
ence reduction) achievable by any DD scheme constrained by finite energy. We proceed to prove
that for the case of square pulses a wide pulse is more efficient in decoupling the system from
its environment than a sharp one - in contrast to most of the DD schemes used today. Finally,
we show a few limits where a constant control field saturates the improvement bound, making it

asymptotically optimal.
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1 Introduction and background

1.1 Quantum purity

The great potential quantum mechanical systems hold for information processing [1, 2] has created
increasing interest in quantum information processing over the last two decades. Quantum com-
puters, quantum cryptography and quantum teleportation are some of the most celebrated ideas
that emerged in this field, all of them made possible by the fundamental difference between the
quantum and classical description of the world [3]. Other applications made possible by coherent
control of quantum bits are: quantum sensing in biological systems [4, 5], precise magnetometry
[6, 7, 8], and simulation of theories on controlled quantum systems [9, 10], to name a few.

Quantum information processing, as well as other applications, depend on the assumption that
the quantum system evolves unitarily in time, under some deterministic Hamiltonian (meaning
a closed system). Unfortunately, any physical system is coupled to it’s environment (however
weakly), so a more accurate way of describing its time evolution is taking into account its open
system characteristics. This coupling entangles the system to it’s surroundings, a process which
transfers information from the system into the surrounding bath - where it is no longer accessible.
This non-unitary time propagation of the system, when the state gradually loses it’s purity and
becomes mixed, is called quantum decoherence [3].

An obvious method to reduce this effect is isolating the system from it’s environment as much
as possible, but this method is sometimes hard to implement and might create other problems
(for example difficulties interacting with the protected system). A more sophisticated way to fight
this malicious effect is quantum error correction [11], which can be thought of as a closed-loop
(feedback) correction protocol acting on a redundant system [12]. Another possible approach to
decoherence reduction is dynamical decoupling (DD): the use of unitary (open-loop) operations
on the system to effectively reduce it’s coupling to the environment. The fundamental difference
between these two strategies is while error correction utilizes the slow rate of the system’s decay
(so that, with high probability, the amount of information lost to decoherence during the evolution
time is no more than the redundancy inserted by the error correcting code), dynamical decoupling

uses the assumption that the noise changes slowly - regardless of the system dynamics time scale.

1.2 Hahn echo

Viola and Lloyd [13] introduced dynamical decoupling into quantum information 15 years ago -
proposing the use of DD on single qubits (in contrast to spin ensembles). Yet the spin echoes
Erwin Hahn measured in NMR systems more than 60 years ago [14] may be considered the true
beginning of DD. Hahn used a spin bath immersed in constant magnetic field in the 2 direction,
creating level splitting in the spins. Due to the non-homogeneity of the spin bath and magnetic

field imperfection, the effective field on each spin is slightly different. This difference in level



splitting leads to variations in the Larmor precession frequency, so after a while the magnetic
polarization of each spin is different - leading to practically no measurable polarization of the
bath. But all is not lost: by applying a m-pulse in the middle of the time evolution this apparent
“randomization” of polarizations can be reversed and the bath can be refocused (see Fig. 1). Note
that we did not need to know anything about the splitting of any specific spin in order for this
method to work.

This effect relies on the assumption that the non-homogenous level splitting does not change
during the experiment, if it did then the Larmor precession after the m-pulse would not exactly
compensate for the difference in spin directions created before the pulse. This problem can be
(at least partially) solved by applying a series of pulses instead of a single one - if the splitting
remains practically constant during the interval between subsequent pulses, multiple refocusing
“echos” can be measured, as was suggested by Carr and Purcell (CP scheme [15]).

These, relatively simple, methods exemplify the main ideas of dynamical decoupling. The fact
that there is no need to know the level splitting of each spin is translated into effectiveness of DD
regardless of the specific noise realization. In order to be effective, any DD scheme must act on

shorter time scales than the noise correlation - as the CP example shows us.

1.3 DD today

Following the initial publication of the pulsed DD idea (“Bang Bang’ control schemes [13]) a
significant amount of work has been done in the field. Some additional schemes were assimilated
from the field of NMR:

e rm-rotations around an axis in the direction of the spin initial state reduce the system sensi-
tivity to pulse inaccuracy (CPMG [16]).

e Different periodic schemes (PDD) were suggested, notably switching the axis of rotation
between the X and Y axis every cycle (XY-scheme [17]).

These periodic schemes can be considered as a series of stroboscopic control pulses. The resulting
time evolution can be written as a perturbative expansion. A possible measure of the quality of

a DD scheme is the maximal expansion order that is negated.

e A concatenated DD scheme (CDD [18]) recursively embeds some pulse pattern into itself,
thus eliminating higher orders of the time evolution expansion. The cost of this procedure

is an exponentially increasing number of pulses needed to negate high orders of noise.

