Control of a 2-Level System to Reduce Colored Noise

Michael Shalyt
Control of a 2-Level System to Reduce Colored Noise

Research thesis

Submitted in Partial Fulfillment of the Requirements for the degree of Master of Science in Physics

Michael Shalyt

Submitted to Senate of the Technion - Israel Institute of Technology

Shebat, 5773 Haifa January 2013
This research thesis was done under the supervision of Prof. Joseph Avron in the Faculty of Physics.

I would like to thank Prof. Joseph Avron for the opportunity he provided me despite the circumstances, for his spirit and lessons for life.

I would like to thank Dr. Alex Retzker for suggesting the research theme, for his guidance, ideas and care.

I would like to thank Dr. Oded Kenneth for his contributions and unique perspective.

I would like to thank my parents for their support, motivation and love.

I would like to thank the Ulm University for its hospitality and generous financial support during my visit.

The generous financial support of the Technion and the Israel Science Foundation is gratefully acknowledged.
B Spectral form derivation

C Optimal control: Euler-Lagrange
List of Figures

1 The steps of Hahn echo. (A) At time $t = 0$ all spins are polarized in some direction in the $x - y$ plane. (B) The system undergoes free evolution until $t = T$, during which every spin rotates around the z axis with a Larmor frequency associated with the magnetic field intensity at its site. (C) Using an instantaneous π-pulse, all spins are flipped around the y axis - effectively reversing the direction of rotation. (D) The system again undergoes free evolution for a length of time T, at $t = 2T$ the spin directions coincide once again - hence creating a refocusing effect.

2 A general channel transforms the Bloch sphere into an ellipsoid inside the sphere. λ_i are the lengths of the semi-axes of the ellipsoid.

3 The possible values for the eigenvalues of a completely positive quantum channel (λ_i) form a tetrahedron in the $\lambda_1 - \lambda_2 - \lambda_3$ space.

4 A geometric interpretation of equation 18. $\vec{X}(s)$ rotates due to the applied control field and traces some path on the Bloch sphere (wide black line) during the time $0 \rightarrow t$. The decoherence is determined by going over all possible pairs of points on this path and summing the cosine of the angle between them multiplied by the autocorrelation between these times.

5 One of three Feynman diagrams for a 4-th order perturbative correction.

6 $\frac{|\vec{R}(t)|}{|\vec{R}(0)|}$ vs. $t \in [0, 4\tau]$. For $t \lesssim \tau$ the state purity is decaying slower than linearly.

7 $s - u$ plane with a π pulse at $\frac{t}{2}$. Width of correlation function $J(s - u)(\tau)$ and $\cos(\gamma(s,u))$ are drawn. The square (of size $\sim \tau^2$) in the middle is canceled due to the sign change caused by the pulse, so the effective lifetime is prolonged by $\sim \tau$ (specifically 2τ).

8 $1 - D(s)$ plotted for $s \in [0, t]$ with a π-pulse applied at $\frac{t}{2}$. Note that right after the pulse the decoherence decreases.

9 $s - u$ plane with a CF control field. The phase fluctuations (drawn as a black wave) reduce the decoherence due to partial cancellation of the noise sum caused by the cosine fluctuations.

10 Intensity of control field as a function of time for a square pulse DD scheme.

11 $s - u$ plane with a wide pulse control field. Decoherence is reduced in the central green square and is left unchanged in the blue (+) squares.
Abstract

Quantum computation is one of the most popular and rapidly expanding research topics in past two decades. The possibility of performing tasks that are believed to be unfeasible using classical computation made quantum information widespread even in popular culture, and there are other - less widely known - applications of pure quantum systems. Unfortunately, experimental realization of a system capable performing even basic calculations is still far from reality. One of the main obstacles is the susceptibility to unwanted interaction with the environment (noise) of any quantum system (especially if it is large or for example should act as a measuring apparatus). This interaction causes information stored in the system to “leak” to its surroundings, thus reducing the system quantum purity (creating decoherence). One possible method of battling this effect is dynamical decoupling (DD) - the use of a deterministic field (control) to act upon the quantum system and effectively reduce the effect of the environment. In the past 15 years dynamical decoupling has proven itself as one of the main methods for maintaining quantum coherence. The DD schemes became increasingly elaborate, the theoretical foundations strengthened and qubit lifetime extension by more than an order of magnitude was measured.

Our research focuses on DD schemes under an energy constraint - a limiting factor mostly ignored in the field until recently. Starting from fundamental principles and using a perturbative approach, we develop a geometric framework for studying a general control scheme for combating noise. We discuss higher perturbation orders - translating the problem to Feynman diagram calculation and proving convergence. We proceed to discuss several specific examples, notably showing entropy reversal. Next we show that decoherence minimization is ill defined without adding constraints and introduce a constraint on the total amount of energy applied to the system. We study the integro-differential equation for constrained optimal control and provide new insights. Using simple geometric and algebraic tools we derive an upper bound on the improvement (decoherence reduction) achievable by any DD scheme constrained by finite energy. We proceed to prove that for the case of square pulses a wide pulse is more efficient in decoupling the system from its environment than a sharp one - in contrast to most of the DD schemes used today. Finally, we show a few limits where a constant control field saturates the improvement bound, making it asymptotically optimal.
List of abbreviations and symbols

List of abbreviations

DD dynamical decoupling
NMR nuclear magnetic resonance
CP Carr and Purcell
CPMG Carr, Purcell, Meiboom and Gill
PDD periodic dynamic decoupling
CDD concatenated dynamic decoupling
UDD Uhrig dynamic decoupling
QFT quantum field theory
CF constant field
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D(t)$</td>
<td>decoherence function</td>
</tr>
<tr>
<td>ρ</td>
<td>density matrix</td>
</tr>
<tr>
<td>\vec{r}</td>
<td>point in Bloch sphere</td>
</tr>
<tr>
<td>I</td>
<td>identity matrix</td>
</tr>
<tr>
<td>σ_i</td>
<td>the i^{th} Pauli matrix</td>
</tr>
<tr>
<td>ϵ_{ijk}</td>
<td>the anti-symmetric tensor</td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>quantum channel</td>
</tr>
<tr>
<td>λ_i</td>
<td>the i^{th} channel eigenvalue</td>
</tr>
<tr>
<td>$\eta(s)$</td>
<td>random field magnitude</td>
</tr>
<tr>
<td>$\vec{\Omega}(s)$</td>
<td>control field</td>
</tr>
<tr>
<td>$U(t,0)$</td>
<td>unitary operator representing evolution from 0 to t</td>
</tr>
<tr>
<td>$\vec{X}(s)$</td>
<td>direction of noise rotation axis in the interaction picture</td>
</tr>
<tr>
<td>$\bar{R}(t)$</td>
<td>statistical average of $\vec{r}(t)$</td>
</tr>
<tr>
<td>$J(s)$</td>
<td>noise autocorrelation</td>
</tr>
<tr>
<td>$\gamma(s,u)$</td>
<td>angle between $\vec{X}(s)$ and $\vec{X}(u)$</td>
</tr>
<tr>
<td>$M(s)$</td>
<td>rotation generating matrix</td>
</tr>
<tr>
<td>G_z</td>
<td>rotation generator around the \hat{z} axis</td>
</tr>
<tr>
<td>$\delta(s)$</td>
<td>Dirac delta function</td>
</tr>
<tr>
<td>ν</td>
<td>noise intensity</td>
</tr>
<tr>
<td>τ</td>
<td>noise correlation time scale</td>
</tr>
<tr>
<td>t</td>
<td>length of evolution time</td>
</tr>
<tr>
<td>d</td>
<td>square pulse duration</td>
</tr>
<tr>
<td>$\hat{g}(\omega)$</td>
<td>the Fourier transform of $g(t)$</td>
</tr>
<tr>
<td>$W_t(s)$</td>
<td>window function</td>
</tr>
</tbody>
</table>
\(E\) maximal allowed energy

\(\lambda\) Lagrange coefficient

\(\vec{X}_r(s)\) time reversed \(\vec{X}(s)\) (around \(\frac{t}{2}\))
1 Introduction and background

1.1 Quantum purity

The great potential quantum mechanical systems hold for information processing [1, 2] has created increasing interest in quantum information processing over the last two decades. Quantum computers, quantum cryptography and quantum teleportation are some of the most celebrated ideas that emerged in this field, all of them made possible by the fundamental difference between the quantum and classical description of the world [3]. Other applications made possible by coherent control of quantum bits are: quantum sensing in biological systems [4, 5], precise magnetometry [6, 7, 8], and simulation of theories on controlled quantum systems [9, 10], to name a few.

Quantum information processing, as well as other applications, depend on the assumption that the quantum system evolves unitarily in time, under some deterministic Hamiltonian (meaning a closed system). Unfortunately, any physical system is coupled to it’s environment (however weakly), so a more accurate way of describing its time evolution is taking into account its open system characteristics. This coupling entangles the system to it’s surroundings, a process which transfers information from the system into the surrounding bath - where it is no longer accessible. This non-unitary time propagation of the system, when the state gradually loses it’s purity and becomes mixed, is called quantum decoherence [3].

