





Technion

#### Outline

- ► Landau Hamiltonian
- Magnetic translations
- Gauge transformations
- ► Aharonov Bohm
- Dirac quantization

#### Landau Hamiltonian

$$v=p-eA, \quad m=1$$
 
$$p=-i\hbar \nabla, \quad \nabla \times A=B$$

Non-relativistic, spinless Landau Hamiltonian

$$H_L(v^2) = \frac{1}{2}v^2$$
  $\psi \in \mathcal{H} = L^2(R^2)$ 

Only kinetic energy

Spectral analysis without special functions

#### Commutations

$$[v_x, v_y] = -i\omega$$

When B is constants velocities satisfy Heisenberg

Uncertainty relation with B the effective Plank constant

The velocities are canonically conjugate:

By Von Neumann uniqueness

$$[v_x, v_y] = -i\omega, \Leftrightarrow v_y = -i\omega \ (1 \otimes \partial_{v_x})$$

Ancillary space

$$L^2(R^2) = L^2(R) \otimes L^2(v_x \in R)$$

Need to identify the ancillary space

# Spectrum without Eigenfunctions

Elementary facts about harmonic oscillator

$$Spec\left(\frac{p^2+x^2}{2}\right) = \left\{ |\hbar| \left(n+\frac{1}{2}\right), n \in [0,1,\ldots] \right\}, \quad [p,x] = -i\hbar$$
 implies

$$Spec\left(\frac{v^2}{2}\right) = |\omega|\{n+1/2, n = 0, 1, \ldots\}, \quad [v_x, v_y] = -i\omega$$

E-plane

The ancillary space is hidden in the (infinite) Multiplicity of each eigenvalue

# Landau degeneracy

$$H = \frac{1}{2}v^2$$
,  $[v_j, c_k] = 0 \rightarrow [H, c_k] = 0$ ,

A second canonical pair

$$[c_y, c_x] = \frac{i}{\omega}$$

$$L^2(R^2) = L^2(c_x \in R) \otimes L^2(v_x \in R)$$

By uncertainty principle, There is a state per area  $\frac{1}{2\pi\omega}$ 

Density of states in each Landau level is

 $\frac{eB}{h}$ 



## Magnetic translations

Exercse: Verify that 
$$\Pi = p + \frac{e}{2}B \times x$$
 Generates shifts:

$$(T_a\psi)(x) = \left(e^{i\Pi a}\psi\right)(x) = e^{iB\cdot x \times a/2}\psi(x-a)$$

Gauge correction

Shift states without changing their kinetic energy

$$T_aH(v) = H(v)T_a$$

## Non-commuting shifts

Exercise: show that the shifts

$$(T_a\psi)(x) = e^{iB\cdot x \times a/2}\psi(x-a)$$

Are non-commuting

$$T_a T_b = e^{ia \times b \cdot B} T_b T_a$$



Anti-symmetric under a b interchange

Accumulated phase is the enclosed flux

#### Flux and inaccessible fields

Gauge invariants:

$$B = \nabla \times A$$

$$\Phi = \oint A \cdot d\ell$$

In a contractible space no extra information in the flux

$$\oint_{\partial\Omega} A \cdot d\ell = \int_{\Omega} B \cdot dS$$

In a ring, punctured plane or torus
There are inaccessible fields
with accessible fluxes

#### Flux tubes





## Quantum Flux

$$dim[p] = dim[eA] \rightarrow dim[-i\hbar\nabla_x] = \dim[eA]$$
 
$$\rightarrow \frac{\hbar}{e} = \dim[A \cdot x] = \dim[flux]$$

Quantum flux from fundamental constants only

$$\Phi_0 = \frac{h}{e} = 2 \times 2.06783363610^{-7} \ Gauss \times cm^2$$

The earth magnetic field (1G) through microorganism

A quantum unit of magnetic field requires area scale: the Planck area

 $\frac{\hbar G}{c^3}$ 



### A flux tube

$$A = \frac{\Phi}{2\pi r} \widehat{\theta}$$

$$\oint A \cdot d\ell = \begin{cases} \Phi, & \text{loop surrouns origin;} \\ 0, & \text{otherwise.} \end{cases}$$



$$B = \nabla \times A = \Phi \delta(x)$$

No field except at origin

What if the origin is inaccessible?



#### Aharonov-Bohm

Classical mechanics can be formulated with fields Quantum mechanics is formulated with potentials. Hamiltonians and Lagrangians rely on potentials

$$H(B,\Phi_1,\Phi_2,\ldots)$$

Physical observables

Can be sensitive to

Fluxes of inaccessible fields



# Example: Particle on a ring

$$A = \frac{\Phi}{2\pi r} \widehat{\theta}$$

Quantum particle on a ring of unit radius

The velocity is observable

$$v(\Phi) = -i\hbar \partial_{\theta} + e\Phi/2\pi$$

Eigenfunctions:

$$e^{in\theta}$$

$$Spec(v) = \{n + \Phi/\Phi_0 \mid n \in Z\}$$

Measurement of velocity will detect the fractional part of the flux



## Gauge transformations

Gauge=multiplicative unitary.

A change of basis in Hilbert space.

$$A \to A + \nabla \Lambda(x), \quad \psi \to e^{ie\Lambda/\hbar}\psi$$

Does not affect position and velocity

$$x \to UxU^{\dagger} = x, \quad U = e^{-ie\Lambda/\hbar}$$

$$v(A) = (-i\hbar\nabla - eA) \to Uv(A)U^{\dagger} = v(A + \nabla\Lambda)$$

## Quantized flux tubes

$$U=rac{x+iy}{|x+iy|}=e^{i heta}$$
 is a smooth gauge transformation on punctured plane

$$R^2/\{0\}$$
 A pure gauge 
$$\nabla \Lambda = \frac{\Phi_0}{2\pi r} \widehat{\theta}$$

Preserves B but sends

$$\Phi \rightarrow \Phi + \Phi_0$$

This implies

$$H(B, \Phi + \Phi_0) = UH(B, \Phi)U^*$$

Quantized fluxes are invisible

# Dirac monopoles

Why is the charge of proton the same (up to sign) as the charge of the Electron?

Coulomb law for charges and magnetic charges

$$E = \frac{e}{4\pi} \frac{\hat{r}}{r^2}, \quad B = \frac{g}{4\pi c} \frac{\hat{r}}{r^2},$$

Quantum mechanics is consistent with monopoles of charge g only if all electric charges e are such that

$$eg = 0 \ Mod \ hc$$

All charges e must be multiple of a single unit

A single monopole will quantize all charges

# Vector potentials on manifolds

B=const, A is may not be globally defined

$$\Phi = \int B \cdot dS = \int_n B \cdot dS + \int_s B \cdot dS$$

$$\int_{n} B \cdot dS = \oint A_{n} \cdot d\ell$$

$$\int_{S} B \cdot dS = -\oint A_{S} \cdot d\ell$$

$$\Phi \neq 0 \Rightarrow A_n \neq A_s$$



## Dirac quantization a-la BA

Restrict a quantum particle to the equator

 The flux, modulo the unit of quantum flux, is observable and thus physical

$$\oint A_n \cdot d\ell = \oint A_s \cdot d\ell \ mod(\Phi_0)$$



By Stokes, total magnetic flux through manifold

$$\Phi = \oint (A_n - A_s) \cdot d\ell = 0 \mod \left(\Phi_0 = \frac{h}{e}\right)$$

Translation: The total curvature (flux) of a connection A that defines a vector bundle (a gauge covariant Hilbert space ) is quantized