Thinking of the decoherence as some function D () (it will be derived in section 3) that we wish to
minimize, an alternative measure of the quality of a DD scheme may be the number of derivatives
of D (t) at t = 0 that vanish.
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Figure 1: The steps of Hahn echo. (A) At time ¢ = 0 all spins are polarized in some direction in
the x — y plane. (B) The system undergoes free evolution until ¢ = T, during which every spin
rotates around the z axis with a Larmor frequency associated with the magnetic field intensity at
its site. (C') Using an instantaneous m-pulse, all spins are flipped around the y axis - effectively
reversing the direction of rotation. (D) The system again undergoes free evolution for a length of
time T', at t = 27T the spin directions coincide once again - hence creating a refocusing effect.



e Uhrig’s DD scheme (UDD [19]) uses this vanishing derivative criteria to find the optimal

spacing of N pulses, that turns out to be non-equidistant (specifically, for n pulses and total

. . . . . tj . 2 7rj
time ¢, the pulse times ¢; are given by: 3 = sin” { 5,5

of negating higher derivatives using a linearly growing number of pulses.

)) This scheme has the advantage

This scheme was extended and investigated [20, 21|, iterated [22] and nested 23] variations were
proposed. Yet, since different measures of quality were used to develop the schemes, it should not
come as a surprise that neither of them is clearly better - the performance depends on the noise
properties [24, 25]. There are quite a few additional schemes suggested in the past few years,
both theoretical and experimental work in the quest for most efficient pulse sequence is still in
progress (see [26, 27, 28] and references within for recent results). Note that all of the schemes
described above assume ideal (instantaneous) pulses in their basic formulation, but the effect of
realistic (finite length) pulses was investigated as well (for example in |29, 30]).

So far only pulsed schemes were mentioned. One advantage of sharp pulses is that it reduces
the sensitivity of the control scheme to in-homogeneous broadening (as is the case for a spin
bath in NMR for example - the field where DD was born) - because the effect created by high
intensity field is less sensitive to frequency detuning. Today DD is mostly applied to single qubits
(where the detuning can be made negligible) so in general there is no reason why the control
field should not change gradually in time. A more general approach was taken in |31, 32|, where
arbitrary noise spectrum and control modulation were considered. Another reason to introduce
non-pulsed schemes is a situation when there is a limitation on the energy allowed to be used
in the control field (this is a more strict version of finite control field [33]), in which case ideal
pulses are impossible - as their energy approaches infinity. Such a limitation can arise due to
heating constraints on the system (for example in quantum sensing of a biological system) or if
the applied control field has some errors of its own - since the decoherence induced by this noise
is proportional to the intensity of the applied field we want to minimize its total effect [34]. This
constraint was first formally introduced in [35] and investigated further in [34].

The main theme of this research is optimal control (DD schemes) under an energy constraint.
Our mission is to develop a comprehensible model describing the noise and an arbitrary control
field - to serve as a framework for comparing the efficiency of different DD schemes. Next we will
attempt to produce and solve an equation describing the optimal control given some noise prop-
erties. Finally, we will try to make some broad statements about the effect an energy limitation

has on the form and efficiency of a DD scheme.



2 Preliminary definitions
2.1 Bloch sphere
Any density matrix p can be written as:
1
p=5U+7 ) (1)

Where @ = (04, 0y,0,) and

0 1 0 —i 10
Um_(lO)’Oy_<i 0)’%_(0—1) @

are the Pauli matrices. We will be interested in the 3 dimensional vector 7 = (ry,7y,7,) that
describes the state. The fact that p must be positive for any physical state forces |7] < 1 - this
set is known as the Bloch sphere.

We will be using the following known identities for Pauli matrices:

G = (02,04,0:)
0;"0j = 1-Ejjk- 0k
(o) = I
Tr(oi) = 0
(7.7).(?7) - (ﬁ-?)lﬂ'?-(ﬁx?) (3)

The definition of the purity of a state described by p is [1]:
2 1 2
Tr 7] = 5 (1+7) (4)
So the length of the vector 7 describing a state p is a measure of the state purity.

2.2 Quantum channel

A quantum channel C is a representation of some physical process that takes an initial quantum
system p;, and returns a different state poy:. Formally, a channel is a completely positive, trace
preserving linear map between two spaces of states. The trace preservation and positivity condi-
tions appear trivially from the requirement that p,,: must be a legitimate density matrix (given
that p;, is). The complete positivity is due to the fact that the input state might be part of a
larger system, and though the channel does not act upon the rest of this system - the resulting

composite state must still represent a valid physical system. The definition of complete positivity:



Figure 2: A general channel transforms the Bloch sphere into an ellipsoid inside the sphere. \;
are the lengths of the semi-axes of the ellipsoid.

given a channel C, Cy is a positive map for any integer k > 0, where C, is defined as:

C,=Cx®IF (5)

An unbiased channel that does not change the input state if it is maximally mixed (C [%I ] =
%I ) is called a unital channel. If we apply such a channel on all pure states (the boundary of the
Bloch sphere) the resulting states will form an ellipsoid inside the Bloch sphere (see Fig. 2). This
ellipsoid is created by rotating and contracting the Bloch sphere surface. From equation 4 it is
obvious that the rotation part of this transformation does not change the purity of the affected
system, while the contraction reduces it (introducing decoherence).

