Geometry of Quantum Transport

Yosi Avron, Martin Fraas, Gian Michele Graf, Oded Kenneth

November 28, 2010

Outline

- Motivation: QHE
 - Control
 - Reponse
 - Geometry
- Transport is geometric
- Open systems
 - Lindbladians
 - Spectral properties
 - Adiabatic evolution
 - Splitting principle
- Mähler
 - Complex structure
 - Qubit and QHE

Motivation: Quantum Hall effect

- Micro ill characterized; coupled to environment
- Quantized Hall resistivity $\frac{h}{e^2}\frac{1}{\mathbb{Z}}$
- Accuracy:12 significant digits
- Chern number of (spectral) bundle P
- Chern numbers in open q-system?

Controls in QHE

- Controls: Magnetic flux tubes $\mathcal{M} = \mathbb{T}^2$
- Aharonov-Bohm periodicity: $H(\phi) \equiv H(\phi + 2\pi)$

Topology of QHE in physical space

- Space of controls: $\phi \in \mathcal{M}$ two dimensional
- Controlled Hamiltonian: $H(\phi)$
- M has no a-priori metric
- \mathcal{M} has a-priori topology, e.g. $\mathbb{T}^2, \mathbb{S}^2, \mathbb{R}^2$

 \mathcal{M} : Control spaces

Response and transport coefficients

- Controls = ϕ_{μ} Fluxes in the QHE
- Driving= control rates = $\dot{\phi}_{\mu}$ emf
- Response: $\frac{-\partial H}{\partial \phi_{\nu}}$ Loop currents
- Transport coefficients: $\operatorname{Tr}(\rho \partial_{\mu} H) = \cdots + f_{\mu\nu}(\phi) \dot{\phi}_{\nu} + \cdots$
- Dissipative and reactive response $f = f^{S} + f^{A}$
- $f^A \neq 0$: symplectic structure
- $f^S \ge 0$: metric

Symplectic structure

Geometry in Hilbert space

- Suppose $P(\phi)$ smooth family of projections
- Example: spin 1/2 $P(\theta, \phi) = \frac{1}{2} \begin{pmatrix} 1 \cos \theta & e^{i\phi} \sin \theta \\ e^{-i\phi} \sin \theta & 1 + \cos \theta \end{pmatrix}$, $\mathcal{M} = \mathbb{S}^2$
- Fubini-Study metric $g_{\mu\nu}(\phi) = \operatorname{Tr} P_{\perp} \{ \partial_{\nu} P, \ \partial_{\mu} P \}$
- Symplectic structure $\omega_{\mu\nu}(\phi) = i \operatorname{Tr} P_{\perp} [\partial_{\nu} P, \partial_{\mu} P]$
- Endows control space with geometry

Metric and symplectic structures

Main result

- Open systems, governed by dephasing Lindbladians
- Dephasing rate γ
- Transport coefficients: $f^S = \frac{\gamma}{1+\gamma^2} g$, $f^A = \frac{1}{1+\gamma^2} \omega$
- Good news: Transport is geometric
- Bad news: Hall conductance ≠ Chern number
- Kähler Control space

$$(f^{-1})^S = \gamma g^{-1}, \quad (f^{-1})^A = \omega^{-1}$$

Good news: Hall resistence = Chern number

Open systems

- Hamiltonians: Generate unitary evolutions
- ullet Lindbladians: Generate (completely) positive maps, $ho \geq 0$
- ullet $ho
 ightarrow \sum_j A_j
 ho A_j^*, \quad \sum A_j^* A_j = 1; \quad {\sf Evolves} \
 ho, \ {\sf not} \ |\psi
 angle$
- Contracting
- Interpretation: Measurement, Coupling to a Markovian bath;
 Stochastic unitary evoltion

Contraction of Bloch sphere

Lindbladians

- Unitary $\mathcal{L}(\rho) = -i[H, \rho]$
- Dephasing Lindbladiand:

$$\mathcal{L}(\rho) = -i[H, \rho] + [f(H), [\rho, f(H)]]$$

- P Spectral projections of H stationary, $\mathcal{L}(P) = 0$; Energy conserved
- Interpretation: Measurement of H; Stochastic evolution; Shallow pockets bath

