

Adiabatic evolutions

Temple mount

Outline

- Adiabatic invariants
- ► The adiabatic theorem
- Berry's phase and curvature

Levitron

(Berry)

 $B \cdot J = 0$ is harmonic if J is fixed.

 $|B| = B \cdot \hat{B}$ is not.

Spin precession

$$H(B) = B \cdot \sigma$$

$$\rho = \frac{1 + x \cdot \sigma}{2}$$

Heisenberg equation of motion

$$-i\dot{\rho} = [H, \rho] \Rightarrow \rho \rightarrow e^{iHt}\rho e^{-iHt}$$

$$\dot{n} = B \times n, \quad n = \hat{x}$$

In the (weak) magnetic field of the earth (~1G), nuclear (weak) spins precess

At audio frequencies, ~10Khz

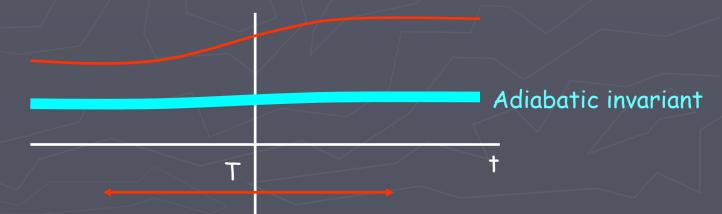
Adiabatic invariants

$$H\left(s\right),\quad s=rac{t}{T}=\text{ scaled time, }T\gg1$$

$$\langle X \rangle = \int_{period} X(t)dt$$

Adiabatic invariants:

<X>, fast time average that survives O(1) change in H when rate is slow: No accumulation of errors



Example: spin drag

From eq. of motion

$$\dot{n} = B \times n$$

Conclude first

$$\langle n \rangle \parallel B$$

Good, but not enough

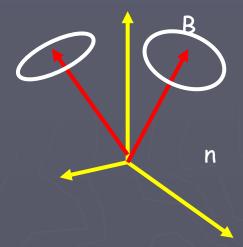
$$(n \cdot \hat{B}) = \underbrace{n \times B \cdot \hat{B}}_{==0} + n \cdot \dot{\hat{B}} = O\left(\frac{1}{T}\right)$$

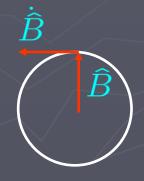
Errors do not accumulate for long times:

$$\left\langle n \cdot \dot{\hat{B}} \right\rangle = \left\langle n \right\rangle \cdot \dot{\hat{B}} + O\left(\frac{1}{T^2}\right)$$

but

$$\langle n \rangle \cdot \dot{\hat{B}} \propto B \cdot \dot{\hat{B}} = 0$$





The adiabatic theorem (ref:Teufel)

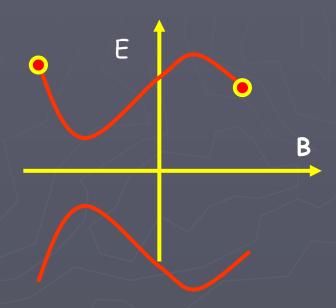
Replaces solving an evolution equation by solving a family of spectral problems

In ordinary times H is slowly changing

$$-i\partial_t |\psi\rangle = H(s) |\psi\rangle, \quad s = \frac{t}{T}$$

In adiabatic times H is large

$$-i\partial_s |\psi\rangle = TH(s) |\psi\rangle, \quad T >> 1$$



Spectral projections are adiabatic invariants

$$P_{s=0} \to P_s + o(1), \quad s = O(1)$$

Kato geometric evolution

Properties of projections

$$P^{2} = P \rightarrow P\dot{P} + \dot{P}P = \dot{P}$$
$$P\dot{P}P = 0$$

The evolution of spectral projections is generated by

$$f(H) - i[\dot{P}, P]$$

Proof:

Heisenberg equation of motion for P:

$$i[f(H) - i[\dot{P}, P], P] = [\dot{P}, P], P]$$

$$= [\dot{P}P - P\dot{P}, P]$$

$$= \dot{P}P^2 - P\dot{P}P - P\dot{P}P + P^2\dot{P}$$

$$= \dot{P}P + P\dot{P} = \dot{P}$$

Comparison of dynamics

Generators of spectral flow:

$$f(H) - i\left[\frac{dP}{dt}, P\right] = f(H) - \frac{i}{T}[\dot{P}, P], \quad \dot{P} = \frac{dP}{ds}$$

Comparison with physical evolution

$$H_A = H - \frac{i}{T}[\dot{P}, P]$$

Generates spectral evolution:
Satisfies the adiabatic theorem without error
Good starting point for comparison

Miracle: H approximates the spectral evolution for large intrinsic time scales: of order T.