Due to the complete positivity condition, not any sphere contraction is allowed. After some
simple manipulations, the result in [36] can be transformed into the following inequalities that

the ellipsoid semi-axes lengths A; must fulfill (besides the trivial |A\;| < 1):

A1 — A2l < |1 = Ag)
A1+ X2 < |14 A (6)

These inequalities can be drawn in the Ay — Ay — A3 space using the following “Mathematica”

codel!:

ContourPlot3D[{Abs[x + y] == Abs[l + z], Abs[x - y] == Abs[1 - z]},
{x, -1, 1}, {y, -1, 13}, {=z, -1, 1}, Mesh -> None]

!Throughout this work we present the relevant code for calculating tedious integrals or plots instead of tiring
the reader with long technical derivations

10
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Figure 3: The possible values for the eigenvalues of a completely positive quantum channel ();)
form a tetrahedron in the A\ — Ao — A3 space.

Where they define a tetrahedron (see Fig. 3).

3 Model and decoherence function

We think of a qubit initialized in some state that is being influenced by some malicious random field
7 (t) that creates decoherence (note that we model the noise as a classical random field - which
is usually the case in experimental setups - and not as a quantum mechanism of information
transfer out of the system). Additionally, a deterministic field is applied on the qubit, creating
some controlled rotation of the Bloch sphere. The goal is to reduce the effect of 7 (¢) using
the deterministic (control) field. This theoretical qubit is implemented in reality by a two level
system that has an energy gap (natural or artificially created) and is being irradiated by a resonant
electromagnetic field, creating said rotation. The ambient noise acts on the two level system in all
directions, but only noise in the z-axis direction has a significant affect (the other directions don’t
preserve energy). Combining these observations and translating the problem into the interaction

picture (in respect to the rotation created by the energy gap) we get the Hamiltonian:

H (1) = ghn(t) 0.+ 3hid (1) - @ (7)

We think of 7 (t) as a stationary, unbiased ((n (f)) = 0 ), random process representing noise and
of 1 (t) as the control field. Moving into the interaction picture (once more) in respect to the
%hﬁ (t) - & part (defining Hy (t) = %hﬁ (t) - & and Hy (t) = 3hn(t)o. the Hamiltonian in the
interaction picture is Hy (t) = UOT (t,0)-Hy-Uy (t,0), where Uy (,0) is the time evolution operator

11



with respect to Hyp), we get the Hamiltonian in this frame:
1 = o
Hy () = 5o () X (1) - 7 (8)
X (t) is defined by () via the relation (X (0) = 2 of course):

X (t+dt) & =exp @Q@) -&dt) X (t) - Gexp (-i;szft) : Edt) (9)

X()-5= % (200 -5) (X)-6) - (X0 -5) (21 -5)] (10)

Using equation 3 this can be brought to the form:

X ()= X () x O (1) (11)

Now we can calculate the time evolution equation for a state density matrix (using the Bloch

sphere notation - equation 1):

Ft) = n()X () x7 () (12)

Since 7(t) is stochastic (due to it’s dependance on the stochastic 7 (t)), the density matrix de-

scribing the physical state is defined by the average vector:

R(t) = (7(¢))

Equation 12 generates some time evolution of R. We can think of this evolution as a quantum
channel that propagates the initial state in time: R (t) = C () [E (0)}

There is no single all encompassing definition of a channel’s quality. Instead, a more practical
approach is taken - the quality of a channel depends on its intended use. As we are interested in
preserving the purity of an unknown initial state, we must take into account the channel’s action
on all possible initial states. One possible measure of the decoherence a channel introduces that

considers the whole Bloch sphere is:

3

D(C) =) 1-x| (13)
=1

Where \; are the channel eigenvalues. If all eigenvalues are 1 the channel is purely rotating so it

introduces no decoherence - see section 2.

12



3.1 Perturbative representation

We now use the definition of decoherence in equation 13 and perturbation theory up to second
order in 7 (t) (higher orders will be discussed in section 4) to obtain an explicit expression for
D (t).

We expand 7 (t) in respect to powers of 7 (t) as:

e}

n=0

Remembering that (n (¢)) = 0 (and using equation 12) we get:

e 7o (t) =0 = Ry (1) =7(0)
beom(s) = n(s) X () x 7o (s) = fo (n(s)) X (s) x 7 (0)ds = 0
20 Fa(s)=n(s) X (s) x 71 (s) = Ryt fofo 1 () X’() [}?(wx?(()) dsdu

(15)

=R+ 0/0/ )Z() ﬁ)f(u)—(f(s)-f(u))ﬁ}duds (16)

Using this channel we calculate explicitly the decoherence as a function of time (see appendix A

2/t/ w)) X (s) - X (u) duds (17)
0

(n(s)n(u)), remembering that ))Z (s)‘ =1,

for derivation):

Defining the autocorrelation function J (s —

u) =
defining v (s, u) as the angle between X (s) and X (u) and using symmetry under exchanging s

and u, we get:

:/t/tjs—ucos (v (s,u)) duds (18)
0 0

This formula can be represented geometrically as pictured in Fig. 4. Note that if we assume J (s)
is monotonically decreasing with s, then any control field reduces the decoherence compared to

no control.