An obvious method to reduce this effect is isolating the system from it’s environment as much as possible, but this method is sometimes hard to implement and might create other problems (for example difficulties interacting with the protected system). A more sophisticated way to fight this malicious effect is quantum error correction [11], which can be thought of as a closed-loop (feedback) correction protocol acting on a redundant system [12]. Another possible approach to decoherence reduction is dynamical decoupling (DD): the use of unitary (open-loop) operations on the system to effectively reduce it’s coupling to the environment. The fundamental difference between these two strategies is while error correction utilizes the slow rate of the system’s decay (so that, with high probability, the amount of information lost to decoherence during the evolution time is no more than the redundancy inserted by the error correcting code), dynamical decoupling uses the assumption that the noise changes slowly - regardless of the system dynamics time scale.

1.2 Hahn echo

Viola and Lloyd [13] introduced dynamical decoupling into quantum information 15 years ago - proposing the use of DD on single qubits (in contrast to spin ensembles). Yet the spin echoes Erwin Hahn measured in NMR systems more than 60 years ago [14] may be considered the true beginning of DD. Hahn used a spin bath immersed in constant magnetic field in the \hat{z} direction, creating level splitting in the spins. Due to the non-homogeneity of the spin bath and magnetic field imperfection, the effective field on each spin is slightly different. This difference in level
splitting leads to variations in the Larmor precession frequency, so after a while the magnetic polarization of each spin is different - leading to practically no measurable polarization of the bath. But all is not lost: by applying a π-pulse in the middle of the time evolution this apparent “randomization” of polarizations can be reversed and the bath can be refocused (see Fig. 1). Note that we did not need to know anything about the splitting of any specific spin in order for this method to work.

This effect relies on the assumption that the non-homogenous level splitting does not change during the experiment, if it did then the Larmor precession after the π-pulse would not exactly compensate for the difference in spin directions created before the pulse. This problem can be (at least partially) solved by applying a series of pulses instead of a single one - if the splitting remains practically constant during the interval between subsequent pulses, multiple refocusing “echoes” can be measured, as was suggested by Carr and Purcell (CP scheme [15]).

These, relatively simple, methods exemplify the main ideas of dynamical decoupling. The fact that there is no need to know the level splitting of each spin is translated into effectiveness of DD regardless of the specific noise realization. In order to be effective, any DD scheme must act on shorter time scales than the noise correlation - as the CP example shows us.

1.3 DD today

Following the initial publication of the pulsed DD idea (“Bang Bang” control schemes [13]) a significant amount of work has been done in the field. Some additional schemes were assimilated from the field of NMR:

- π-rotations around an axis in the direction of the spin initial state reduce the system sensitivity to pulse inaccuracy (CPMG [16]).

- Different periodic schemes (PDD) were suggested, notably switching the axis of rotation between the X and Y axis every cycle (XY-scheme [17]).

These periodic schemes can be considered as a series of stroboscopic control pulses. The resulting time evolution can be written as a perturbative expansion. A possible measure of the quality of a DD scheme is the maximal expansion order that is negated.

- A concatenated DD scheme (CDD [18]) recursively embeds some pulse pattern into itself, thus eliminating higher orders of the time evolution expansion. The cost of this procedure is an exponentially increasing number of pulses needed to negate high orders of noise.

Thinking of the decoherence as some function $D(t)$ (it will be derived in section 3) that we wish to minimize, an alternative measure of the quality of a DD scheme may be the number of derivatives of $D(t)$ at $t = 0$ that vanish.
Figure 1: The steps of Hahn echo. (A) At time $t = 0$ all spins are polarized in some direction in the $x-y$ plane. (B) The system undergoes free evolution until $t = T$, during which every spin rotates around the z axis with a Larmor frequency associated with the magnetic field intensity at its site. (C) Using an instantaneous π-pulse, all spins are flipped around the y axis - effectively reversing the direction of rotation. (D) The system again undergoes free evolution for a length of time T, at $t = 2T$ the spin directions coincide once again - hence creating a refocusing effect.
Uhrig’s DD scheme (UDD [19]) uses this vanishing derivative criteria to find the optimal spacing of \(N \) pulses, that turns out to be non-equidistant (specifically, for \(n \) pulses and total time \(t \), the pulse times \(t_j \) are given by: \(t_j = \sin^2 \left(\frac{\pi j}{2n+2} \right) \)). This scheme has the advantage of negating higher derivatives using a linearly growing number of pulses.

This scheme was extended and investigated [20, 21], iterated [22] and nested [23] variations were proposed. Yet, since different measures of quality were used to develop the schemes, it should not come as a surprise that neither of them is clearly better - the performance depends on the noise properties [24, 25]. There are quite a few additional schemes suggested in the past few years, both theoretical and experimental work in the quest for most efficient pulse sequence is still in progress (see [26, 27, 28] and references within for recent results). Note that all of the schemes described above assume ideal (instantaneous) pulses in their basic formulation, but the effect of realistic (finite length) pulses was investigated as well (for example in [29, 30]).

So far only pulsed schemes were mentioned. One advantage of sharp pulses is that it reduces the sensitivity of the control scheme to inhomogeneous broadening (as is the case for a spin bath in NMR for example - the field where DD was born) - because the effect created by high intensity field is less sensitive to frequency detuning. Today DD is mostly applied to single qubits (where the detuning can be made negligible) so in general there is no reason why the control field should not change gradually in time. A more general approach was taken in [31, 32], where arbitrary noise spectrum and control modulation were considered. Another reason to introduce non-pulsed schemes is a situation when there is a limitation on the energy allowed to be used in the control field (this is a more strict version of finite control field [33]), in which case ideal pulses are impossible - as their energy approaches infinity. Such a limitation can arise due to heating constraints on the system (for example in quantum sensing of a biological system) or if the applied control field has some errors of its own - since the decoherence induced by this noise is proportional to the intensity of the applied field we want to minimize its total effect [34]. This constraint was first formally introduced in [35] and investigated further in [34].

The main theme of this research is optimal control (DD schemes) under an energy constraint. Our mission is to develop a comprehensible model describing the noise and an arbitrary control field - to serve as a framework for comparing the efficiency of different DD schemes. Next we will attempt to produce and solve an equation describing the optimal control given some noise properties. Finally, we will try to make some broad statements about the effect an energy limitation has on the form and efficiency of a DD scheme.
2 Preliminary definitions

2.1 Bloch sphere

Any density matrix ρ can be written as:

$$\rho = \frac{1}{2} \left(I + \vec{r} \cdot \vec{\sigma} \right) \quad (1)$$

Where $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ and

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad (2)$$

are the Pauli matrices. We will be interested in the 3 dimensional vector $\vec{r} = (r_x, r_y, r_z)$ that describes the state. The fact that ρ must be positive for any physical state forces $|\vec{r}| \leq 1$ - this set is known as the Bloch sphere.

We will be using the following known identities for Pauli matrices:

$$\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$$

$$\sigma_i \cdot \sigma_j = i \cdot \varepsilon_{ijk} \cdot \sigma_k$$

$$(\sigma_i)^2 = I$$

$$Tr(\sigma_i) = 0$$

$$(\vec{a} \cdot \vec{\sigma}) \cdot (\vec{b} \cdot \vec{\sigma}) = (\vec{a} \cdot \vec{b}) I + i \vec{a} \cdot (\vec{a} \times \vec{b}) \quad (3)$$

The definition of the purity of a state described by ρ is [1]:

$$Tr [\rho^2] = \frac{1}{2} \left(1 + |\vec{r}|^2 \right) \quad (4)$$

So the length of the vector \vec{r} describing a state ρ is a measure of the state purity.

2.2 Quantum channel

A quantum channel \mathcal{C} is a representation of some physical process that takes an initial quantum system ρ_{in} and returns a different state ρ_{out}. Formally, a channel is a completely positive, trace preserving linear map between two spaces of states. The trace preservation and positivity conditions appear trivially from the requirement that ρ_{out} must be a legitimate density matrix (given that ρ_{in} is). The complete positivity is due to the fact that the input state might be part of a larger system, and though the channel does not act upon the rest of this system - the resulting composite state must still represent a valid physical system. The definition of complete positivity:
given a channel C, C_k is a positive map for any integer $k \geq 0$, where C_k is defined as:

$$C_k = C \otimes I^k \quad (5)$$

An unbiased channel that does not change the input state if it is maximally mixed ($C \left[\frac{1}{2} I \right] = \frac{1}{2} I$) is called a unital channel. If we apply such a channel on all pure states (the boundary of the Bloch sphere) the resulting states will form an ellipsoid inside the Bloch sphere (see Fig. 2). This ellipsoid is created by rotating and contracting the Bloch sphere surface. From equation 4 it is obvious that the rotation part of this transformation does not change the purity of the affected system, while the contraction reduces it (introducing decoherence).

Due to the complete positivity condition, not any sphere contraction is allowed. After some simple manipulations, the result in [36] can be transformed into the following inequalities that the ellipsoid semi-axes lengths λ_i must fulfill (besides the trivial $|\lambda_i| \leq 1$):

$$|\lambda_1 - \lambda_2| \leq |1 - \lambda_3|$$
$$|\lambda_1 + \lambda_2| \leq |1 + \lambda_3| \quad (6)$$

These inequalities can be drawn in the $\lambda_1 - \lambda_2 - \lambda_3$ space using the following “Mathematica” code\(^1\):

```
ContourPlot3D[{Abs[x + y] == Abs[1 + z], Abs[x - y] == Abs[1 - z]}, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, Mesh -> None]
```

\(^1\)Throughout this work we present the relevant code for calculating tedious integrals or plots instead of tiring the reader with long technical derivations.
Figure 3: The possible values for the eigenvalues of a completely positive quantum channel (λ_i) form a tetrahedron in the $\lambda_1 - \lambda_2 - \lambda_3$ space.

