

The Baron and the cat

Joint work with Oded Kenneth Original idea: J. Wisdom

Baron and cat

- A cat can rotate with zero angular momentum
- Can Baron von Munchausen lift himself?
- Translate with zero momentum?

Movie: omri Gat

H. Knoerer: Cats always fall on their feet

Rotations without angular momentum: Physics

Rotations without angular momentum: Mathematics

Generators of deformations

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$[X,Z] = 2 \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = 2R$$

The commutator of deformations = a rotation

Newton's law

If a system experiences no external force, the center-of-mass of the system will remain at rest.

http://webphysics.davidson.edu/physlet_resources/bu_semester1/c12_cofm_motion.html

Newton:

Lex I: Corpus omne perseverare in statu suo quiescendi vel Movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare.

Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by force impressed

Wikipedia

Ambiguous center of mass: Topology

Ambiguous center of mass allows the Baron to move itself

Ambiguous center of mass: Geometry

Euclidean plane

The three medians of a (Euclidean) triangle intersect at one point

On a sphere

Swimming triangles

On sphere

Movies: Oren Raz

Swimming triangles

Inside a torus

Movies: Oren Raz

Shape fixes location

Shape: All mutual distances $\begin{pmatrix} n \\ 2 \end{pmatrix}$

Location:

nd coordinates

n > 2d + 1 overconstrained.

Large rigid bodies generically fits nowhere

Generically, shape fixes a location

When can rigid bodies move?

Euclidean space is a symmetric space: Homogeneous and isotropic.

In a symmetric space if a rigid body fits somewhere, it fits any where.

Examples:

Sphere

Lobachevski plane

In a symmetric space, shape does not determine location. You may try to swim.

Killing forms

Killing for Euclidean translation

$$\xi_t = dx$$

Killing for Euclidean rotation

$$\xi_R = xdy - ydx$$

Controls: Deformations

Example: Euclidean case

Vector field for deformations depend on choice of origin: Ambiguity in Killing

$$\eta_1 \to \eta_1 + a\xi_x - b\xi_y$$

Killing 2-form

Deformation fields

Space allows for swimming if the Killing 1-form is not closed

Cats spin, the Baron lies

Translations

$$\xi_t = dx \longrightarrow d\xi_t = 0$$

The Baron lies

Rotations

$$\xi_R = xdy - ydx \longrightarrow d\xi_R = 2dx \wedge dy$$

The cat falls on its feet

Small swimmers on symmetric surface

Property of space

Size of stroke $\delta x pprox 8R \left(\frac{\sum m_n x_n y_n^2}{M} \right) dA$

Geometry of aswimmer

Wisdom
Swim away from Black hole
Relativistic motions

AK:
Symmetric spaces
Non relativistic bodies

The swimming problem

Swimming with periodic strokes:

Conservation of momentum

A system of particles

$$P_{\xi} = \sum_{n} p_n \cdot \xi(x_n), \quad p_n = \frac{\partial L}{\partial \dot{x}_n} = m\dot{x}_n$$

Killing vector field

Swimming equations

$$P_{\xi} = 0 \longrightarrow \sum m_n \xi(x_n) \cdot dx_n = 0$$

As many equations as Killing fields: Can't move in other directions

Eq. independent of time parameterization: Geometric

Killing fields: Translation & rotations

Rotation about z axis: Looks like translation near equator And like rotation at poles

Defining property: No strain

$$\xi_{\mu;\nu} + \xi_{\nu;\mu} = 0$$

Relation to Riemann

$$\xi_{\ell;i;j} = -R_{\ell jik} \xi^k$$

Determined by initial data at a point

$$\xi_{\mu}(0), \quad \xi_{[\mu,\nu]}(0)$$
translation Rotation

Rigid body motion: Coordinates

Putting coordinates for The analog of Euclidean motions

Coordinates for rigid body motion

$$\dot{x}(t) = \tau \cdot \xi(x(t)), \quad x(0) \to x_{\tau}(1)$$

$$S(\tau) = e^{\tau \xi} S$$

Symbolic notation for transported shape

Gauge choice instead of CM

$$\langle \xi | \eta \rangle = \frac{1}{M} \sum_{n} m_n \xi(x_n) \cdot \eta(x_n)$$

Euclidean example:

$$\langle \xi_1 | \eta_1 \rangle = \frac{1}{M} \sum m_n x_n$$

Gauge choice: Analog to choosing cm as fiducial pt

for translations

$$\langle \xi_j | \eta_a \rangle = 0$$

Coordinates for deformed shapes

$$\dot{x}(t) = \sigma \cdot \eta(x(t)), \quad x(0) \to x_{\sigma}(1)$$

Symbolically
$$S(\sigma) = e^{\sigma\eta}S$$

Total space

Coordinates for deformations + Euclidean motions

$$S(au, \sigma) = e^{ au\xi} e^{\sigma\eta} S$$

$$x_0 \longrightarrow x(au, \sigma; x_0)$$

$$dx(au, \sigma; x_0) = (\partial_{ au} x) d au + (\partial_{\sigma} x) d\sigma$$

Motions is legit if it consistent with zero total momentum

Equation of Motion

To leading order with σ and τ small

$$dx = \xi d\tau + \eta d\sigma, \quad \xi(x(\sigma, \tau)), \quad \eta(x(\sigma, \tau)),$$

Substitute in conservation law

$$\sum m_n \xi(x_n) \cdot dx_n = 0$$

Gives a linear (system) of equations for $d\tau$

Main result

Swimming distance

$$d\tau = \langle d\xi | \eta_a, \eta_b \rangle \ d\sigma^a \wedge d\sigma^b$$

Killing fields

Deformation fields

Shape space

$$d\tau^{\alpha} = \langle \partial_{[k} \xi_{j]}^{\alpha} | \eta_a^k \eta_b^j \rangle \ d\sigma^a \wedge d\sigma^b$$

Role of Curvature

Killing field for symmetric spaces can be Explicitly expressed in terms of the curvature

$$\xi_{\ell;i;j} = -R_{\ell jik} \xi^k$$

In a symmetric space

$$R_{ijk\ell} = R \left(\delta_{ik} \delta_{j\ell} - \delta_{i\ell} \delta_{jk} \right)$$

Swimming in the direction of the k-th Killing field

$$\delta x^k = 2R \Big(Q^k d\sigma^a \wedge d\sigma^b \Big)$$

Geometry of embedding space
$$Q^k=rac{1}{M}\sum m_n \; x_n^i \; \eta_a^i(x_n)\eta_b^k(x_n)$$

Application to astrophysics?

How does swimming affect the motion of galaxies of size x?

$$\frac{\Delta x}{x} \propto R(\delta x^2) \approx R v^2 (dt)^2$$

Hubble constant 75 km/sec/Mpc gives a measure of the curvature

$$R \sim H_0^2 \approx 10^{-20} \ [year]^{-2}$$

Perhaps not surprisingly, it takes the age of the universe for a significant swimming

The hero: Oded Kenneth

Thanks to Amos Ori