Unitary vs dephasing orbits

Spectral properties

- $\mathcal{L}(|j\rangle\langle k|) = \lambda_{ik} |e_i\rangle\langle e_k|$ $\lambda_{ik} = i(e_i - e_k) - (f(e_i) - f(e_k))^2$
- Since \mathcal{L} is contracting the spectrum is on the half plane
- Dephasing Lindblad 0 is multiply degenerate
- When the spectrum lies on rays one gets the simple formulas

The spectrum of Dephasing Lindblad

Adiabatic evolutions

- Controls $\phi(s)$ and $H(\phi)$ change adiabatically,
- H determines dephasing Lindbladian
- Initial data: $P(\phi)$, instantaneous stationary state
- Adiabatic evolutions $\epsilon \dot{\rho} = \mathcal{L}(\rho), \quad \dot{\phi} = O(\epsilon)$

Adiabatic splitting principle

- Distinct evolutions in $Ker \mathcal{L}$ and $Range \mathcal{L}$
- \bullet $P_i \in Ker \mathcal{L}$
- Basic identity $P^2 = P \Longrightarrow P\dot{P}P = 0$
- Ker £ evolves like a rigid body
- Motion in Ker L is tunneling
- $\rho \approx P$ to lowest order in ϵ : Frozen in kernel

Motion of Kernel

Linear response

- Linear response–first order in adiabaticity
- Motion in $Range \mathcal{L}$ to leading order $\mathcal{L}^{-1}(\dot{P})$
- Suppose (4 simplicity) $H(\phi) = \sum e_j P_j(\phi) \rightarrow \partial_{\phi} H = \sum e_j \partial_{\phi} P_j$
- Since $Tr(P_j \partial_{\phi} P_k) = 0$
- $tr(\rho \partial H) = \sum_{j} e_{j} tr(\mathcal{L}^{-1}(\dot{P}) \partial_{\phi} P_{j}), \quad P = P_{0}$

Orbits and approximants

Kähler structures

- ullet The symplectic structure ω defines an area form
- The metric g defines length
- Compatible: Coinciding areas $\det g = \det \omega$
- ullet Basic example: $m{g}=\left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
 ight) \quad \omega=\left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
 ight)$
- Transport matrix $f = \frac{1}{1+\gamma^2} \begin{pmatrix} \gamma & 1 \\ -1 & \gamma \end{pmatrix}$
- The inverse transport matrix $f^{-1} = \begin{pmatrix} \gamma & 1 \\ -1 & \gamma \end{pmatrix}$
- Anti-Symmetric part immune to dephasing

Kähler is complex structure

- $P_{\perp}(\partial_1 P + \tau \partial_2 P) = 0$, $Im \ \tau > 0 \Longrightarrow$ Kähler
- Harmonic oscillator, $\mathcal{M} = \mathbb{R}^2$

$$H(\phi) = \frac{1}{2}(p - \phi_p)^2 + \frac{1}{2}(x - \phi_x)^2$$

$$P(\phi) = U(\phi)PU^*(\phi), \quad U(\phi) = e^{i(\phi_p \times + \phi_x p)}$$

- Coherent states $\iff P_{\perp}(ip + x)P = 0 \iff K \ddot{a}hler$
- Ground state bundle is Kähler

Qubit and QHE

• Spin $1/2 \mathcal{M} = \mathbb{S}^2$

$$P(\theta, \phi) = U(\theta, \phi)PU^*(\theta, \phi), \quad U(\theta, \phi) = e^{i\theta(\cos\phi\sigma_x + \sin\phi\sigma_y)}$$

By symmetry, enough to check at north pole

$$2P = 1 + \sigma_z$$
, $2P_{\perp} = 1 - \sigma_z$

$$(1 - \sigma_z)(\sigma_x + i\sigma_y)(1 + \sigma_z) = 2(\sigma_x + i\sigma_y)(1 + \sigma_z) = 0$$

QHE

Summary

- Transport in open quantum systems geometric
- Dephasing dynamics induces geometry on control space

- Kähler structure ⇒ immunity of Chern numbers