Where they define a tetrahedron (see Fig. 3).

3 Model and decoherence function

We think of a qubit initialized in some state that is being influenced by some malicious random field $\eta(t)$ that creates decoherence (note that we model the noise as a classical random field - which is usually the case in experimental setups - and not as a quantum mechanism of information transfer out of the system). Additionally, a deterministic field is applied on the qubit, creating some controlled rotation of the Bloch sphere. The goal is to reduce the effect of $\eta(t)$ using the deterministic (control) field. This theoretical qubit is implemented in reality by a two level system that has an energy gap (natural or artificially created) and is being irradiated by a resonant electromagnetic field, creating said rotation. The ambient noise acts on the two level system in all directions, but only noise in the z-axis direction has a significant effect (the other directions don’t preserve energy). Combining these observations and translating the problem into the interaction picture (in respect to the rotation created by the energy gap) we get the Hamiltonian:

$$ H(t) = \frac{1}{2} \hbar \eta(t) \sigma_z + \frac{1}{2} \hbar \vec{\Omega}(t) \cdot \vec{\sigma} $$

We think of $\eta(t)$ as a stationary, unbiased ($\langle \eta(t) \rangle = 0$), random process representing noise and of $\vec{\Omega}(t)$ as the control field. Moving into the interaction picture (once more) in respect to the $\frac{1}{2} \hbar \vec{\Omega}(t) \cdot \vec{\sigma}$ part (defining $H_0(t) = \frac{1}{2} \hbar \vec{\Omega}(t) \cdot \vec{\sigma}$ and $H_1(t) = \frac{1}{2} \hbar \eta(t) \sigma_z$ the Hamiltonian in the interaction picture is $H_I(t) = U_0^\dagger(t, 0) \cdot H_1(t) \cdot U_0(t, 0)$, where $U_0(t, 0)$ is the time evolution operator
with respect to \(H_0 \), we get the Hamiltonian in this frame:

\[
H_I (t) = \frac{1}{2} \hbar \eta (t) \vec{X} (t) \cdot \vec{\sigma}
\]

(8)

\(\vec{X} (t) \) is defined by \(\vec{\Omega} (t) \) via the relation \(\vec{X} (0) = \hat{z} \) of course:

\[
\vec{X} (t + dt) \cdot \vec{\sigma} = \exp \left(i \frac{1}{2} \vec{\Omega} (t) \cdot \vec{\sigma} dt \right) \vec{X} (t) \cdot \vec{\sigma} \exp \left(-i \frac{1}{2} \vec{\Omega} (t) \cdot \vec{\sigma} dt \right)
\]

(9)

\[
\dot{\vec{X}} (t) \cdot \vec{\sigma} = \frac{i}{2} \left[\left(\vec{\Omega} (t) \cdot \vec{\sigma} \right) \left(\vec{X} (t) \cdot \vec{\sigma} \right) - \left(\vec{X} (t) \cdot \vec{\sigma} \right) \left(\vec{\Omega} (t) \cdot \vec{\sigma} \right) \right]
\]

(10)

Using equation 3 this can be brought to the form:

\[
\dot{\vec{X}} (t) = \vec{X} (t) \times \vec{\Omega} (t)
\]

(11)

Now we can calculate the time evolution equation for a state density matrix (using the Bloch sphere notation - equation 1):

\[
\dot{\rho} = -\frac{i}{\hbar} [H, \rho]
\]

\[
\vec{r} (t) = \eta (t) \vec{X} (t) \times \vec{r} (t)
\]

(12)

Since \(\vec{r} (t) \) is stochastic (due to it’s dependance on the stochastic \(\eta (t) \)), the density matrix describing the physical state is defined by the average vector:

\[
\vec{R} (t) = \langle \vec{r} (t) \rangle
\]

Equation 12 generates some time evolution of \(\vec{R} \). We can think of this evolution as a quantum channel that propagates the initial state in time: \(\vec{R} (t) = \mathcal{C} (t) \left[\vec{R} (0) \right] \).

There is no single all encompassing definition of a channel’s quality. Instead, a more practical approach is taken - the quality of a channel depends on its intended use. As we are interested in preserving the purity of an unknown initial state, we must take into account the channel’s action on all possible initial states. One possible measure of the decoherence a channel introduces that considers the whole Bloch sphere is:

\[
D (\mathcal{C}) = \sum_{i=1}^{3} 1 - |\lambda_i|
\]

(13)

Where \(\lambda_i \) are the channel eigenvalues. If all eigenvalues are 1 the channel is purely rotating so it introduces no decoherence - see section 2.
3.1 Perturbative representation

We now use the definition of decoherence in equation 13 and perturbation theory up to second order in \(\eta(t) \) (higher orders will be discussed in section 4) to obtain an explicit expression for \(D(t) \).

We expand \(\vec{r}(t) \) in respect to powers of \(\eta(t) \) as:

\[
\vec{r}(t) = \sum_{n=0}^{\infty} \vec{r}_n(t)
\]

(14)

Remembering that \(\langle \eta(t) \rangle = 0 \) (and using equation 12) we get:

\[
\eta^0: \quad \dot{\vec{r}}_0(t) = 0 \quad \Rightarrow \quad \vec{R}_0(t) = \vec{r}(0)
\]

\[
\eta^1: \quad \dot{\vec{r}}_1(s) = \eta(s) \vec{X}(s) \times \vec{r}_0(s) \quad \Rightarrow \quad \vec{R}_1(t) = \int_0^t \langle \eta(s) \rangle \vec{X}(s) \times \vec{r}(0) \, ds = 0
\]

\[
\eta^2: \quad \dot{\vec{r}}_2(s) = \eta(s) \vec{X}(s) \times \vec{r}_1(s) \quad \Rightarrow \quad \vec{R}_2(t) = \int_0^t \int_0^s \langle \eta(s) \eta(u) \rangle \vec{X}(s) \times \left[\vec{X}(u) \times \vec{r}(0) \right] \, dsdu
\]

(15)

Leading to the quantum channel:

\[
C(t) \left[\vec{R} \right] = \vec{R} + \int_0^t \int_0^s \langle \eta(s) \eta(u) \rangle \vec{X}(s) \times \left(\vec{X}(u) \times \vec{R} \right) \, duds = \\
= \vec{R} + \int_0^t \int_0^s \langle \eta(s) \eta(u) \rangle \left[\left(\vec{X}(s) \cdot \vec{R} \right) \vec{X}(u) - \left(\vec{X}(s) \cdot \vec{X}(u) \right) \vec{R} \right] \, duds
\]

(16)

Using this channel we calculate explicitly the decoherence as a function of time (see appendix A for derivation):

\[
D(t) = 2 \int_0^t \int_0^s \langle \eta(s) \eta(u) \rangle \vec{X}(s) \cdot \vec{X}(u) \, duds
\]

(17)

Defining the autocorrelation function \(J(s-u) = \langle \eta(s) \eta(u) \rangle \), remembering that \(\left| \vec{X}(s) \right| = 1 \), defining \(\gamma(s,u) \) as the angle between \(\vec{X}(s) \) and \(\vec{X}(u) \) and using symmetry under exchanging \(s \) and \(u \), we get:

\[
D(t) = \int_0^t \int_0^s J(s-u) \cos(\gamma(s,u)) \, duds
\]

(18)

This formula can be represented geometrically as pictured in Fig. 4. Note that if we assume \(J(s) \) is monotonically decreasing with \(s \), then any control field reduces the decoherence compared to no control.
Figure 4: A geometric interpretation of equation 18. \(\vec{X}(s) \) rotates due to the applied control field and traces some path on the Bloch sphere (wide black line) during the time \(0 \to t \). The decoherence is determined by going over all possible pairs of points on this path and summing the cosine of the angle between them multiplied by the autocorrelation between these times.

4 Higher perturbation orders

In this section we discuss the higher perturbation orders that we neglected in section 3. We translate the perturbative calculation into Feynman diagrams, show that the series converge and calculate the order of magnitude of the \(n^{th} \) order. From equation 12 we can write an expression for the \(n^{th} \) order in perturbation theory:

\[
\vec{R}_n(t) = \int_0^t \int_0^{s_1} \ldots \int_0^{s_{n-1}} \langle \eta(s_1) \ldots \eta(s_n) \rangle \left(\vec{X}(s_1) \times \ldots \times (\vec{X}(s_{n-1}) \times (\vec{X}(s_n) \times \vec{r}(0))) \right) ds_1 \ldots ds_n
\]

Assuming \(\eta(s) \) is a Gaussian process and remembering that \(\langle \eta(s) \rangle = 0 \) we can use Isserlis' theorem [37] (the mathematical origin of Wick's theorem from quantum field theory [38]):

\[
\langle \eta(s_1) \ldots \eta(s_n) \rangle = \begin{cases}
0 & \text{n odd} \\
\sum \prod_{i=k \text{ pairings}} \langle \eta(s_i) \eta(s_k) \rangle & \text{n even}
\end{cases}
\]

Where the sum is over all possible multiplications of pair-wise correlations (contractions in QFT). Since \(\langle \eta(s_i) \eta(s_k) \rangle = J(s_i - s_k) \) is known, it is theoretically possible to calculate \(\vec{r}(t) \) up to any order. Defining \(\vec{X}(t) \times \vec{r} = M(t) \vec{r} \) and using the symmetry of the integrand we can write (T
Figure 5: One of three Feynman diagrams for a 4-th order perturbative correction.

\[\vec{R}_n(t) = \frac{1}{n!} \int_0^t \int_0^t \ldots \int_0^t \langle \eta(s_1) \ldots \eta(s_n) \rangle TM(s_1) \ldots M(s_{n-1}) M(s_n) \vec{r}(0) ds_1 \ldots ds_n \]

(21)

As always when dealing with Feynman diagrams, a crucial point is the question of the series convergence. The number of diagrams (which is the number of possible ways to contract \(n \) members into pairs) for the \(n^{th} \) order is (\(n \) is even or the contribution is 0):

\[\frac{n!}{2^{\frac{n}{2}} \left(\frac{n}{2}! \right)} \]

(22)

Since both \(J(s_i - s_k) \) and \(M(s_i) \) are bound from above for any values of \(s \) (\(J \) due to the fact that the noise intensity is finite and \(M \) as a rotation generator), the \(\frac{1}{n!} \) coefficient in equation 21 makes sure the sum is finite with an infinite convergence radius.