13



Figure 4: A geometric interpretation of equation 18. X (s) rotates due to the applied control
field and traces some path on the Bloch sphere (wide black line) during the time 0 — ¢. The
decoherence is determined by going over all possible pairs of points on this path and summing the
cosine of the angle between them multiplied by the autocorrelation between these times.

4 Higher perturbation orders

In this section we discuss the higher perturbation orders that we neglected in section 3. We
translate the perturbative calculation into Feynman diagrams, show that the series converge and
calculate the order of magnitude of the n'® order. From equation 12 we can write an expression

for the n** order in perturbation theory:

S1 Sn—1

En(t):o/o/m O/ n(s1) .7 (s0)) ()Z(sl)x...x (X’(S,H)x (X(sn)xf(0)>))dsl...dsn

(19)
Assuming 7 (s) is a Gaussian process and remembering that (n (s)) = 0 we can use Isserlis’ theorem

[37] (the mathematical origin of Wick’s theorem from quantum field theory [38]):

0 n odd
(n(s1)...1(sn)) = (20)
Z Hi—k pairings <77 (Sl) n (Sk’)> neven
Where the sum is over all possible multiplications of pair-wise correlations (contractions in QFT).
Since (n (s;)n(sk)) = J (si — sk) is known, it is theoretically possible to calculate 7 (¢) up to any
order. Defining X () x # = M (¢)7 and using the symmetry of the integrand we can write (T

14



M(Sl) 1 M(Sg) 2
J(s1 — s3) J (82 — s4)
M (s3) &S M(S4).S4

Figure 5: One of three Feynman diagrams for a 4-th order perturbative correction.

represents time ordering):

R, (t):i!//.../(7](31)...n(sn)>TM(51)...M(Sn_l)M(sn)F(O)dsl...dsn (21)
00 0

Associating vertices with M (s;) and propagators with J (s; — si) we have translated the calcula-
tion into Feynman diagrams (see Fig. 5 for an example).

As always when dealing with Feynman diagrams, a crucial point is the question of the series
convergence. The number of diagrams (which is the number of possible ways to contract n

members into pairs) for the n'* order is (n is even or the contribution is 0):

Bl

Since both J (s; — sx) and M (s;) are bound from above for any values of s (J due to the fact

(22)

0[3

2

that the noise intensity is finite and M as a rotation generator), the % coefficient in equation 21

makes sure the sum is finite with an infinite convergence radius.

Assuming (n (s;) 1 (sx)) = J (si — sx) has a typical width 7, we can asses |7, (¢)]:

170 (8)] S ((n? () ) 2 (23)

Where (n?(s)) is the small parameter.

5 Uncontrolled stochastic evolution

In this section we calculate the exact expression for decoherence without any control field and
show that it rises slowly (sublinearly) for short times and linearly for longer times. The no control

case can be solved exactly (non-perturbatively). Since Q= 0, it follows from equation 11 that

15



X (t) = Z, so the equation of motion for 7 is simply (using equation 12):

F(t) =n(t) 2 x 7(t)

Defining the rotation generator around the Z axis (G,) we get:

0
G=| -1 0
0
F(t) = n(t)G.r(t) =

7 (t) = eF= Jon)dsiz o)

Under the assumption from section 4 that 7 (s) is Gaussian, we can calculate R:
R= (0 fan)isi(0)) = 3@ n)") 2 )

-1 0 O

5.1 White noise

Choosing 7 (s) to be white noise (J (s — u) = 2ad (s — u)) its easy to solve for R:

R, (t) = e %7, (0) R, (t) =e %7, (0) R.(t)=7,(0)
So the state purity decays exponentially (as is often assumed to be the case).

5.2 Colored noise

5 _lsl

(24)

Now we choose non-Markovian noise statistics: J (s) = v“e” = (v is the noise intensity), meaning

a Lorentzian noise spectrum - as predicted for a spin bath by Anderson [39]. Using the following

“Mathematica”’ code:

Integrate[2*Exp[-(s - w)/7], {s, 0, t}, {u, 0, s}] =
= 27(t + (-1 + E"(-(t/7)))7)

16



Figure 6:

We get a more complicated behavior of R (t):

t

O/tO/J(su) duds = 20%r (t—7+7e—%) (31)

= —2027 t—T—O—Te*% - = —227 t—7+7€7$ N = N
ey = ) ) By =T D) R =) 62)
Assuming 77(0) is in the 2 — y plane we can draw ||§((é))|| as a function of time (see Fig. 6) and see

that for small ¢ (¢ ~ 7) the decay is sublinear - slowly rising.
An alternative way to see this result is using equation 18 (setting v = 0 as there is no control
field) and taking the limit of £ < 1

2
Dfree (t) =7’ <t> =2 (33)

T

Where we see that the decoherence rises as the square of the time for short times, no linear term.

Taking the opposite limit (% > 1) of equation 18 we get:

t
Diree (t) = 20°7% - = (34)

T

A linearly increasing function with ¢ - as we would expect from Fig. 6.

