

Hofstadter models

Mea Shearim

outline

- Comparing infinite projections
- ▶ Bellissard formula
- ► Lattice gauge theories
- Hofstadter model
- Hofstadter butterfly

Orthogonal projections

Orthogonal projections:

$$P^2 = P$$
, $P = P^{\dagger}$

Pair of projections

$$P \quad Q, \quad Q_{\perp} = 1 - Q$$

Non-commuting trigonometry

Let:
$$S=P-Q, \quad C=P-Q_{\perp}$$

Then
$$S^2 + C^2 = 1$$
$$CS + SC = 0$$

Corrolaries

The spectrum of P-Q is

- 1. Contained in [-1,1]
- 2. Balanced in (-1,1)

$$-\lambda$$
 λ X 1

Theorem: Suppose S is compact. Then

$$Tr(P-Q)^{2n+1} = dimKer(P-Q-1) - dimKer(P-Q+1)$$

An integer independent of n

Allows for comparing infinite dimensions

Spectrum of P-Q

$$S = P - Q$$

$$S^2 + C^2 = 1$$

$$Spec(S) \subseteq [-1,1]$$

P-Q: Symmetry

Suppose S compact. If

$$S |\psi\rangle = \lambda |\psi\rangle, \quad |\lambda| < 1$$

From the non-commutatively of C and S

$$-CS |\psi\rangle = SC |\psi\rangle = -\lambda C |\psi\rangle$$

$$S | \phi \rangle = -\lambda | \phi \rangle, \quad | \phi \rangle = C | \psi \rangle$$

Where

$$\langle \phi | \phi \rangle = \langle \psi | C^2 | \psi \rangle = 1 - \lambda^2 \neq 0$$

Spectrum is balanced except possibly at the end points

$$\begin{array}{c|c} X & X \\ \hline -1 & \lambda & \lambda \end{array}$$

Comparing infinite dimensions

When P and Q are finite dimensional then

$$Tr(P - Q) = Tr(P) - Tr(Q)$$
$$= Tr(P - Q)^{2n+1} = \sum \lambda_j^{2n+1} \in Z$$

Example: Full Landau level

 $TrP = \infty$ # electrons in Landau level $TrQ = \infty$ # electrons punctured Landau level

Expect: # electrons in puncture = number of flux quanta

Application to QHE

Hall conductance=
$$Tr(P-Q) \in Z$$

Bellissard formula: Hall conductance is an index

- P a spectral projection in two dimensions.
- $\langle x|P|y\rangle$ decays sufficiently fast in x-y
- U AB flux tube
- Mild conditions about translation invariance
 The Hall conductance is

$$Index(PUP) = Tr(P - U^{\dagger}PU)^{3} \in Z$$

Projections and integers

Chern integer for smooth bi-periodic spectral projections

$$P(\Phi_1, \Phi_2) \to Ch(P) \in Z$$

Fredholm integer for infinite dimensional spectral Projections associated with quantum system in the plane

$$\left\{\dim P = \infty, \quad U = \frac{z}{|z|}\right\} \to \in Index(PUP)$$

Hofstadteer models: Rich family of examples

$$P(B,\mu)$$

Hofstadter models

- · 2 dimensional lattice
- Uniform magnetic field
- Finite density of electrons fixed by chemical potential

