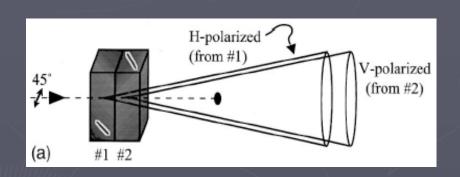
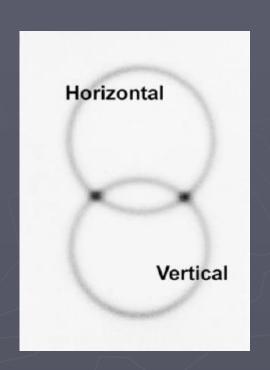


Entanglement on demand

Gershoni, Lindner, Akopian, Berlatzky, Poem

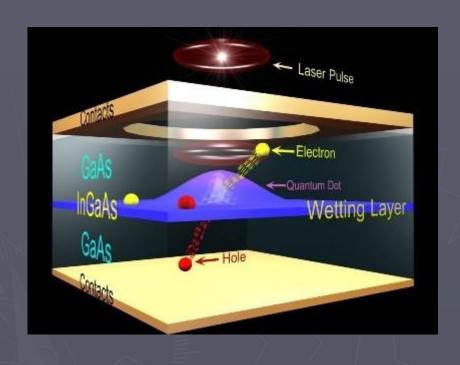
On demand

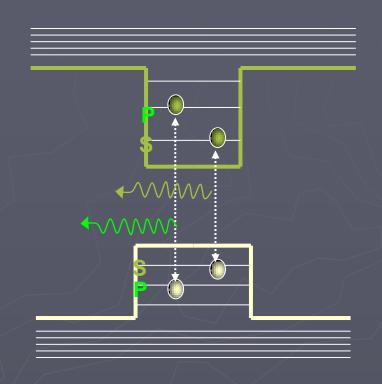




$$|0
angle\otimes|0
angle+arepsilon(\,|V
angle\otimes\,|H
angle+\,|H
angle\otimes\,|V
angle$$
) junk Entangled piece

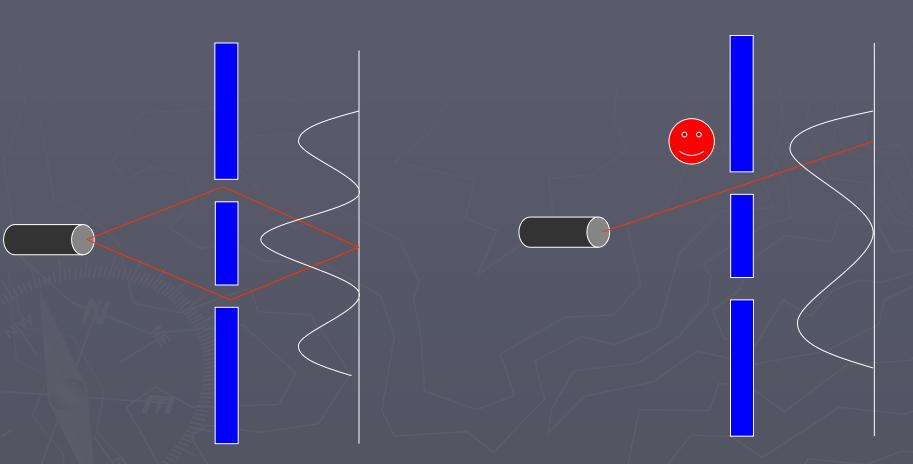
Quantum dots





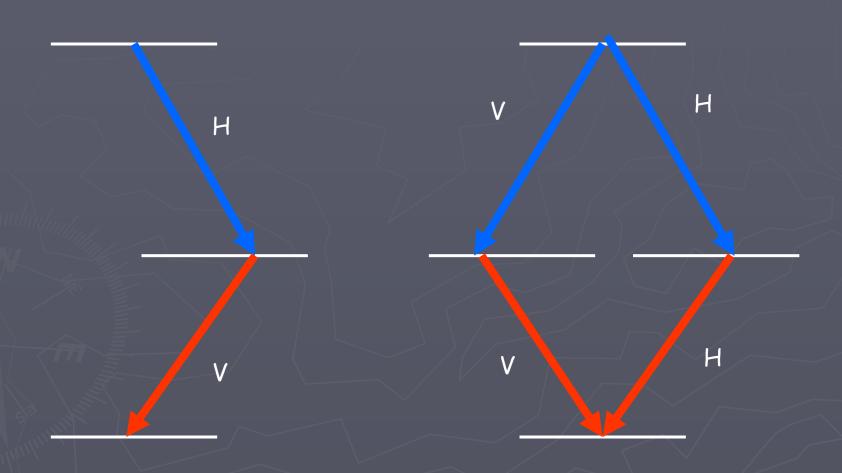
|incoming|photon
angle
ightarrow |photon|pair
angle