A Riemann-Lebesgue statement: E is large implying rapid oscillations

Outline of proof

Compare dynamics

$$U_A^\dagger U - 1 = -iT \int ds \, U_A^\dagger (H_A - H) U = -\int ds \, U_A^\dagger [\dot{P}, P] U$$
 A-priori $O(1)$

Hypothesis:
$$[\dot{P}, P] = [X, H]$$
 has bounded solutions X

$$U_A^{\dagger}U - 1 = -\int ds \, U_A^{\dagger}[X, H]U \approx \frac{i}{T} \int ds \, \left(\dot{U}_A^{\dagger}XU + U_A X\dot{U}\right) = 0$$

$$= \frac{i}{T} \int ds \, \left(\partial_s (U_A X U) - U_A \dot{X} U \right) = O\left(\frac{1}{T}\right)$$

Bdry term O(1)

QED

Commutator equation

Want to solve: $[\dot{P}, P] = [X, H]$

The solution is non-unique since

$$X \rightarrow X + g(H)$$

Solution always exists if P is protected b gaps

The case of H with discrete spectrum

Represent the commutator equation in the instantaneous basis of H

$$\langle n|\left[\dot{P},P
ight]|m
angle = \langle n|X|m
angle \left(E_m-E_n
ight)$$
 $\langle n|X|m
angle ext{ if } E_m
eq E_n$

Determines the off-diagonals of X if levels do not cross "Smallest" X has vanishing diagonal

Parallel transport

- ► Tulio Levi Civita
- ▶ 1873 Padua -1941 Rome
- Curvature=failure of parallel transport

Adiabatic connection

We can use the notion of adiabatic generator to evolve wave-functions

$$i |\dot{\psi}\rangle = H_A |\psi\rangle, \quad H_A = -i[\dot{P}, P]$$

Independent of time re-parameterization

$$id |\psi\rangle = \mathcal{A} |\psi\rangle, \quad \mathcal{A} = -i[dP, P]$$

Exercise: Show that for $P_{\pm} = \frac{1 \pm \hat{B} \cdot \sigma}{2}$

One has
$$\mathcal{A} = \frac{\widehat{B} \times d\widehat{B} \cdot \sigma}{2}$$

Matrix valued differential (gauge field).

Holonomy

Adiabatic connection

$$id |\psi\rangle = \mathcal{A} |\psi\rangle, \quad \mathcal{A} = -i[dP, P]$$

$$\mathcal{A} = \sum \mathcal{A}_j db_j, \quad \mathcal{A}_j = -i[\partial_j P, P]$$

a

$$idP \wedge dP = i[\partial_1 P, \partial_2 P] db_1 \wedge db_2$$

Prop. to area

Manifestly gauge invariant

Stokes and commuting failure

$$\mathcal{A} = \sum \mathcal{A}_j db_j, \quad \mathcal{A}_j = -i[\partial_j P, P]$$
 Stokes failure
$$\partial_1 \mathcal{A}_2 - \partial_2 \mathcal{A}_1 = -i\partial_1 [\partial_2 P, P] + i\partial_2 [\partial_1 P, P]$$

$$= 2i[\partial_1 P, \partial_2 P]$$
 a

Failure to commute on Range P

$$-[A_1, A_2]P = [[\partial_1 P, P], [\partial_2 P, P]]P$$

$$= ([\partial_1 P, P](\partial_2 P)P - [\partial_2 P, P](\partial_1 P)P)$$

$$= -P[\partial_1 P, \partial_2 P]P$$

Holonomy

$$idP \wedge dP = i[\partial_1 P, \partial_2 P] db_1 \wedge db_2$$

Berry's model

Instantaneous projections

$$P_{\pm} = \frac{1 \pm B \cdot \sigma}{2}$$

$$P_{\pm} = \frac{1 \pm \hat{B} \cdot \sigma}{2} \qquad holonomy = \frac{d\hat{B} \times d\hat{B} \cdot \sigma}{2}$$

At the north pole:

$$\frac{d\hat{B}_x d\hat{B}_y \sigma_z}{2} = \frac{d\Omega}{2} \sigma_z \to \pm \frac{d\Omega}{2}$$

On the equator you get the -1