Assuming \(\langle \eta(s_i) \eta(s_k) \rangle = J(s_i - s_k) \) has a typical width \(\tau \), we can assess \(|\vec{r}_n(t)| \):

\[|\vec{r}_n(t)| \lesssim \left(\langle \eta^2(s) \rangle t \tau \right)^{\frac{n}{2}} \]

(23)

Where \(\langle \eta^2(s) \rangle \) is the small parameter.

5 Uncontrolled stochastic evolution

In this section we calculate the exact expression for decoherence without any control field and show that it rises slowly (sublinearly) for short times and linearly for longer times. The no control case can be solved exactly (non-perturbatively). Since \(\vec{\Omega} = 0 \), it follows from equation 11 that
\(\mathbf{\ddot{X}}(t) = \mathbf{\dot{z}}, \) so the equation of motion for \(\mathbf{\dot{r}} \) is simply (using equation 12):

\[
\mathbf{\dot{r}}(t) = \eta(t) \mathbf{\dot{z}} \times \mathbf{r}(t)
\]

(24)

Defining the rotation generator around the \(\mathbf{\dot{z}} \) axis (\(G_z \)) we get:

\[
G_z = \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

(25)

\[
\mathbf{\dot{r}}(t) = \eta(t) G_z \mathbf{r}(t) \implies \\
\mathbf{r}(t) = e^{G_z \int_0^t \eta(s) ds} \mathbf{r}(0)
\]

(26)

Under the assumption from section 4 that \(\eta(s) \) is Gaussian, we can calculate \(\mathbf{R} \):

\[
\mathbf{R} = \left< e^{G_z \int_0^t \eta(s) ds} \mathbf{r}(0) \right> = e^{\frac{1}{2}(G_z)^2 \left< \left(\int_0^t \eta(s) ds \right)^2 \right>} \mathbf{r}(0)
\]

(27)

\[
(G_z)^2 = \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

(28)

\[
\left< \left(\int_0^t \eta(s) ds \right)^2 \right> = \int_0^t \int_0^t \langle \eta(s) \eta(u) \rangle duds
\]

(29)

5.1 White noise

Choosing \(\eta(s) \) to be white noise (\(J(s-u) = 2a \delta(s-u) \)) it's easy to solve for \(\mathbf{R} \):

\[
\mathbf{R}_x(t) = e^{-at} \mathbf{r}_x(0) \quad \mathbf{R}_y(t) = e^{-at} \mathbf{r}_y(0) \quad \mathbf{R}_z(t) = \mathbf{r}_z(0)
\]

(30)

So the state purity decays exponentially (as is often assumed to be the case).

5.2 Colored noise

Now we choose non-Markovian noise statistics: \(J(s) = \nu^2 e^{-|s|/\tau} \) (\(\nu \) is the noise intensity), meaning a Lorentzian noise spectrum - as predicted for a spin bath by Anderson [39]. Using the following “Mathematica” code:

\[
\text{Integrate}[2*\text{Exp}[-(s-u)/\tau], \{s, 0, t\}, \{u, 0, s\}] \implies \\
\implies 2\tau(t + (-1 + \text{E}^{-(-1)}\text{E}^{-(-1)}(t/\tau)))\tau
\]
Figure 6: $\frac{|\vec{R}(t)|}{|\vec{R}(0)|}$ vs. $t \in [0, 4\tau]$. For $t \lesssim \tau$ the state purity is decaying slower than linearly.

We get a more complicated behavior of $\vec{R}(t)$:

$$\int_0^t \int_0^t J(s-u) \, duds = 2\nu^2\tau \left(t - \tau + \tau e^{-\frac{t}{\tau}} \right)$$

$$\vec{R}_x(t) = e^{-2\nu^2\tau(t-\tau+\tau e^{-\frac{t}{\tau}})} \vec{r}_x(0) \quad \vec{R}_y(t) = e^{-2\nu^2\tau(t-\tau+\tau e^{-\frac{t}{\tau}})} \vec{r}_y(0) \quad \vec{R}_z(t) = \vec{r}_z(0)$$

Assuming $\vec{r}(0)$ is in the $x-y$ plane we can draw $\frac{|\vec{R}(t)|}{|\vec{R}(0)|}$ as a function of time (see Fig. 6) and see that for small t ($t \sim \tau$) the decay is sublinear - slowly rising.

An alternative way to see this result is using equation 18 (setting $\gamma = 0$ as there is no control field) and taking the limit of $\frac{t}{\tau} \ll 1$:

$$D_{\text{free}}(t) = \nu^2\tau^2 \left(\frac{t}{\tau} \right)^2 = \nu^2 t^2$$

Where we see that the decoherence rises as the square of the time for short times, no linear term.

Taking the opposite limit ($\frac{t}{\tau} \gg 1$) of equation 18 we get:

$$D_{\text{free}}(t) = 2\nu^2\tau^2 \cdot \frac{t}{\tau}$$

A linearly increasing function with t - as we would expect from Fig. 6.
6 Solvable control models

6.1 White noise

First, we show that dynamical decoupling is ineffective against white noise. Let us assume a thermodynamic (steady state) bath. This memory-less bath is translated to noise correlation function $J(s - u) \propto \delta(s - u)$:

$$D(t) \propto \int_0^t \int_0^t \delta(s - u) \cos(\gamma(s, u)) \, du \, ds = \int_0^t \cos(0) \, ds$$ (35)

Which is equivalent to zero control field (free evolution), so for a memory-less bath (white noise) no DD has any effect - showing once again the importance of noise correlation length to the success of DD schemes.

6.2 Hahn echo

In this section we give a geometric interpretation of Hahn echo. More surprisingly, we will see that this seemingly simple control scheme reverses the flow of entropy for a short time. Taking the control field to be a π-pulse at $\frac{t}{2}$ and fixing $\hat{\Omega}$ in the $x - y$ plane, we can use the following "Mathematica" code to get (assuming the same Lorentzian noise spectrum as in section 5):

```math
Simplify[Integrate[2*Exp[-(s - u)/\(\tau\)], {s, 0, t/2}, {u, 0, s}] + Integrate[2*Exp[-(s - u)/\(\tau\)], {s, t/2, t}, {u, t/2, s}] - Integrate[2*Exp[-(s - u)/\(\tau\)], {s, t/2, t}, {u, 0, t/2}]]
```

$$D_Hahn(t) = 2\nu^2 \tau^2 \left(\frac{t}{\tau} + 4 \exp\left(-\frac{1}{2} \frac{t}{\tau}\right) - \exp\left(-\frac{1}{\tau}\right) - 3\right)$$ (36)

Taking the limit of $\frac{t}{\tau} \ll 1$ (a fast pulse) we get:

$$D_{Hahn}(t) = \frac{1}{6} \nu^2 \tau^2 \left(\frac{t}{\tau}\right)^3$$ (37)

Which shows that for very short time lengths the decoherence rises as the cube of the time, so Hahn echo negated the leading order of the decoherence accumulation under free evolution - which is the fundamental idea behind "bang bang" control (assuming we periodically apply a π-pulse every time $t \ll \tau$). Note that this term is still much larger than the next order of perturbation theory for sufficiently small ν (see equation 23):
Figure 7: $s - u$ plane with a π pulse at $\frac{t}{\tau}$. Width of correlation function $J(s - u)(\tau)$ and $\cos(\gamma(s, u))$ are drawn. The square (of size $\sim \tau^2$) in the middle is canceled due to the sign change caused by the pulse, so the effective lifetime is prolonged by $\sim \tau$ (specifically 2τ).

\[\nu^2 \tau^2 \left(\frac{t}{\tau} \right)^3 \gg \nu^4 \tau^2 t^2 \] \hspace{1cm} (38)

So this result is within the scope of second order perturbation theory.

Taking the opposite limit of $\frac{t}{\tau} \gg 1$ (using equation 31) we see that a single pulse prolongs the lifetime of the qubit by 2τ:

\[D_{\text{free}}(t) = D_{\text{Hahn}}(t + 2\tau) \] \hspace{1cm} (39)

This can be understood using a drawing - as shown in Fig.7.

