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Current and emf loop

Current loop

Voltage loop



Skew Conductance=Curvature

emf = Cbl

H(®q,Po)

(> (-

Hall current loop
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Emf loop
Ip,

In the adiabatic limit, the Hall conductance is the adiabatic curvature

og = 21Im (0294|017 4)



Charge transport

Thm: If H generates the evolution of ¥ then

(Y| O2H |2p) = i0¢(vp|02%)

Charge transport is bdry term

(@ = [ dt wloaH ) = (w1020

Proof:
(Y| O2H ) = O (Y| H |¢)
— (09| H |v) — (Y| H |029)
Use Schrodinger H |¢) =10 |9)

(Y| 02H ) = 102(¢|0s))
— (00| Opp) + i(Opp| B2t
= 10¢(|02%)



Linear response=Adiabatic limit

P4
In adiabatic limit
[¥) — |Ya) ‘

Y(t, Do) — YA (P1(t), P2)

(Q) = i{wld2t)| ) — i(ald2va)],
H— Hy=H —i[P,P] = H —i[01P, P]®;

Unwind the previous computation

101 (Y| 02 |Ya) = (YAl OoH A [P 4)

involves only
Adiabatic data



Technicalities

(YAl O2Hp |[Y4) = O2(Wal HplYa)
OV Al Ha | a) — (YAl Ha 029 4)
The first term is Feynmann-Hellman term
(Wal Halha) (Yal H—1i[P, P]|ha)
= (Yu|lH |yg) = E

The second term is

(o a| Ha Y 4) = 1021 4]01%4) P1

In conclusion

(Al O2H A |Ya) = (2B —i((0194102¢04) — (924|014 >) P

Persistent currents conductance



From geometry to topology

For any closed manifold,

1 S
— Tr(PdPdPP) = integer
271 JM

Application to Hall effect

Aharonov-Bohm periodicity
Implies that flux space

Is a torus.

Corollary: The average Hall conductance over the flux ftorus is quantize



Total adiabatic curvature guantized

Use Dirac quantization argument:

/B—/B+/B i(dp|dap)

/ Bz ?g An; A’n — 2<¢n’dwn>
Jn Jequator

But, Berry's phase is a physical observable so

§£ Haldis) = §£ i dipm) [Mod-27
Jequator Jequator
It follows that

/ B =0 Mod 27



A theory of Hall effect?

» Yes: Sufficiently general (allows e-e interact)

» No: Too general (disorder, 2 dim irrelevant)

» Worry: Where are the fractions? (non-deg)

» Too weak: Only the average ransport quantized



Orthogonal projections

Orthogonal projections:
Pl=pP, pP=Pp!
Pair of projections

P Q Q1=1-¢

Non-commuting trigonometry

Let: S:P—Q, C:P—QJ_

Then G241 0?2 =1
CS+5C=0




Corrolaries

The spectrum of P-Q is
1. Contained in [-1,1]
2. Balanced in (-1,1)

A A
1)( X

1

Theorem: Suppose S is compact. Then

Tr(P—Q) 2ntl — gimKer (P—Q—-1)—dimKer(P—Q+1)

An integer independent of n

Allows for comparing infinite dimensions



Non-commutative trigo
S — P — Q, C o P — QJ_

Compute:

SC = (P-Q)(P—Q)
= P—-PQ, —QP
= PQ—-QPFP

Then also

¢S = PQ, —-Q.P

It follows that

CS+5C = P—-—P=0



Non-commutative Pythagoras
S — P — Q, C — P — QJ_

Compute:

S2 (P—-Q)(P—-Q)
P—-PQ—-QP +(

PQ | +QPFP,

Then also

C? = PQ+Q.P,

It follows that

S+ C°> = PFP =1



Spectrum of P-Q

Recall S=P — Q

From SQ—I—CQ =1

Follows SpGC(S) C [—1, 1]




Spectrum of P-Q: Symmetry

Suppose S compact. If

Sy =Xy, [Al <1

From the non-commutatively of C and S

—CS|yp) = SC 1Y) = =AC

Where

¥)
¥)

(dle) = (| C? |h) =1 — A2 £ 0

Spectrum is balanced




Comparing infinite dimensions

When P and Q are finite dimensional then

Tr(P—-Q) =Tr(P)—-Tr(Q) € Z

How would you compare two infinite dimensional projections?

B
Example: Full Landau level

=" e

TrP = oo # electrons in Landau level
Tr() = oo # electrons punctured Landau level

Expect: # electrons in puncture = number of flux quanta



Comparing infinite dimensions

When P and Q are finite dimensional then

T’T‘(P o Q)Qﬂ-—l—l — Z)\JQ’H,—F]_ —
deg(P—-—Q —1) — deg(P—-Q+1)

Can work also when P and Q are infinite dimensional



Application to QHE

Laughlin flux tube: singular gauge transformation

<
U ="

|
Crank up the flux adiabatically

adial hall current
Azywutal emf
C U >

U

Expect Tr(P —UTPU) € Z




Bellissard formula

e P a spectral projection in two dimensions.
e (x| P|y) decays sufficiently fast in x — y

e U AB flux tube

e Mild conditions about translation invariance
The Hall conductance is

Index(PUP) = Tr(P - UTPU)3 € 7