$$H(\Phi,\mu)$$

We will be interested in the projection on the ground state

$$P(\Phi,\mu)$$

Colored butterfly

Chemical potential

Phase diagram for the QHE

(Abelian) Lattice gauge theories

Wave functions: on vertices

Gauge potentials on (oriented) edges
$$v$$

$$e^{i\gamma(e)} = V(e) = V^{-1}(-e) \in U(1)$$

$$e^{i\Phi(p)} = F(p) = F^{-1}(p) = \prod_{\partial p} U(e_j)$$

$$e_3$$
 e_4
 e_4

$$\partial p = e_1 + e_2 + e_3 + e_4$$

Generalities

$$H = V_h + V_h^* + V_v + V_v^*$$

$$(V_h \Psi)(m,n) = e^{i\gamma(e_h)} \Psi(m-1,n)$$

$$(V_v\Psi)(m,n) = e^{i\gamma(e_v)}\Psi(m,n-1)$$

$$v = (m, n)$$

In Landau gauge, U is the ordinary shift

$$H = H^*, \quad ||H|| \le 4$$

It follows

$$Spec(H) \subseteq [-4, 4]$$

By gauge invariance Spec(H) is a function of

$$\{\Phi(p)\}$$

Constant flux

Landau gauge: Gauge field on vertical bonds only

$$\gamma(e_v) = m\Phi$$

$$\gamma = -\Phi \qquad \gamma = \Phi$$

$$\gamma = 0$$

$$(H\Psi)(m,n) = \Psi(m+1,n) + \Psi(m-1,n) + e^{im\Phi}\Psi(m,n+1) + e^{-im\Phi}\Psi(m,n-1)$$

Translation invariant in horizontal direction

$$UH = HU$$

Hofstadter model

$$(H\Psi)(m,n) = \Psi(m+1,n) + \Psi(m-1,n) + e^{im\Phi}\Psi(m,n+1) + e^{-im\Phi}\Psi(m,n-1)$$

Separation of variables

$$\Psi(n,m) = e^{i\theta n} \psi(m), \quad \theta \in [-\pi,\pi)$$

$$(H_{\theta}\psi)(m) = \psi(m+1) + \psi(m-1) + e^{i(m\Phi+\theta)}\psi(m) + e^{-i(m\Phi+\theta)}\psi(m)$$

Wannier-Hofstadter model

$$(H\psi)(m) = \psi(m+1) + \psi(m-1) + 2\cos(m\Phi + \theta)\psi(m)$$

A rich spectral problem in one dimension

Spectrum

Hofstadter model: Sensitivity

$$(H\psi)(m) = \psi(m+1) + \psi(m-1) + 2\cos(m\Phi + \theta)\psi(m)$$

Depends on two angles sensitively

$$H(\Phi, \theta), \quad \Phi, \theta \in [\pi, \pi)$$

A rich spectral problem in one dimension

$$H(\Phi, \theta) = UH(\Phi, \theta + \Phi)U^*$$

Independent of theta For irrational fluxes

Rational flux

$$(H\psi)(m) = \psi(m+1) + \psi(m-1) + 2\cos(m\Phi + \theta)\psi(m)$$

Depends on two angles sensitively

$$\Phi = \frac{2\pi p}{q}, \quad HT = TH, \quad (T\psi)(m) = \psi(m-q)$$

Conservation of (quasi) momentum

$$\psi(m-q) = e^{-i\phi}\psi(m), \quad \phi \in [-\pi, \pi)$$

Reduction to pXp matrices

pXp hermitian matrix on the two torus:

$$H(\theta,\phi) = \begin{pmatrix} 2\cos(\theta) & 1 & 0 & 0 & e^{i\phi} \\ 1 & 2\cos(\Phi+\theta) & 1 & 0 & 0 \\ 0 & 1 & 2\cos(2\Phi+\theta) & 1 & 0 \\ & \cdots & & \cdots & & \\ e^{-i\phi} & 0 & 0 & 0 & 2\cos(-\Phi+\theta) \end{pmatrix}$$

$$\Phi = \frac{2\pi p}{q}$$

Spect(H)= p bands

Each band has a Chern integer

Credits

```
Atiyah (Index)
Bellissard (QHE NC geometry)
Berry (Adiabatic curvature, Berry's phase, levitron)
Herbst-Simon, Zak (magnetic translations)
Kato (Adiabatic theorem)
Last, Gat, Panati, Teufel (Hofstadter)
Seiler (Pauli, Adiabatic theorem, ghe)
Simon (Hofstadter, Adiabatic holonomy, Homotopy)
Seiler-Simon (Relative index, pairs of projections)
Segert-Sadun (Homotopy of simple matrices)
Osadchy (Colored butterfly)
Thouless (QHE, TKNN integers, Hofstadter)
```