Using the code:

```mathematica
tau = 1
T = 8*tau
int = 0.1
Plot[1 - NIntegrate[2*int^2*(1 - 2*UnitStep[s-T/2,T/2-u])*Exp[-(s-u)/tau],
{s, 0, t}, {u, 0, s}], {t, 0, T}]
```

We plot $1 - D_{\text{Hahn}}(s)$ in the interval $[0, t]$. A “bump” can be seen on the graph - starting at the time of the pulse (see Fig. 8). This “bump” shows that by applying a unitary operation it is possible to create a time interval during which the purity of the qubit increases. Since a qubit’s purity is correlated to it’s entropy, during the first half of the “bump” the flow of entropy is reversed - seemingly violating the second law of thermodynamics. This “paradox” is resolved by looking at the result in section 6.1, clearly showing that this “violation” is made possible due to the noise memory properties and the smallness of the system.
Figure 8: $1 - D(s)$ plotted for $s \in [0, t]$ with a π-pulse applied at $\frac{t}{2}$. Note that right after the pulse the decoherence decreases.

This example contradicts the claim in [35] that dynamic decoupling does not contain an entropy removal mechanism.

6.3 Constant field

In this section we take the an approach that is in a sense opposite to pulsed DD schemes - we use a constant control field (CF) that drives the system with fixed angular velocity (again fixing Ω in the $x-y$ plane and using the same noise autocorrelation as before). The driven system can be said to have dressed states with a different energy splitting than the original, and this “new” two level system is less susceptible to the ambient noise - as proposed and shown experimentally in [40]. For $\Omega = \text{const}$ we can use the following “Mathematica" code to get (see Fig.9 for a visualization of the integral):

Simplify[
 Integrate[2*Exp[-(s - u)/τ]*Cos[m*(s - u)], {s, 0, t}, {u, 0, s}] \[\rightarrow\]
 \[\rightarrow\] (2 E^(-(t/τ)) τ (E^(t/τ) (t - τ + m^2 τ t τ^2 + m^2 τ^3) +
 (τ - m^2 τ^3) Cos[m t] - 2 m τ^2 Sin[m t]])/(1 + m^2 τ^2)^2

$$D_{CF}(t) = \frac{2\nu^2}{(\Omega\tau)^2 + 1} \left(\left(1 + (\Omega\tau)^2\right)t\tau + \tau^2 \left(1 - (\Omega\tau)^2\right) \left(\exp\left(-\frac{t}{\tau}\right)\cos(\Omega t) - 1\right) - 2\Omega\tau^3 \exp\left(-\frac{t}{\tau}\right)\sin(\Omega t) \right)$$ (40)
Figure 9: $s-u$ plane with a CF control field. The phase fluctuations (drawn as a black wave) reduce the decoherence due to partial cancellation of the noise sum caused by the cosine fluctuations.

$$D_{CF}(t) = \frac{2\nu^2}{((\Omega \tau)^2 + 1)} t\tau$$ \hspace{1cm} (41)

$$\frac{D_{CF}(t)}{D_{free}(t)} = \frac{1}{((\Omega \tau)^2 + 1)}$$ \hspace{1cm} (42)

So the rate of decoherence accumulation is reduced by a factor that scales with the number of cycles the control field induces during τ: $\sim \Omega \tau$. The stronger the field - the more cycles are induced - and the longer the qubit lifetime is extended.

6.4 Square pulse

As a last example we take a control field shaped as a square pulse of width d and constant height Ω centered at $\frac{t}{2}$ (once again fixing $\hat{\Omega}$ in the $x-y$ plane and using the same noise statistics) - as drawn
in Fig. 10. We will show that the decoherence under this control is simply a linear combination of decoherence caused by free evolution for time $t-d$ and CF control for time d. Using the following “Mathematica” code (and algebraic manipulations on the 4 line output generated by it) we get:

Simplify[
 Integrate[2*Exp[-(s - u)/\[Tau]2], {s, 0, (t - d)/2}, {u, 0, s}] +
 Integrate[2*Exp[-(s - u)/\[Tau]2], {s, (t + d)/2, t}, {u, (t + d)/2, s}] -
 Integrate[2*Exp[-(s - u)/\[Tau]2], {s, (t + d)/2, t}, {u, 0, (t - d)/2}] +
 Integrate[2*Exp[-(s - u)/\[Tau]2]*Cos[m*(s - u)], {s, (t - d)/2, (t + d)/2},
 {u, (t - d)/2, s}] +
 Integrate[2*Exp[-(s - u)/\[Tau]2]*Cos[m*(s - (t - d)/2)], {s, (t - d)/2, (t + d)/2},
 {u, 0, (t - d)/2}] +
 Integrate[2*Exp[-(s - u)/\[Tau]2]*Cos[m*(d - (u - (t - d)/2))], {s, (t + d)/2,t},
 {u, (t - d)/2, (t + d)/2}]]

$$D_{\text{pulse}} (d, t) = 2 \nu^2 \tau^2 \left[\frac{(t-d)}{\tau} + \frac{1}{(1 + (\Omega \tau)^2)} \frac{d}{\tau}\right.$$ \\
$$+ \exp \left(-\frac{d}{\tau}\right) \left(\cos (\Omega d) - \frac{2 \sin (\Omega d)}{(1 + (\Omega \tau)^2)} \left(\sin \left(\frac{\Omega (t-d)}{2}\right)\right) + \Omega \tau \cos \left(\frac{\Omega (t-d)}{2}\right)\right)\right) \right]$$

(43)

Assuming the pulse is much wider than the bath memory $\frac{d}{\tau} \gg 1$ the expression is simplified to:

$$D_{\text{pulse}} (d, t) = 2 \nu^2 \tau^2 \left[\frac{(t-d)}{\tau} + \frac{1}{(1 + (\Omega \tau)^2)} \frac{d}{\tau}\right.$$

(44)

Which is a linear combination of equations 34 and 41, as we set out to prove. This can also be seen from the corresponding $s - u$ plane drawing (Fig. 11).

7 Unconstrained control

In this section we will show that the general problem of dynamical decoupling without any limitations on the control is ill defined: the decoherence can be made arbitrarily small - but the control function becomes increasingly “bad”. For that end we first translate the decoherence function (equation 18) to the frequency domain. Limiting the applied field ($\vec{\Omega} (t)$) to a fixed direction in
Figure 11: $s - u$ plane with a wide pulse control field. Decoherence is reduced in the central green square and is left unchanged in the blue (+) squares.

In the $x - y$ plane, we force \vec{X} to rotate on a great circle - so the angle γ is given by:

$$
\gamma (s, u) = \int_{u}^{s} \Omega (t) \, d\tau
$$

(45)

Where $\Omega (t) = \left| \vec{\Omega} (\tau) \right|$. Defining the Fourier transform as:

$$
\hat{g} (\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g (\tau) \, e^{-i\omega \tau} \, d\tau
$$

(46)

Using a window function (W_t) and assuming $J (s)$ is square integrable we rewrite equation 18 as:

$$
W_t (s) = \begin{cases}
0 & s < 0 \\
1 & 0 < s < t \\
0 & t < s
\end{cases}
$$

(47)

$$
f_t (s) = W_t (s) \cdot e^{i \int_{0}^{s} \Omega (\tau) d\tau}
$$

(48)

$$
D (t) = \Re \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} J (s - u) f_t (s) \overline{f_t (u)} \, du \, ds \right]
$$

(49)

Transforming into the frequency representation we get (see appendix B for derivation):
This is the decoherence rate spectral formula from [31], derived from simple Fourier considerations. An immediate result of this form is that \(D(t) \) is always positive. \(\left| \hat{f}_t(\omega) \right|^2 \) can be thought of as a filter function (that is determined by the applied control field \(\Omega(t) \)) and of \(\hat{J}(\omega) \) as some noise the filter should block, the decoherence minimization challenge transforms into a filter design problem (this idea was explored in [24]).

If the control field is constant \((\Omega(t) = \Omega) \), \(\left| \hat{f}_t(\omega) \right|^2 \) can be calculated exactly:

\[
\left| \hat{f}_t(\omega) \right|^2 = \left| \frac{1}{\sqrt{2\pi}} (W_t(s) \ast (e^{i\Omega s})) \right|^2 = \frac{1}{\pi^2} \frac{\sin^2 \left(\frac{(\omega-\Omega)t}{2} \right)}{(\omega - \Omega)^2}
\]

(51)

Which is simply a sinc function of width \(\frac{1}{\Omega} \) (due to the time window) centered at \(\Omega \) (due to the control field). Since \(J(s) \) is square integrable, \(\hat{J}(\omega) \) is square integrable as well - so obviously:

\[
\lim_{\omega \to \infty} \hat{J}(\omega) = 0
\]

(52)

So if we take \(\Omega \) to be large enough, the sinc will be centered at a frequency where \(\hat{J}(\omega) \) is arbitrarily small, hence:

\[
\lim_{\Omega \to \infty} D(t) = 0
\]

(53)

We see that a constant control field (in magnitude and direction) is enough to make the decoherence arbitrarily small - if the field is allowed to be sufficiently strong. As \(\Omega \) goes to infinity, the \(e^{i\Omega s} \) function becomes increasingly “bad” (all it’s derivatives go to infinity), making this question an ill defined optimization problem.