Which path and interference



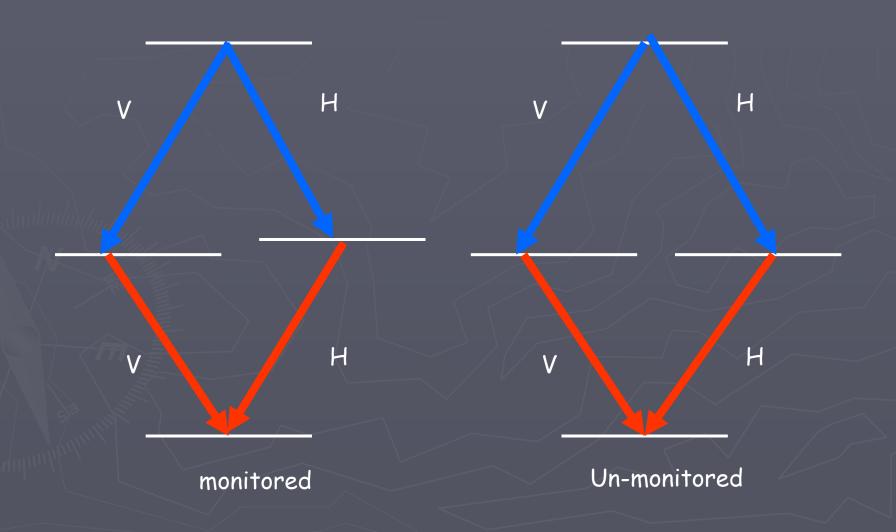
Monitoring the path kills interference

Which path and entanglement

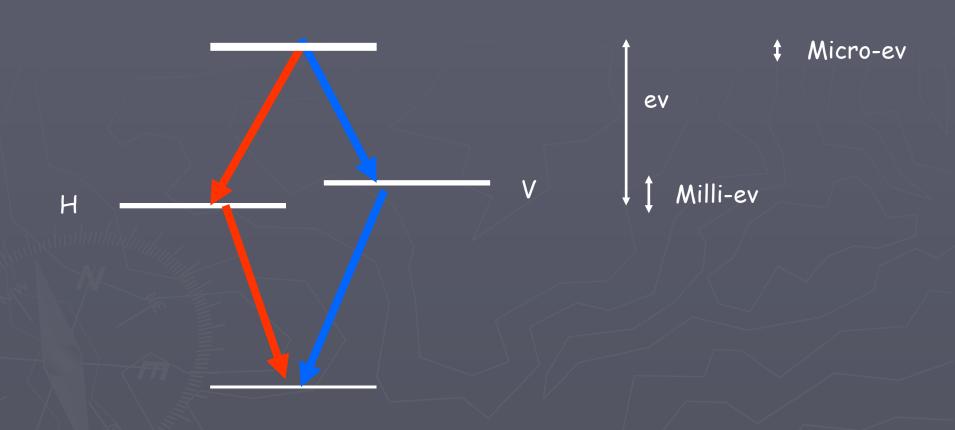


Entanglement: A 2 photon analog of interference

Monitoring a cascade



Scales



classical correlations

Independence and correlations

independence

$$P_{ab}(x,y) = P_a(x)P_b(y)$$

Correlations due to common source

$$P_{ab}(x,y) = \sum_{j} p_j P_a^j(x) P_b^j(y)$$

Separable states

$$\rho_S = \sum p_j \, \rho_j^A \otimes \rho_j^B, \quad p_j > 0$$

Entangled states = Unseparable

$$ho = |\psi\rangle\langle\psi|, \quad |\psi\rangle = \frac{|1\rangle\otimes|0\rangle - |0\rangle\otimes|1\rangle}{\sqrt{2}}$$

Negative probabilities

Peres test

$$\rho = \begin{pmatrix} A & B \\ B^* & C \end{pmatrix}, \quad \rho^P = \begin{pmatrix} A & B^* \\ B & C \end{pmatrix}$$

If transform has negative eigenvalue state is entangled

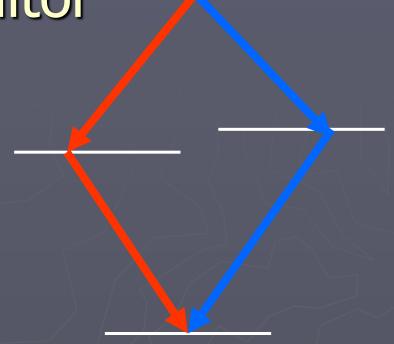
$$\rho = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \rho^P = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

