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Motivation: QHE

Motivation: Quantum Hall effect

@ Micro ill characterized; coupled to environment
@ Quantized Hall resistivity ﬂ»l

@ Accuracy:12 significant digits %{
.

Chern number of (spectral) bundle P

Uy~ Py

Up=po

@ Chern numbers in open g-system?
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Controls in QHE

o Controls: Magnetic flux tubes M = T
@ Aharonov-Bohm periodicity: (o) = H(o + 27)

Topology of QHE in physical space
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Motivation: QHE Control

Controlled Hamiltonians

@ Space of controls: ¢ € M two dimensional
o Controlled Hamiltonian: H(o)
@ M has no a-priori metric

@ 1 has a-priori topology, e.g. 17, 57 ?

M: Control spaces
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Response and transport coefficients

Controls = ¢, Fluxes in the QHE

Driving= control rates — ¢, emf
—9H

0dy

Response:

Loop currents

Transport coefficients: Tr(pd, H) = -+ f,,,/((u)(},, 4o
Dissipative and reactive response  — £ + f*

fA £ 0: symplectic structure

£5 > 0: metric ¢

e 6 o6 o

Symplectic structure
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Geometry in Hilbert space

@ Suppose P(¢) smooth family of projections

o Example: spin 1/2 P(0,0) =} < i;“cs?zz le+ ilgsz > , M =§2

o Fubini-Study metric g, () = Tr P {0,P, 0,P}
e Symplectic structure w,,,,(¢) = i Tr P [(‘),,Pf y P}

@ Endows control space with geometry

Metric and symplectic structures
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Main result

@ Open systems, governed by dephasing Lindbladians
@ Dephasing rate 4

Transport coefficients: 77 — w8 fA = 17% w

@ Good news: Transport is geometric

Bad news: Hall conductance # Chern number

@ Kahler Control space

(FY =vg, (FY =w

Good news: Hall resistence = Chern number
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Open systems

@ Hamiltonians: Generate unitary evolutions

Lindbladians: Generate (completely) positive maps, p > 0

p — Z:j Aj/)Af. > A}\Aj = 1; Evolves p, not |)

Contracting

(]

Interpretation: Measurement, Coupling to a Markovian bath;
Stochastic unitary evoltion

)

Contraction of Bloch sphere
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Lindbladians

e Unitary L(p) = —i[H, p]
@ Dephasing Lindbladiand:
L(p) = —ilH, p] + [f(H), [p, f(H)]]
@ P Spectral projections of / stationary, £(F) = 0; Energy conserved
o Interpretation: Measurement of /; Stochastic evolution; Shallow

pockets bath ‘

Unitary vs dephasing orbits
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Spectral properties

o L(|j) (k[) = A lej) (ex]

Ak = i(ej — e) = (F(e) = f(ex))’
@ Since L is contracting the spectrum is on the half plane
@ Dephasing Lindblad 0 is multiply degenerate

@ When the spectrum lies on rays one gets the simple formulas

The spectrum of Dephasing Lindblad
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Adiabatic evolutions

Controls ¢(s) and H(¢) change adiabatically,

H determines dephasing Lindbladian

Initial data: P(¢), instantaneous stationary state
Adiabatic evolutions ep = L(p), ¢ = O(e)

¢

time

Adiabatic switching of controls
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Adiabatic splitting principle

Distinct evolutions in Ker £ and Range L
P; € Ker L

Basic identity P2 = P —> PPP =0

Ker L evolves like a rigid body

Motion in Ker L is tunneling

p ~ P to lowest order in ¢: Frozen in kernel

Motion of Kernel
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Linear response

@ Linear response—first order in adiabaticity
@ Motion in Range £ to leading order £ (P)

@ Suppose (4 simplicity) H(¢) = > ejPj(¢) = OpH =

@ Since Tr(Pj0yPyx) =0
o tr(poH) =Y, gitr(L7X(P)0,P}), P =Py

Orbits and approximants
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Kahler structures

@ The symplectic structure w defines an area form
@ The metric g defines length
@ Compatible: Coinciding areas det g = detw
@ Basic example: g = < ! O> w = < ool )
0 1 -1 0
@ Transport matrix f=—1 < 71 >
15 -1 1
. . 1 v 1
@ The inverse transport matrix f~ = < 1 A >
o Anti-Symmetric part immune to dephasing
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Kahler is complex structure

P (01P 4 170,P) = 0,Im 7 > 0 = Kahler
e Harmonic oscillator, M = R?
H(6) = L(p— 6p)% + Bx — 62

P(¢) = U(¢)PU*(¢), U(o)= g/ (Ppx+oxp)

Coherent states<— P (ip + x)P = 0 <—Kahler
Ground state bundle is Kahler
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Quiit: 2] @IHIE
Qubit and QHE

@ Spin 1/2 M = §?
P(0,$) = U(0, 9)PU*(0,¢), U(B,¢) = e'¥lcoséoxtsinéoy)
@ By symmetry, enough to check at north pole
2P=14o0,, 2P, =1-o0,
(1 —o0z)(ox +ioy)(1+0,) =2(0x +ioy)(1+0,)=0

o QHE
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Summary

Transport in open quantum systems geometric
Dephasing dynamics induces geometry on control space
Dissipation oc Fubini-Study metric

Non-dissipative transport o< adiabatic curvature

Kahler structure = immunity of Chern numbers
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