8 Energy constraint

After seeing in section 7 that the unbound optimization problem is ill defined, we introduce a constraint on the total energy of the control field:

\[
\int_0^t \left| \Omega(s) \right|^2 ds \leq E
\]

(54)
This translates to a limitation on $\vec{X}(s)$ (using equation 11) as:

$$\int_0^t |\vec{X}(s)|^2 ds \leq \int_0^t |\vec{\Omega}(s)|^2 ds \leq E$$ \hspace{1cm} (55)$$

So we can substitute the problem of finding the optimal control field $\vec{\Omega}(t)$ by considering $\vec{X}(t)$ as the control vector (as it is fully defined by $\vec{\Omega}(t)$) and get the following constrained minimization problem:

$$\begin{cases}
\min_{\vec{X}} D(t) \\
|\vec{X}| = 1 \\
\int_0^t |\vec{\dot{X}}(s)|^2 ds \leq E
\end{cases}$$ \hspace{1cm} (56)$$

Using variational calculus we get the following integro-differential equation for optimal control (see appendix C for derivation):

$$\vec{X}(s) \times \left[\int_0^t J(s - u) \vec{X}(u) du - \lambda \dddot{\vec{X}}(s) \right] = 0$$ \hspace{1cm} (57)$$

$$\vec{X}(0) \times \vec{\dot{X}}(0) = \vec{X}(t) \times \vec{\dot{X}}(t) = 0$$

λ is chosen such that the resulting \vec{X} fulfills the energy restriction. This is a non-linear integro-differential equation, making it in general a hard problem.

An important property of this equation is that if $\vec{X}(s)$ is a solution then if we reverse it in time ($\vec{X}_r(s) = \vec{X}(t - s)$) we get a valid solution as well:

$$\vec{X}_r(s) \times \left[\int_0^t J(s - u) \vec{X}_r(u) du - \lambda \dddot{\vec{X}}_r(s) \right] =$$

$$\{ \dddot{s} = t - s \hspace{0.1cm} \dddot{u} = t - u \}$$

$$\vec{X}(\dddot{s}) \times \left[\int_0^t J(\dddot{s} - \dddot{u}) \vec{X}(\dddot{u})(-\dddot{u}) - \lambda (-1)^2 \dddot{\vec{X}}(\dddot{s}) \right] =$$

$$\vec{X}(\dddot{s}) \times \left[\int_0^t J(\dddot{s} - \dddot{u}) \vec{X}(\dddot{u}) d\dddot{u} - \lambda \dddot{\vec{X}}(\dddot{s}) \right] = 0$$ \hspace{1cm} (58)$$

And the boundary conditions are trivially fulfilled. If this equation has a unique solution, this
property forces it to be symmetric around $\frac{1}{2}$:

$$\vec{X}(s) = \vec{X}(t - s)$$ \quad (59)$$

A similar result was given in [35] by Goren, Kurizki and Lidar, but there are several important differences. First, they assume $\vec{\Omega}(t)$ to be in a fixed direction while we allow for the general case. Second, only one boundary condition was enforced in their version ($\dot{\vec{X}}(0) = 0$), missing the condition on $\dot{\vec{X}}(t)$. Third, they calculate numerical solutions of their equation for several specific noise spectra and claim that this solution is unique - yet it is not symmetric around $\frac{t}{2}$, in violation of equation 59.

9 Coherence gain upper bound

Now we will show that the energy constraint imposes a restriction on the efficiency of a DD scheme. This is done by deriving an upper bound on the coherence gain (versus no control field) - ΔD - under an energy constraint E. The work in this section was done in collaboration with Dr. Oded Kenneth.

Using the trivial geometric fact that the length of any path is longer than the distance between it’s end points and Cauchy–Schwarz inequality we write:

$$\gamma(s,u) \leq \int_u^s |\dot{\vec{X}}(\tau)| \, d\tau \leq \left[\int_u^s 1 \, d\tau \right] \cdot \left[\int_u^s |\dot{\vec{X}}(\tau)|^2 \, d\tau \right]$$

$$\gamma^2(s,u) \leq (s-u) \int_u^s |\dot{\vec{X}}(\tau)|^2 \, d\tau$$ \quad (60)$$

$$\Delta D = 2 \int_0^t \int_0^s J(s-u) \left(1 - \cos(\gamma(s,u)) \right) \, duds =$$

$$= 4 \int_0^t \int_0^s J(s-u) \sin^2 \left(\frac{\gamma}{2} \right) \, duds \leq$$

$$\leq \int_0^t \int_0^s J(s-u) \gamma^2 \, duds \leq$$
\[
\leq \int_0^t \int_0^s J(s-u) \left(\int_u^s |\dot{\vec{X}}(\tau)|^2 \, d\tau \right) (s-u) \, duds = \\
= \int_0^t ds \int_0^s J(y) \left(\int_y^{s-y} |\dot{\vec{X}}(\tau)|^2 \, d\tau \right) ydy = \\
= \int_0^t J(y) ydy \int_y^t ds \left(\int_y^{s-y} |\dot{\vec{X}}(\tau)|^2 \, d\tau \right) \leq \\
\leq \int_0^t J(y) y^2 dy \left(\int_y^t |\dot{\vec{X}}(\tau)|^2 \, d\tau \right) \leq \\
\leq E \cdot \int_0^t J(y) y^2 dy
\]

So any decoupling scheme’s efficiency is limited by the amount of energy allowed for the control field.

\[\text{10 Optimal square pulse}\]

In this section we show how different constraints lead to different optimal square pulses - and that for the case of finite energy wide pulses are optimal. A square pulse, as the one described in section 6.4, has energy $\Omega^2 d = E_{\text{pulse}}$. Equation 44 can be expressed through this energy as:

\[
D_{\text{pulse}}(d,t) = 2\nu^2 \tau \left((t-d) + \frac{1}{\left(1 + \frac{E_{\text{pulse}}}{d} \tau^2 \right)^2} d \right) = 2\nu^2 \tau \left(t - d \left(1 + \frac{d}{E_{\text{pulse}}\tau^2} \right) \right)
\]

Minimizing $D_{\text{pulse}}(d,t)$ in respect to E_{pulse}, it’s clear that the optimal choice is $E_{\text{pulse}} \to \infty$ so the pulse will use all the available energy ($E_{\text{pulse}} = E$). Minimizing $D_{\text{pulse}}(d,t)$ in respect to d is equivalent to minimizing $\frac{1}{d} + \frac{1}{E\tau^2}$, which gives $d_{\text{opt}} \to \infty$ - translating in our case to $d_{\text{opt}} = t$. We see that for this case wide pulses are better than sharp ones.

This result might come as a surprise considering the multiple times we mentioned the importance of acting on the system faster than the noise correlation time length (τ). In the case of long and constant square pulses, the correct time scale that ought to be compared to τ is not the width.
of the pulse \((d)\) but the Rabi frequency induced by it’s intensity (or more accurately its inverse: \(\frac{1}{\Omega}\)). While there is no field - the “race” against \(\tau\) is completely lost, when there is a constant field the race might be won or lost by a smaller margin - creating less decoherence than zero control. The total quality of the control scheme is determined by the average of these “race results” over the experiment time. By choosing the pulse width we decide whether we prefer beating \(\tau\) by a large margin for a short time or beating it by a much smaller margin (or even losing but not totally) but for a longer time. Here we have shown that the best tradeoff is achieved by choosing the weaker but wider pulse.

Using a restriction on the total phase of the pulse \((\int_0^t \Omega(t) \, dt = \alpha \Rightarrow \Omega d = \alpha)\) instead of total energy (for example if we want to determine the best shape of a \(\pi\) pulse) we can write:

\[
D_{\text{pulse}}(d, t) = 2\nu^2 \tau \left((t - d) + \frac{1}{1 + (\alpha \tau^2)^2} \right) = 2\nu^2 \tau \left(t - \frac{1}{\frac{d}{\alpha} + \frac{d}{(\alpha \tau)^2}} \right) \quad (63)
\]

Minimizing \(D_{\text{pulse}}(d, t)\) gives \(d_{\text{opt}} = \alpha \tau\) - meaning a narrow pulse. Note that at this pulse width our assumption \(\frac{d}{\tau} \gg 1\) is no longer true (it is reasonable to assume \(\alpha \approx 2\pi\)) - so we cannot state anything about the real optimal width except \(d_{\text{opt}} \lesssim \alpha \tau\). So for constant phase - narrow pulses are better, exemplifying the difference between optimal control fields for different constraints.

11 Asymptotic optimality

In this part we show that for several asymptotical cases the constant control field achieves the upper bound from section 9, making it an optimal solution in these cases. Calculating the improvement in decoherence for the case of constant control field, using equation 41 for \(\frac{t}{\tau} \gg 1\) and \(t\Omega^2 = E\), we get:

\[
\Delta D(t) = 2\nu^2 \tau t \cdot \left(1 - \frac{1}{(\Omega \tau)^2 + 1} \right) = 2\nu^2 \tau \frac{1}{1 + \frac{t}{E\tau^2}} \quad (64)
\]

For the case of \(\frac{t}{\tau} \gg E\tau\) this is equal to:

\[
\Delta D = 2\nu^2 E\tau^3 \quad (65)
\]

Remembering equation 61 we calculate the bound for \(J(s) = \nu^2 e^{-\frac{|s|}{\tau}} \) \((\frac{t}{\tau} \gg 1)\) using the “Mathematica” code:

\[
\text{Integrate}[s^2*\text{Exp}[-s/\tau], \{s, 0, t\}] \\
\Rightarrow 2 \tau^3 - E^\left(-\left(\frac{t}{\tau}\right)\right) \tau \left(t^2 + 2 t \tau + 2 \tau^2\right)
\]
\[E \cdot \int_{0}^{t} J(y) y^2 \, dy = E \cdot 2\nu^2 \tau^3 \]

(66)

So we see that the CF DD scheme saturates the bound for fast noise \((\tau \rightarrow 0)\), weak control \((E \rightarrow 0)\) or long experiment times \((t \rightarrow \infty)\) - making it one of the asymptotically optimal controls.

