Adiabatic evolutions

5 1 T

Temple mount



Outline

» Adiabatic invariants
» [he adiabatic theorem
» Berry’s phase and curvature



LeV|trO I"I (Berry)

B-J =0 is harmonic if J is fixed.

|B| = B - B is not.



Spin precession

H(B) =B-o
14+ =z-0 A@
=73

Heisenberg equation of motion /\
—ip = [H, p] = p — " pe

Unitary evolution preserves the length of |x|

The direction n precesses n =B X n, n==x

In the (weak) magnetic field of the earth (~16G), nuclear (weak) spins precess
At audio frequencies, ~10Khz



Adiabatic invariants
H(s), s=+ = scaled time, T>> 1 > 6

Adiabatic: Slow time dependence = T large n
= fast intrinsic time scale i.e. B large ‘/\
(X) = / X (t)dt
J period

Adiabatic invariants:
<X>, fast time average that survives O(1) change in H
when rate is slow:
No accumulation of errors

s A diabatic invariant

T T
|




Example: spin drag

From eq. of motion n—=DBXn

Conclude first (n) H B

Good, but not enough
. =2 1
(n-B)=nxB-B+4n-B=0(7)

Errors do not accumulate for long times:

(n-B) = () B+0 ()

T2
but
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The adiabatic theorem (rermeufel)

Replaces solving an evolution equation by solving a family of spectral problems

In ordinary times H is slowly changing )

t (@)

—idp 1) = H () [), s =

In adiabatic times H is large

—i0s [vp) =TH(s) [¢), T>>1

Spectral projections are adiabatic invariants

Ps—o — Ps+0o(1), s=0(1)



Kato geometric evolution

Properties of projections
P2=P > PP+PP=FP

P
PPP=0 \
The evolution of spectral projections is generated by i

f(H) —i[P, P]
Proof:
Heisenberg equation of motion for P:

fz:{f(H)—v:[P,P]:P} — :[P,P],P}

PP — PP, P}

PP? — PPP — PPP + P?P
PP+ PP=P




Comparison of dynamics

Generators of spectral flow:

f(H) —1i [df; P] = f(H) —

) : dP
d

PP, p=%
| ds p

Comparison with physical evolution
Hy=H— [P, P]

Generates spectral evolution:
Satisfies the adiabatic theorem without error
Good starting point for comparison

Miracle: H approximates the spectral evolution for large
intrinsic time scales: of order T.
A Riemann-Lebesgue statement: E is large implying rapid oscillations



Outline of proof

Compare dynamics

U;L-T_]_ = —T / ds LTA(H,}—H)LT — / ds ULL[P P]LT

A-priori O(1)
Hypothesis: [/, ] = [X, FI] has bounded solutions X
ULUS1 == _ / ds U\ [X, H]U ~ % / ds (UL XU + Uy XU) =

~ %/'ds (0s(Ua XU) — U4 XU) = O(%)

Bdry term O(1) QED



Commutator eguation

Want to solve: [P, P] = [X, H]
The solution is hon-unique since

X — X +g(H)

Solution always exists if P is protected b gaps
The case of H with discrete spectrum

Represent the commutator equation in the instantaneous basis of H
(1| [P, P] im) = (n| X |m) (Em — En)

(n| X |m) if By # En

Determines the off-diagonals of X if levels do not cross
“Smallest” X has vanishing diagonal



Parallel transport

» Tulio Levi Civita
» 1873 Padua -1941 Rome

» Curvature=failure of
parallel transport




Adiabatic connection

We can use the notion of adiabatic generator to evolve wave-functions

i|) = Hal), Ha=—ilP, Pl

Independent of time re-parameterization

wdl|y) = Ald), A= —ildP, P]

Exercise: Show that for PL = 1 IIZQB e
One has A = B X dB - o
2

Matrix valued differential (gauge field).



Holonomy.

Adiabatic connection

id|y) = Alp), A= —i[dP,P]

i
The solution of the differential equation is path dependent

A=) Aidb;, A;=—i[0,P,P]

idP A dP = i[01 P, 8> P] dbi A dbs
Prop. to area

Manifestly gauge invariant



Stokes and commuting failure
A=Y Adb;, Aj=—i[o;P,P] °

Stokes failure
01Ap — 0 A1 = —101[02P, P] 4+ 105(01 P, P]
2i[01 P, 8 P] i

Failure fo commute on Range P

—[A1,Ao]P = |[01P,P],[02P, P]|P
= ([01P, P](02P)P — [0, P, P](01P)P)
= —P[01P,0-P|P

Holonomy

idP A dP = i[01P,8>P] dby A dbs



Berry’s model

Instantaneous projections

holonomy =

1+ B0 dB x dB - o
2

2

At the north pole:

dBzdByo, d2 d$2
=—o0, — =+
2 p. p.

On the equator you get the -1