Color as path monitor -

Photons wave packet

$$|\psi\rangle = \alpha |HH\rangle \otimes \widetilde{|p_H\rangle} + \beta |VV\rangle \otimes |p_V\rangle$$

$$\rho = \begin{pmatrix} |\alpha|^2 & 0 & 0 & \gamma \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \gamma & 0 & 0 & |\beta|^2 \end{pmatrix}$$



$$\gamma = \alpha \bar{\beta} \langle p_H | p_V \rangle$$

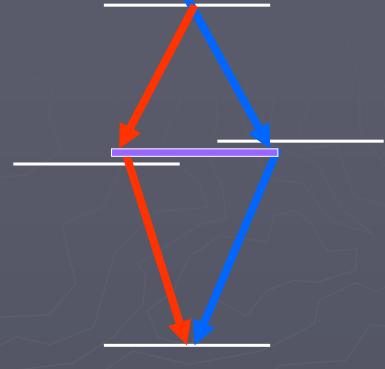
Monitors of the decay path kill the entanglement

Eliminating the monitor

$$|\psi\rangle$$

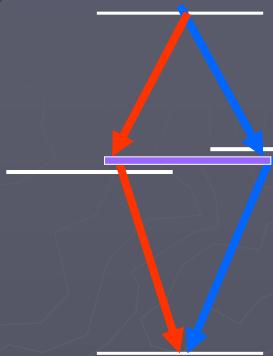
$$\rightarrow (|HH\rangle + |VV\rangle) \otimes |p\rangle$$

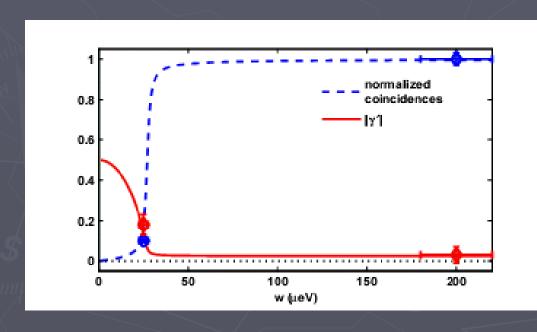
$$\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$