12 Summary

12.1 List of main results

- Formula of decoherence as a function of time, defined by the noise statistical properties and a general control field (derived using quantum channel properties and perturbation theory) - section 3.
- Higher perturbation order calculation via Feynman diagrams, convergence and upper bound on the \(n^{th}\) order - section 4.
- Geometric interpretation of the decoherence integral and its calculation - sections 3.1 and 6.
- Independent reproduction and improvement of the integro-differential equation for optimal control first presented in [35] (using Euler Lagrange formalism) - section 8.
- General upper bound on the purity improvement that can be achieved by any energy limited DD scheme - section 9.

12.2 Discussion

In this work we have discussed the problem of dynamically decoupling a 2 level system from its surrounding noise by applying an open-loop, energy constrained control. We gave geometric interpretation to the resulting decoherence equations and produced a graphical way of calculating the decoherence function for a general DD scheme. These tools can be used to visually compare or improve any type of DD - whether pulsed or general. Alternatively, one may use equation 57 to calculate numerically the best control scheme for a specific system.

Looking at specific cases, we have shown that DD can reverse the flow of entropy for noises with memory. We have seen that adding the energy constraint, especially for low energies, changes the rules of the game. The results in sections 10 and 11 hint (under certain conditions) toward optimal control fields that are wide and gradually changing, rather than the sharp \(\pi\)-pulses that are popular today. The bound derived in section 9 exemplifies the omnipresent truth: “there are no free lunches”. Translated to the language of DD it means that no matter how clever our choice
of control scheme is, if we want to achieve substantial qubit lifetime extension - we have to pay in energy.

To conclude, the area of pulsed dynamic decoupling is well studied, both theoretically and experimentally. In contrast, there is relatively little theoretical work done in the area of energy restricted DD, and almost no experimental results. As we said, the general analytical problem is hard: there is no known solution to the optimal control equation from section 8 and it is unknown whether the solution is unique and stable (these questions remain open for future research). The generalization of both the noise and control field to more than one dimension is a natural extension of our work, but seems to be non-trivial under our formalism. Another important challenge that we did not address is control field errors (random fluctuations in the control field that are proportional to its intensity) - which is a dominant limitation on the quality of pulsed DD today.
A Channel eigenvalues

Following the definitions in 2.2 and discussion in 3, we are interested in calculating how far the channel’s eigenvalues are from 1 (their absolute value to be exact - but since we are discussing the perturbative regime all eigenvalues are close to 1 so obviously positive). This definition of decoherence is equivalent to the trace distance of the decohering channel from the ideal one ($C_{\text{identity}} [\tilde{R}] = \tilde{R}$):

$$D = Tr [C_{\text{identity}} - C] = \sum_{\tilde{R}_i} \tilde{R}_i (C_{\text{identity}} - C) [\tilde{R}_i]$$

Where \tilde{R}_i are orthonormal basis vectors of the Bloch space. Arbitrarily choosing the $\hat{x} \hat{y} \hat{z}$ basis and using equation 16 we write:

$$D = \sum_{i=x,y,z} \tilde{R}_i (C_{\text{identity}} - C) [\tilde{R}_i] =$$

$$= \sum_{i=x,y,z} \tilde{R}_i \cdot \left\{ \tilde{R}_i - \tilde{R}_i - \int_0^t \int_0^s \langle \eta (s) \eta (u) \rangle \left[\left(\tilde{X} (s) \cdot \tilde{R}_i \right) \tilde{X} (u) - \left(\tilde{X} (s) \cdot \tilde{X} (u) \right) \tilde{R}_i \right] duds \right\}$$

$$= - \sum_{i=x,y,z} \int_0^t \int_0^s \langle \eta (s) \eta (u) \rangle \left[\left(\tilde{X} (s) \cdot \tilde{R}_i \right) \tilde{R}_i \cdot \tilde{X} (u) - \left(\tilde{X} (s) \cdot \tilde{X} (u) \right) \tilde{R}_i \cdot \tilde{R}_i \right] duds$$

$$= - \int_0^t \int_0^s \langle \eta (s) \eta (u) \rangle \left[\sum_{i=x,y,z} \tilde{R}_i (s) \tilde{R}_i (u) - \sum_{i=x,y,z} \left(\tilde{X} (s) \cdot \tilde{X} (u) \right) \tilde{R}_i \right] duds$$

$$= - \int_0^t \int_0^s \langle \eta (s) \eta (u) \rangle \left[\sum_{i=x,y,z} \tilde{X}_i (s) \tilde{X}_i (u) - \sum_{i=x,y,z} \left(\tilde{X} (s) \cdot \tilde{X} (u) \right) \tilde{R}_i \right] duds$$

$$= - \int_0^t \int_0^s \langle \eta (s) \eta (u) \rangle \left[\tilde{X} (s) \cdot \tilde{X} (u) - 3 \tilde{X} (s) \cdot \tilde{X} (u) \right] duds$$

$$= 2 \int_0^t \int_0^s \langle \eta (s) \eta (u) \rangle \tilde{X} (s) \cdot \tilde{X} (u) duds$$

Which is exactly equation 17.
B Spectral form derivation

We start with the decoherence integral expressed using the window function:

\[W_t(s) = \begin{cases}
0 & s < 0 \\
1 & 0 < s < t \\
0 & t < s
\end{cases} \]

\[f_t(s) = W_t(s) \cdot e^{i \int_0^s \Omega(\tau) d\tau} \]

\[D(t) = \Re \left[\int \int J(s-u) f_t(s) \overline{f_t(u)} du ds \right] = \]

\[= \Re \left[\int f_t(s) (J * f_t)(s) ds \right] \]

Since we assumed \(J(s) \) is square integrable, it has a Fourier transform \(\hat{J}(\omega) \). Using the convolution properties and Parseval’s theorem we can write:

\[D(t) = \Re \left[\int f_t(s) (J * f_t)(s) ds \right] = \]

\[= \Re \left[\int \hat{f_t}(\omega) (J * \overline{f_t})(\omega) d\omega \right] = \]

\[= \Re \left[\sqrt{2\pi} \int \hat{f_t}(\omega) \hat{J}(\omega) \overline{\hat{f_t}(\omega)} d\omega \right] = \]

\[= \Re \left[\sqrt{2\pi} \int \hat{J}(\omega) \left| \hat{f_t}(\omega) \right|^2 d\omega \right] = \]

\[= \sqrt{2\pi} \int \hat{J}(\omega) \left| \hat{f_t}(\omega) \right|^2 d\omega \]

Where in the end we used the fact that \(J(s) \) is real and symmetric (so \(\hat{J}(\omega) \) is real and symmetric). This is exactly equation 50.
C Optimal control: Euler-Lagrange

In order to solve the constrained minimization problem:

\[
\begin{align*}
\min & \quad \vec{X} D(t) \\
\text{s.t.} & \quad |\vec{X}| = 1 \\
& \quad \int_0^t |\dot{\vec{X}}(s)|^2 \, ds \leq E
\end{align*}
\]

the Euler-Lagrange variational technique can be used. In order to satisfy the demand $|\vec{X}(s)| = 1$ at all times, we take the variation in \vec{X} to be perpendicular to it: $\delta \vec{X}(s) = \vec{v}(s) \times \vec{X}(s)$, where $|\vec{v}(s)|$ is small for any s. Rewriting the constraint for $\vec{X}(s) \rightarrow \vec{X}(s) + \delta \vec{X}(s)$:

\[
\frac{d}{ds} \left(\delta\vec{X}(s) \right) = \dot{\vec{v}}(s) \times \vec{X}(s) + \vec{v}(s) \times \dot{\vec{X}}(s)
\]

\[
\int_0^t \left| \frac{d}{ds} \left(\vec{X}(s) + \delta \vec{X}(s) \right) \right|^2 \, ds = -|\dot{\vec{X}}(s)|^2 \, ds = \]

\[
= 2 \int_0^t \vec{X}(s) \cdot \left(\dot{\vec{v}}(s) \times \vec{X}(s) + \vec{v}(s) \times \dot{\vec{X}}(s) \right) \, ds =
\]

\[
= 2 \int_0^t \dot{\vec{v}}(s) \cdot \left(\vec{X}(s) \times \dot{\vec{X}}(s) \right) \, ds =
\]

\[
= 2\vec{v}(s) \cdot \left(\vec{X}(s) \times \dot{\vec{X}}(s) \right) \bigg|_0^t - 2 \int_0^t \vec{v}(s) \cdot \frac{d}{ds} \left(\vec{X}(s) \times \dot{\vec{X}}(s) \right) \, ds =
\]

\[
= 2\vec{v}(s) \cdot \left(\vec{X}(s) \times \dot{\vec{X}}(s) \right) \bigg|_0^t - 2 \int_0^t \vec{v}(s) \cdot \left(\vec{X}(s) \times \ddot{\vec{X}}(s) \right) \, ds
\]