17



6 Solvable control models

6.1 White noise

First, we show that dynamical decoupling is ineffective against white noise. Let us assume a
thermodynamic (steady state) bath. This memory-less bath is translated to noise correlation

function J (s —u) o 0 (s — u):

D(t) « /t /t 5 (s — 1) cos (7 (5,u)) duds = /t cos (0) ds (35)
0 0 0

Which is equivalent to zero control field (free evolution), so for a memory-less bath (white noise)
no DD has any effect - showing once again the importance of noise correlation length to the success
of DD schemes.

6.2 Hahn echo

In this section we give a geometric interpretation of Hahn echo. More surprisingly, we will see
that this seemingly simple control scheme reverses the flow of entropy for a short time. Taking
the control field to be a w-pulse at % and fixing Q) in the z — y plane, we can use the following

“Mathematica” code to get (assuming the same Lorentzian noise spectrum as in section 5):

Simplify[

Integrate[2+Exp[-(s - w) /7], {s, 0, t/2}, {u, O, s}] +
Integrate[2*Exp[-(s - w) /7], {s, t/2, t}, {u, t/2, s}] -
Integrate[2#Exp[-(s - w) /7], {s, t/2, t}, {u, 0, t/2}]] =
= 27 (t + (-3 - E(-(¢t/7)) + 4 E°(-(t/(2 7)))) 7)

t 1t t
Dirapn (t) = 20°72 ( + 4exp (—) — exp (—) — 3) (36)
T 2T T

Taking the limit of £ <1 (a fast pulse) we get:

t

Digann (t) = 027 ()3 (37)

Which shows that for very short time lengths the decoherence rises as the cube of the time, so
Hahn echo negated the leading order of the decoherence accumulation under free evolution - which
is the fundamental idea behind “bang bang” control (assuming we periodically apply a m-pulse
every time ¢ < 7). Note that this term is still much larger than the next order of perturbation

theory for sufficiently small v (see equation 23):
t
~ > =
-
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Figure 7: s — u plane with a 7 pulse at £. Width of correlation function J (s —u) (7) and
cos (v (s,u)) are drawn. The square (of size ~ 72) in the middle is canceled due to the sign change
caused by the pulse, so the effective lifetime is prolonged by ~ 7 (specifically 27).

£\ 3
V22 (7’) > vir?? (38)

So this result is within the scope of second order perturbation theory.
Taking the opposite limit of % > 1 (using equation 31) we see that a single pulse prolongs the
lifetime of the qubit by 27:
Diree (t) = Drann (t +27) (39)

This can be understood using a drawing - as shown in Fig.7.

Using the code:

tau = 1
T = 8*tau
int = 0.1

Plot[1 - NIntegrate[2*int~2*(1l - 2xUnitStepl[s-T/2,T/2-ul])*Exp[-(s-u)/taul,
{s, 0, t}, {u, 0, s}], {t, 0, T}]

We plot 1 — Dpyapp (s) in the interval [0, ¢t]. A “bump” can be seen on the graph - starting at
the time of the pulse (see Fig. 8). This “bump” shows that by applying a unitary operation
it is possible to create a time interval during which the purity of the qubit increases. Since a
qubit’s purity is correlated to it’s entropy, during the first half of the “bump” the flow of entropy
is reversed - seemingly violating the second law of thermodynamics. This “paradox” is resolved
by looking at the result in section 6.1, clearly showing that this “violation” is made possible due

to the noise memory properties and the smallness of the system.
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100 -

0.9 - ™

Figure 8: 1 — D (s) plotted for s € [0, ¢] with a 7-pulse applied at £. Note that right after the
pulse the decoherence decreases.

This example contradicts the claim in [35] that dynamic decoupling does not contain an entropy

removal mechanism.

6.3 Constant field

In this section we take the an approach that is in a sense opposite to pulsed DD schemes - we use
a constant control field (CF) that drives the system with fixed angular velocity (again fixing € in
the x —y plane and using the same noise autocorrelation as before). The driven system can be said
to have dressed states with a different energy splitting than the original, and this “new” two level
system is less susceptible to the ambient noise - as proposed and shown experimentally in [40].
For © = const we can use the following “Mathematica” code to get (see Fig.9 for a visualization

of the integral):

Simplify[

Integrate[ 2%Exp[-(s - u)/7]*Cos[m*(s - u)], {s, 0, t}, {u, 0, s}]] =
= QE(-G&/T)) 7 EG/T) (t -T+m2¢t 772 +m2773) +

(r -m~2 7°3) Cos[m t] - 2 m 772 Sin[m t]))/(1L + m~2 7°2)"2

Derp(t) = 2y22<<1+<QT)2>tT+

(@) +1)

+72 (1~ (@n)?) <exp (-i) cos (Qf) — 1> — 207 exp (-i) sin (Qt)) (40)
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Figure 9: s—u plane with a CF control field. The phase fluctuations (drawn as a black wave) reduce
the decoherence due to partial cancellation of the noise sum caused by the cosine fluctuations.