Entanglement at a price

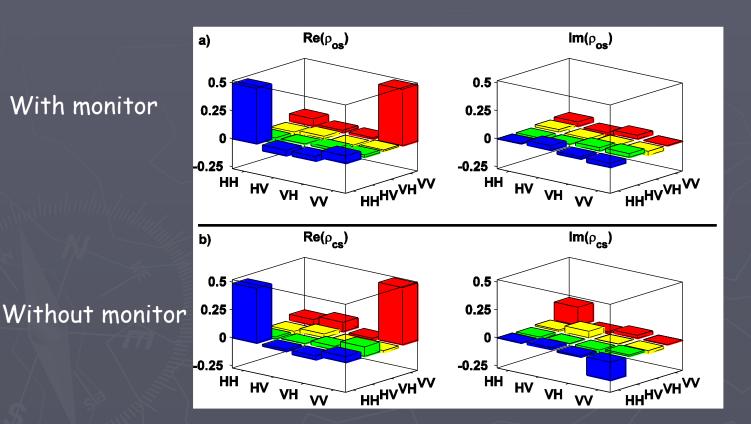
Fat is beautiful



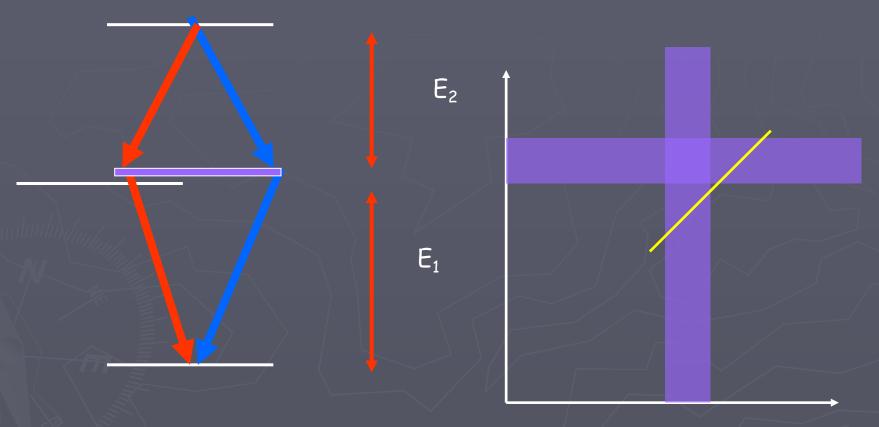


Tomography

With monitor

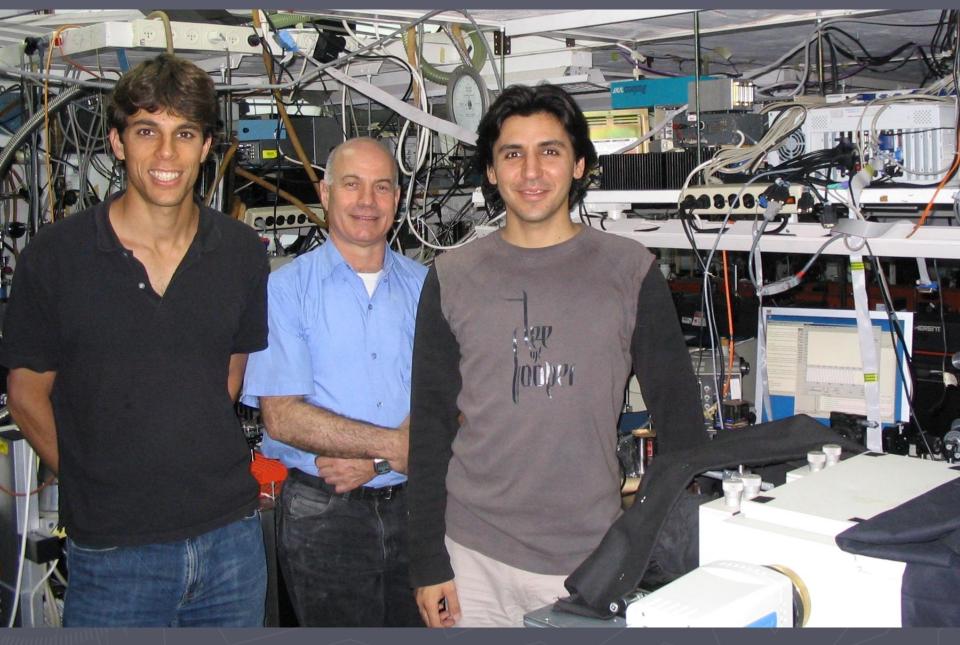


Serendipity



The levels meander together with fixed splitting

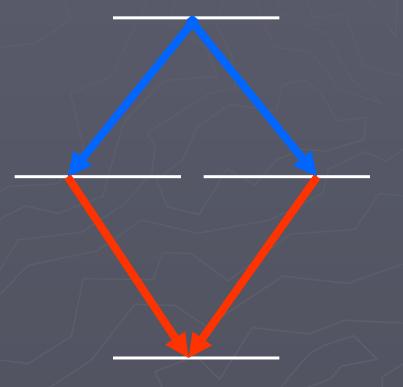
E



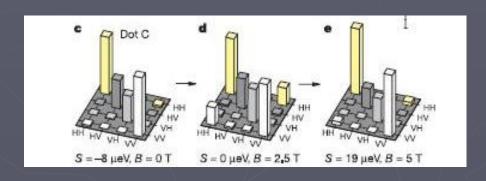
Grad students Netanel Lindner and Nika Akopian with Prof. Dudi Gershoni

Toshiba experiment

Forced degeneracy by annealing And magnetic fields



Is degeneracy sufficient?

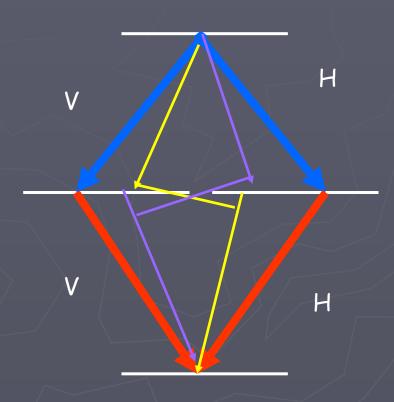


split degenerate split

Shields et. al. Nature 439 (2006)

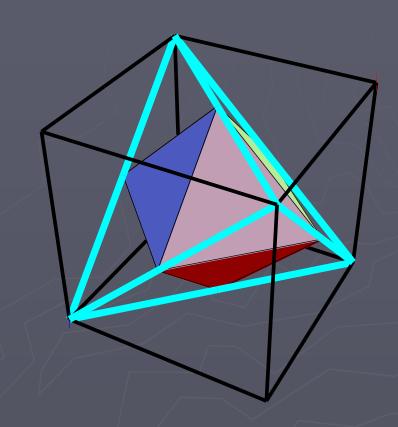
Separable by Peres test

What went wrong



2 qubits Peres is iff

Octahedron=separable
Tetrahedron=all states
Cube= witnesses
Peres=reflection



Leinaas Myrheim Uvrom, Kenneth Avron

Local Operations

$$\dim \rho = 15$$

$$ho
ightarrow (U_a \otimes U_b)
ho (U_a^{\dagger} \otimes U_b^{\dagger})$$

$$U \in SU(2)$$
 $dim(U_a \otimes U_b) = 9$

$$U \in SL(2,C) \quad dim(U_a \otimes U_b) = 12$$

Leinaas Myrheim Uvrom, Kenneth Avron