The end points force the condition:

\[
\vec{X}(0) \times \dot{\vec{X}}(0) = \vec{X}(t) \times \dot{\vec{X}}(t) = 0
\]
While the integral part is the constraint written in variational form. Now calculating δD (using equation 18 and $\cos(\gamma(s,u)) = \vec{X}(s) \cdot \vec{X}(u)$):

$$D(t) = \int_0^t \int_0^t J(s-u) \left(\vec{X}(s) + \delta \vec{X}(s) \right) \cdot \left(\vec{X}(u) + \delta \vec{X}(u) \right) du ds$$

$$\delta D(t) = \int_0^t \int_0^t J(s-u) \left(\vec{X}(s) \cdot \left(\vec{v}(u) \times \vec{X}(u) \right) + \vec{X}(u) \cdot \left(\vec{v}(s) \times \vec{X}(s) \right) \right) du ds =$$

$$= 2 \int_0^t \int_0^t J(s-u) \vec{X}(u) \cdot \left(\vec{v}(s) \times \vec{X}(s) \right) du ds$$

Putting the two calculations together we get:

$$\int_0^t \int_0^t J(s-u) \vec{v}(s) \cdot \left(\vec{X}(s) \times \vec{X}(u) \right) du ds = \lambda \int_0^t \vec{v}(s) \cdot \left(\vec{X}(s) \times \ddot{\vec{X}}(s) \right) ds \implies$$

$$\implies \vec{X}(s) \times \left[\int_0^t J(s-u) \vec{X}(u) du - \lambda \dddot{\vec{X}}(s) \right] = 0$$

Which is exactly equation 57.
References

בקהר של מערכה 2 רמות למו"ר רעש צבוי

מיכאל שליט
בקראות של מערכה 2 רמות למתוך ערש Zubou

היבר על מחקר

لسם מיכאל חלקי של הדרישות לקבלת התואר
מנכטר לesModule בפיסיקה

מייכל Shelley

הוגש לסרטי הטכניון - מוכן טכנולוגיה לישראל

שבט תשע”ג חיפה ינואר 2013
המחקר נעשתה בחנויות פורפסר יוסף אברון לפיסיקס.ائي מודם לפורפסר אברון על ההידמות של הגרнт, על רוחו ועיורי להים.

ائي מודもっとד"ר אלכס רצקר על הענה על Seamless מחקר, הנחית ותומכתיו.

ائي מודם ל"דר עודד קנט על תרומתו תמך מחקר.

ائي מודם לחרי על תמיכתם, אהבתם וא המוןכם ב.

ائي מודם להוניברסיטאות אולס על הכוכב האורחתי והCHEMYית הכספית והידיבה בזאם ביקורים.

ائي מודם להכינים ולכלורה הלאומית למידוע על התמיכת הכספית הידיבבת ניווטים.
תקציר

הפוטנציאל של הגולם במורכבות המתחברות למערכת אפסонיקית באיזון בינוני בין התוכן וההפעולה במעגל ב-20 ניסיון.

I
The dynamics of the field under control itself, when taking into account the energy constraints of the system, leads to the possibility of reducing the field under control to the maximum extent possible. In this work, the control mechanism is studied under the constraint of energy (kerns) of the field under control (magnetic field of the system). The field under control is divided dynamically (under the constraint of energy) into energy levels of the field under control, which are divided dynamically. The field under control is studied in a field of control that is constant (magnetic field) that creates the division fields under control to the environment and is not due to it, therefore we think of a disturbance of order. In the first stage, a formula for the development of time is developed for the quantum states of the system, in which the time dependence of the two states is changed at a specific rate, and the field under control is solved. In addition, the field under control is solved by solving the equation for the disturbance of order. In addition, the disturbance of order is solved by solving the equation for the disturbance of order. The formula for this is solved geometrically, which results in a formula of the form:

\[F(t) = \frac{1}{2} \omega \eta(t) \]

where \(F(t) \) is the field under control, \(\omega \) is the frequency of the disturbance, \(\eta(t) \) is the control function, and \(t \) is the time. The field under control is studied in a field of control that is constant (magnetic field) that creates the division fields under control to the environment and is not due to it, therefore we think of a disturbance of order. In the first stage, a formula for the development of time is developed for the quantum states of the system, in which the time dependence of the two states is changed at a specific rate, and the field under control is solved. In addition, the field under control is solved by solving the equation for the disturbance of order. In addition, the disturbance of order is solved by solving the equation for the disturbance of order. The formula for this is solved geometrically, which results in a formula of the form:

\[F(t) = \frac{1}{2} \omega \eta(t) \]

where \(F(t) \) is the field under control, \(\omega \) is the frequency of the disturbance, \(\eta(t) \) is the control function, and \(t \) is the time. The field under control is studied in a field of control that is constant (magnetic field) that creates the division fields under control to the environment and is not due to it, therefore we think of a disturbance of order. In the first stage, a formula for the development of time is developed for the quantum states of the system, in which the time dependence of the two states is changed at a specific rate, and the field under control is solved. In addition, the field under control is solved by solving the equation for the disturbance of order. In addition, the disturbance of order is solved by solving the equation for the disturbance of order. The formula for this is solved geometrically, which results in a formula of the form:

\[F(t) = \frac{1}{2} \omega \eta(t) \]

where \(F(t) \) is the field under control, \(\omega \) is the frequency of the disturbance, \(\eta(t) \) is the control function, and \(t \) is the time. The field under control is studied in a field of control that is constant (magnetic field) that creates the division fields under control to the environment and is not due to it, therefore we think of a disturbance of order. In the first stage, a formula for the development of time is developed for the quantum states of the system, in which the time dependence of the two states is changed at a specific rate, and the field under control is solved. In addition, the field under control is solved by solving the equation for the disturbance of order. In addition, the disturbance of order is solved by solving the equation for the disturbance of order. The formula for this is solved geometrically, which results in a formula of the form:
לאחר המן אנ Billion מספרמקירה פרטיך (בונייה של נתון מתقوات לא וגוזרל אובזר הקוהרנטית):

עבון המקירה לש אמוס חסן יצרן (משמעון פונקציית אוטוקורלציה דמויית - \(\gamma(t) \) - רוען חלב), או מוכיים

יכ אובזר הקוהרנטית מתأخرת בצק קבוצת - אל תחלו בפרטי שיד המקירה המופעל (סמל העדד בקרת

cכל). המתח ומריא את התהליך של התל𝐔橈ו מתמדת בזירה זמנים זכרו רעש. המקירה החובה לבעוץ

שינויה באורכי תמרות מוקצב האמצע החוזר - האştır המקירה איטי מדיע התישה (כמי ומקרה

של אורכן זכרו אספoxic השיטה איננה מצלחתلاح על הקוהרנטית המבטב.

במקירה של רעש בול ספקטיות לוגי (אוטוקורלציה דועכת אקספוננטיאלית) ניגה לחשיב את פונקציה

במקירה של שידה בקירה אספoxic (התקנת הנופית) הלאור את כי הולך זרם יבנה ל,map.

אנובזר הקוהרנטית של שידה בקירה (התקנת הנופית) לדאב, כי הולך זרם יבנה ל,map.

בזירה הפאולויס שיפ 인정ה ניגי להב מישת התפרדה הדינמיקה הפושטת יוצר ב,NMR

אבל רואים שולם יוז ממד כי זכרו של המערה בברק זין מסדד דל שאאורץ יזיר

המערכמה, כי מעדיך ני שוקים זין הקורהו לשל הורשה בבית התפרדה הדינמית.

ודוגמה נספת היא שידה בקירה ניוז. בקירה יש אוכזר כי יולית התנועה מעורר עולות על צומת

המחוורין שמספיקים שידה בקירה ל Greenville בסי מהזק יוז זים אוכזר שורש.

ודוגמה פרטית את התוונה איננו בזירה היא פלט בקירה זה, אוצד עבגועת, בזירות.

אנבלחת אנבזר

הקורנטית אפריקן אנ מתוחים لماקר, אנ, מריאיז כי במקירה לש בקירה מוגבלת באנגריו רוחב

(\(d = 1 \)) הפולס האופטימלי,.checkBox גודל שיני (משמע,)

לבסוס, או משמסידים בנס必不可ז אובזר הקוהרנטית עבזר שידה קווע בקוןיפולזיס אוחי הולסחה עבזר

הקורנטית לא שידה בקירה כבל (הכלי لماקר הפרוס של רעש רונטי). השוואה ואה הזריזה ב כבל

הסמס עלון על קומת השיפוץ, לכל אנ מיטוים ביני התפרדה לניק החסמ וראים שבمديرية בזירה מיסומיס

שיד המקירה הקבוע מורגא את החסם. רוחי ומתרשת הב Nullable של אנגריו מיסוספילטית קטנה מולם, זים

אנבלוליאז אוצז אוצז (שג אוגרי חוכל מתלחות מהוזר עליון בפיל זום ר) כי זום קורלציית רוע כפוז

ממוד. בכל הסיסטאמותים של"ל התפרדה הדינמית מיספקת חגי מואצות בלבב - אח את הרוח שפערולית תהליג

בשיטח והיינך לחשיב עבזר שידה בקירה קווע בקון.