Q(s)

| &~
~
V)

Figure 10: Intensity of control field as a function of time for a square pulse DD scheme.

For f > 1 this formula is greatly simplified:

2
Der (t) = ((97'2)24—1)” (41)

Diree (t) ((QT)2 + 1)

So the rate of decoherence accumulation is reduced by a factor that scales with the number of

cycles the control field induces during 7: ~ Q7. The stronger the field - the more cycles are

induced - and the longer the qubit lifetime is extended.

6.4 Square pulse

As a last example we take a control field shaped as a square pulse of width d and constant height €2

centered at % (once again fixing Q) in the x—y plane and using the same noise statistics) - as drawn
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in Fig. 10. We will show that the decoherence under this control is simply a linear combination of
decoherence caused by free evolution for time ¢t —d and CF control for time d. Using the following

“Mathematica” code (and algebraic manipulations on the 4 line output generated by it) we get:

Simplify[

w/7]l, {s, 0, (¢t - d)/2}, {u, 0, s}] +
Integrate[2+Exp[-(s - w)/7], {s, (t + d)/2, t}, {u, (t + d)/2, s}] -
Integrate[2*Exp[-(s - w)/7], {s, (t + d)/2, t}, {u, 0, (vt - d)/2}] +
Integrate[2*Exp[-(s - u)/7]*Cos[m*(s - w)], {s, (t - d)/2, (t + d)/2},

{u, (¢ - d)/2, s} +

Integrate[2#Exp[-(s - w)/7]1*Cos[m*(s - (t - d)/2)], {s, (t - d)/2, (t + d)/2},
{u, 0, (¢ - d)/2}] +

Integrate[2+#Exp[-(s - w)/7]1*Cos[m*(d - (u - (t - d)/2))1, {s, (¢t + d)/2,t},
{u, (¢t - d)/2, (¢t + d)/2}]1]

Integrate [2*Exp[-(s

t—d 1 d
Dpuise (d,t) = 20772 ( )+ 4

T (1 + (QT)z) T
+emp<—f> aﬁ(Qd)—-(?iiSz?>(ﬂn(QtE;d>-%

+ Qrcos (Qt;d)m (43)

Assuming the pulse is much wider than the bath memory % > 1 the expression is simplified to:

(-d), 1 4
T (1 + (97)2) T

Dpulse <d7 t) = 2°7° (44)

Which is a linear combination of equations 34 and 41, as we set out to prove. This can also be

seen from the corresponding s — u plane drawing (Fig. 11).

7 Unconstrained control

In this section we will show that the general problem of dynamical decoupling without any limita-
tions on the control is ill defined: the decoherence can be made arbitrarily small - but the control
function becomes increagsingly “bad”. For that end we first translate the decoherence function

—

(equation 18) to the frequency domain. Limiting the applied field (£2(¢)) to a fixed direction in
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Figure 11: s —u plane with a wide pulse control field. Decoherence is reduced in the central green
square and is left unchanged in the blue (+) squares.

the z — y plane, we force X to rotate on a great circle - so the angle ~ is given by:
V(5.0 = [0 dr (15)
Where Q (t) = ‘ﬁ (7)‘ Defining the Fourier transform as:

A 1 r —WwT
i) = = [ 9 (40)

Using a window function (W;) and assuming J (s) is square integrable we rewrite equation 18 as:

0 s <0

Wi(s) =< 1 0<s<t (47)
0 t<s

£ (s) = W, (s) - ' Jo AT (48)

D) = R / / (s —u) fi (5) T (u) duds (49)

— 00 —0O0

Transforming into the frequency representation we get (see appendix B for derivation):
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D)= vEr [ J)|fw) d (50)

This is the decoherence rate spectral formula from [31], derived from simple Fourier considerations.
An immediate result of this form is that D (t) is always positive. ‘ fi (w)‘2 can be thought of as a
filter function (that is determined by the applied control field 2 (¢)) and of J (w) as some noise the
filter should block, the decoherence minimization challenge transforms into a filer design problem
(this idea was explored in [24]).

. 2
If the control field is constant (Q (¢) = Q), | fi (w)‘ can be calculated exactly:

2 sin’ <7(w_29)t>
- 61)
™ (-

« 2 1 ~ ~
ot = | e « e

Which is simply a sinc function of width 1 (due to the time window) centered at € (due to the

control field). Since J (s) is square integrable, J (w) is square integrable as well - so obviously:
wh_}ngo J(w)=0 (52)

So if we take € to be large enough, the sinc will be centered at a frequency where .J (w) is arbitrarily

small, hence:
lim D () =0 (53)

Q—o00

We see that a constant control field (in magnitude and direction) is enough to make the
decoherence arbitrarily small - if the field is allowed to be sufficiently strong. As  goes to
infinity, the e’ function becomes increasingly “bad” (all it’s derivatives go to infinity), making

this question an ill defined optimization problem.

8 Energy constraint

After seeing in section 7 that the unbound optimization problem is ill defined, we introduce a

constraint on the total energy of the control field:

/t‘ﬁ(s)fdng (54)
0
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This translates to a limitation on X (s) (using equation 11) as:
t t
:, 2 = 2
/‘X(s)‘ dsg/‘Q(s)‘ ds < E (55)
0 0

So we can substitute the problem of finding the optimal control field § (¢) by considering X (t) as
the control vector (as it is fully defined by € (¢)) and get the following constrained minimization

problem:
min ¢ D (t)
%|=1 50)
N 2
fot ‘X(s)’ ds < E
Using variational calculus we get the following integro-differential equation for optimal control

(see appendix C for derivation):

X (s) x /J(s—u)i(u)du—n?(s) —0 (57)
0

X)) x X(0)=X (1) x X()=0

A is chosen such that the resulting X fulfills the energy restriction. This is a non-linear integro-
differential equation, making it in general a hard problem.

An important property of this equation is that if X (s) is a solution then if we reverse it in

time (X, (s) = X (t — s)) we get a valid solution as well:
t ..
%, (s) x /J(s—u))zr(u)du—)\)zr )| =
0

{§=t—su=t—u}
0 .
X (5) x /J(g—a)X(a)(—da)—A(—1)2X(§) =
X (3) x /J(g—a))?(a)da—A}?(g) —0 (58)

0

And the boundary conditions are trivially fulfilled. If this equation has a unique solution, this

25



property forces it to be symmetric around %:
X(s)=X(t—s) (59)

A similar result was given in [35] by Goren, Kurizki and Lidar, but there are several important
differences. First, they assume 0 (t) to be in a fixed direction while we allow for the general case.
Second, only one boundary condition was enforced in their version (X (0) = 0), missing the
condition on X (t). Third, they calculate numerical solutions of their equation for several specific
noise spectra and claim that this solution is unique - yet it is not symmetric around %, in violation

of equation 59.

9 Coherence gain upper bound

Now we will show that the energy constraint imposes a restriction on the efficiency of a DD
scheme. This is done by deriving an upper bound on the coherence gain (versus no control field)
- AD - under an energy constraint £. The work in this section was done in collaboration with
Dr. Oded Kenneth.

Using the trivial geometric fact that the length of any path is longer than the distance between

it’s end points and Cauchy—Schwarz inequality we write:

y(s,u)g/s|j?(7)‘d7g /sldT-/s\f(T)fdr

S

P () < =) [

u

X (r)

2
‘ dr (60)
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IS
3
(VAN

< E- [ J(y)ydy (61)
/

So any decoupling scheme’s efficiency is limited by the amount of energy allowed for the control
field.

10 Optimal square pulse

In this section we show how different constraints lead to different optimal square pulses - and
that for the case of finite energy wide pulses are optimal. A square pulse, as the one described in

section 6.4, has energy Q%d = Epuise- Equation 44 can be expressed through this energy as:

1 1
Dputse (dyt) =227 [t —d) + ————d | =22 [t—d | ———— (62)

(- 2r) ==

Minimizing Dpyise (d,t) in respect to Epyse, it’s clear that the optimal choice is Epyise — 00 S0

the pulse will use all the available energy (Epyse = £). Minimizing Dpyse (d, ) in respect to d is
equivalent to minimizing é + #, which gives dgp; — 00 - translating in our case to dop =t. We
see that for this case wide pulses are better than sharp ones.

This result might come as a surprise considering the multiple times we mentioned the impor-
tance of acting on the system faster than the noise correlation time length (7). In the case of long

and constant square pulses, the correct time scale that ought to be compared to 7 is not the width
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of the pulse (d) but the Rabi frequency induced by it’s intensity (or more accurately its inverse:
%) While there is no field - the “race” against 7 is completely lost, when there is a constant field
the race might be won or lost by a smaller margin - creating less decoherence than zero control.
The total quality of the control scheme is determined by the average of these “race results” over
the experiment time. By choosing the pulse width we decide whether we prefer beating 7 by a
large margin for a short time or beating it by a much smaller margin (or even losing but not
totally) but for a longer time. Here we have shown that the best tradeoff is achieved by choosing
the weaker but wider pulse.

Using a restriction on the total phase of the pulse (féf Q(t)dt = a = Qd = «) instead of total

energy (for example if we want to determine the best shape of a 7 pulse) we can write:

1 1
d)| =277 |t -+ (63)

(14 (e3)°) it o

Minimizing Dpyise (d,t) gives dopr = a7 - meaning a narrow pulse. Note that at this pulse width

Dypuise (d,t) = 2021 [ (t — d) +

our assumption g > 1 is no longer true (it is reasonable to assume « < 27) - so we cannot state
anything about the real optimal width except doy; S a7. So for constant phase - narrow pulses

~

are better, exemplifying the difference between optimal control fields for different constraints.

11 Asymptotic optimality

In this part we show that for several asymptotical cases the constant control field achieves the
upper bound from section 9, making it an optimal solution in these cases. Calculating the im-
provement in decoherence for the case of constant control field, using equation 41 for f > 1 and
t0? = E, we get:

AD(t) = 2v%t- (1 — (QT)12+1> -

= 20°7t z
1+ 5=

(64)
For the case of ﬁ > E'T this is equal to:
AD = 20%E73 (65)

Remembering equation 61 we calculate the bound for J (s) = Vet (£ > 1) using the “Mathe-

matica’ code:

Integrate[s~2xExp[-s/7], {s, 0, t}] =
= 273 -E(-@&/™)) 7 "2+ 2t 7T+ 27°2)
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t
E. /J(y) y2dy = E - 20°73 (66)
0

So we see that the CF DD scheme saturates the bound for fast noise (7 — 0), weak control (E — 0)

or long experiment times (¢ — 0o0) - making it one of the asymptotically optimal controls.

12 Summary

12.1 List of main results

e Formula of decoherence as a function of time, defined by the noise statistical properties and
a general control field (derived using quantum channel properties and perturbation theory)

- section 3.

e Higher perturbation order calculation via Feynman diagrams, convergence and upper bound

on the nt? order - section 4.

e Geometric interpretation of the decoherence integral and its calculation - sections 3.1 and
6.

e Independent reproduction and improvement of the integro-differential equation for optimal

control first presented in [35] (using Euler Lagrange formalism) - section 8.

e Gemneral upper bound on the purity improvement that can be achieved by any energy limited

DD scheme - section 9.

12.2 Discussion

In this work we have discussed the problem of dynamically decoupling a 2 level system from
its surrounding noise by applying an open-loop, energy constrained control. We gave geometric
interpretation to the resulting decoherence equations and produced a graphical way of calculating
the decoherence function for a general DD scheme. These tools can be used to visually compare
or improve any type of DD - whether pulsed or general. Alternatively, one may use equation 57
to calculate numerically the best control scheme for a specific system.

Looking at specific cases, we have shown that DD can reverse the flow of entropy for noises
with memory. We have seen that adding the energy constraint, especially for low energies, changes
the rules of the game. The results in sections 10 and 11 hint (under certain conditions) toward
optimal control fields that are wide and gradually changing, rather than the sharp w-pulses that
are popular today. The bound derived in section 9 exemplifies the omnipresent truth: “there are

no free lunches”. Translated to the language of DD it means that no matter how clever our choice
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of control scheme is, if we want to achieve substantial qubit lifetime extension - we have to pay
in energy.

To conclude, the area of pulsed dynamic decoupling is well studied, both theoretically and
experimentally. In contrast, there is relatively little theoretical work done in the area of energy
restricted DD, and almost no experimental results. As we said, the general analytical problem is
hard: there is no known solution to the optimal control equation from section 8 and it is unknown
whether the solution is unique and stable (these questions remain open for future research). The
generalization of both the noise and control field to more than one dimension is a natural extension
of our work, but seems to be non-trivial under our formalism. Another important challenge that we
did not address is control field errors (random fluctuations in the control field that are proportional

to its intensity) - which is a dominant limitation on the quality of pulsed DD today.
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A Channel eigenvalues

Following the definitions in 2.2 and discussion in 3, we are interested in calculating how far the
channel’s eigenvalues are from 1 (their absolute value to be exact - but since we are discussing
the perturbative regime all eigenvalues are close to 1 so obviously positive). This definition of

decoherence is equivalent to the trace distance of the decohering channel from the ideal one
(Cidentity [R] = R)

D = Tr [Cigentity — C] = Z R; (Cidentity — C) [Ez]
R

Where R; are orthonormal basis vectors of the Bloch space. Arbitrarily choosing the & ¢ 2 basis

and using equation 16 we write:

D= Z R; (Cidentity — C) [él} -

1=x,Y,2

o
:—//<77(s)77(u)> 3 [(X'(s) B (X @) B) - (X(s) X ()|, 1 duds
00 1=x,Y,2

Which is exactly equation 17.
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B Spectral form derivation

We start with the decoherence integral expressed using the window function:

0 s<0
Wi(s)=¢ 1 0<s<t
0 t<s

ft (S) - W, (S) . ei I Q(r)dr

/

/J(s—u) fi (s) fi (u) duds| =

Since we assumed J (s) is square integrable, it has a Fourier transform .J (w). Using the convolution

properties and Parseval’s theorem we can write:

D) = R| [ 5T ()ds| =

Where in the end we used the fact that J (s) is real and symmetric (so J (w) is real and symmetric).

This is exactly equation 50.
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C Optimal control: Euler-Lagrange
In order to solve the constrained minimization problem:

min ¢ D (t)

()Z‘:l

IN ds < E

N 2
X(s)’

the Euler-Lagrange variational technique can be used. In order to satisfy the demand X (8)‘ =1
at all times, we take the variation in X to be perpendicular to it: 0X (s) = ¥ (s) x X (s), where
):

|7 (s)| is small for any s. Rewriting the constraint for X (s) — X (s) + 6X (s

d (5}2 (s)) , o 5
ds

= 20(s) (X (5) xjf'(s)) g—z/v(s). (%) xf?(s)) ds

The end points force the condition:
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While the integral part is the constraint written in variational form. Now calculating 6D (using
equation 18 and cos (v (s, u)) = X (s) - X (u)):

Which is exactly equation 57.
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