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Motivation: QHE

Motivation: Quantum Hall effect

Micro ill characterized; coupled to environment

Quantized Hall resistivity h
e2

1
Z

Accuracy:12 significant digits

Chern number of (spectral) bundle P

Chern numbers in open q-system?

2 K. von Klitzing

Figure 1: Typical silicon MOSFET device used for measurements of the xx- and
xy-components of the resistivity tensor. For a fixed source-drain current between
the contacts S and D, the potential drops between the probes P − P and H − H
are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage
increases the carrier density below the gate.

sistor as a function of the gate voltage. Since the electron concentration increases
linearly with increasing gate voltage, the electrical resistance becomes monotoni-
cally smaller. Also the Hall voltage (if a constant magnetic field of e.g. 19.8 Tesla
is applied) decreases with increasing gate voltage, since the Hall voltage is basi-
cally inversely proportional to the electron concentration. The black curve shows
the Hall resistance, which is the ratio of the Hall voltage divided by the current
through the sample. Nice plateaus in the Hall resistance (identical with the trans-
verse resistivity ρxy) are observed at gate voltages, where the electrical resistance
(which is proportional to the longitudinal resistivity ρxx) becomes zero. These ze-
ros are expected for a vanishing density of state of (mobile) electrons at the Fermi
energy. The finite gate voltage regions where the resistivities ρxx and ρxy remain
unchanged indicate, that the gate voltage induced electrons in these regions do not
contribute to the electronic transport- they are localized. The role of localized elec-
trons in Hall effect measurements was not clear. The majority of experimentalists
believed, that the Hall effect measures only delocalized electrons. This assump-
tion was partly supported by theory [3] and formed the basis of the analysis of
QHE data published already in 1977 [4]. These experimental data, available to

10 K. von Klitzing

Figure 10: Hall resistance and longitudinal resistivity data as a function of the
magnetic field for a GaAs/AlGaAs heterostructures at 1.5 K .

3 Physics of Quantum Hall Effect

The textbook explanation of the QHE is based on the classical Hall effect dis-
covered 125 years ago [27]. A magnetic field perpendicular to the current I in a
metallic sample generates a Hall voltage UH perpendicular to both, the magnetic
field and the current direction:

UH = (B · I)/(n · e · d)

with the three-dimensional carrier density n and the thickness d of the sample.
For a two-dimensional electron gas the product of n · d can be combined as a
two-dimensional carrier density ns. This leads to a Hall resistance

RH = UH/I = B/(ns · e)

Such a two-dimensional electron gas can be formed at the semiconductor/insulator
interface, for example at the Si−SiO2 interface of a MOSFET (Metal Oxid Semi-
conductor Field Effect Transistor) or at the interface of a GaAs−AlGaAs HEMT
(High Electron Mobility Transistor) as shown in Fig. 9. In these systems the elec-
trons are confined within a very thin layer of few nanometers so that similar to
the problem of “particle in a box” only quantized energies Ei(i = 1, 2, 3 · · ·) for
the electron motion perpendicular to the interface exist (electric subbands).

A strong magnetic field perpendicular to the two-dimensional layer leads to
Landau quantization and therefore to a discrete energy spectrum:

E0,N = E0 + (N + 1/2)h̄ωc (N = 0, 1, 2, ...)

The cyclotron energy h̄ωc = h̄eB/mc is proportional to the magnetic field B and
inversely proportional to the cyclotron mass mc and equal to 1.16 meV at 10 Tesla
for a free electron mass m0.
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Motivation: QHE

Controls in QHE

Controls: Magnetic flux tubes M = T2

Aharonov-Bohm periodicity: H(φ) ≡ H(φ+ 2π)

Φ1

Φ2

Topology of QHE in physical space

Yosi Avron, Martin Fraas, Gian Michele Graf, Oded Kenneth ()Geometry of Quantum Transport November 28, 2010 4 / 18



Motivation: QHE Control

Controlled Hamiltonians

Space of controls: φ ∈M two dimensional

Controlled Hamiltonian: H(φ)

M has no a-priori metric

M has a-priori topology, e.g. T2, S2,R2

M: Control spaces
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Motivation: QHE Reponse

Response and transport coefficients

Controls = φµ Fluxes in the QHE

Driving= control rates = φ̇µ emf

Response: −∂H∂φν
Loop currents

Transport coefficients: Tr(ρ∂µH) = · · ·+ fµν(φ)φ̇ν + . . .

Dissipative and reactive response f = f S + f A

f A 6= 0: symplectic structure

f S ≥ 0: metric

Φ1

Φ2

Symplectic structure
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Motivation: QHE Geometry

Geometry in Hilbert space

Suppose P(φ) smooth family of projections

Example: spin 1/2 P(θ, φ) = 1
2

(
1− cos θ e iφ sin θ
e−iφ sin θ 1 + cos θ

)
, M = S2

Fubini-Study metric gµν(φ) = Tr P⊥
{
∂νP, ∂µP

}
Symplectic structure ωµν(φ) = i Tr P⊥

[
∂νP, ∂µP

]
Endows control space with geometry

Metric and symplectic structures
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Transport is geometric

Main result

Open systems, governed by dephasing Lindbladians

Dephasing rate γ

Transport coefficients: f S = γ
1+γ2

g , f A = 1
1+γ2

ω

Good news: Transport is geometric

Bad news: Hall conductance 6= Chern number

Kähler Control space

(f −1)S = γ g−1, (f −1)A = ω−1

Good news: Hall resistence = Chern number
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Open systems

Open systems

Hamiltonians: Generate unitary evolutions

Lindbladians: Generate (completely) positive maps, ρ ≥ 0

ρ→∑
j AjρA

∗
j ,

∑
A∗j Aj = 1; Evolves ρ, not |ψ〉

Contracting

Interpretation: Measurement, Coupling to a Markovian bath;
Stochastic unitary evoltion

Contraction of Bloch sphere
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Open systems Lindbladians

Lindbladians

Unitary L(ρ) = −i [H, ρ]

Dephasing Lindbladiand:

L(ρ) = −i [H, ρ] + [f (H), [ρ, f (H)]]

P Spectral projections of H stationary, L(P) = 0; Energy conserved

Interpretation: Measurement of H; Stochastic evolution; Shallow
pockets bath

Unitary vs dephasing orbits
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Open systems Spectral properties

Spectral properties

L(|j〉 〈k |) = λjk |ej〉 〈ek |
λjk = i(ej − ek)−

(
f (ej)− f (ek)

)2
Since L is contracting the spectrum is on the half plane

Dephasing Lindblad 0 is multiply degenerate

When the spectrum lies on rays one gets the simple formulas

The spectrum of Dephasing Lindblad
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Open systems Adiabatic evolution

Adiabatic evolutions

Controls φ(s) and H(φ) change adiabatically,

H determines dephasing Lindbladian

Initial data: P(φ), instantaneous stationary state

Adiabatic evolutions ερ̇ = L(ρ), φ̇ = O(ε)

time

Φ

Adiabatic switching of controls
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Open systems Splitting principle

Adiabatic splitting principle

Distinct evolutions in Ker L and Range L
Pj ∈ Ker L
Basic identity P2 = P =⇒ PṖP = 0

Ker L evolves like a rigid body

Motion in Ker L is tunneling

ρ ≈ P to lowest order in ε: Frozen in kernel

Kernel

Motion of Kernel
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Open systems Splitting principle

Linear response

Linear response–first order in adiabaticity

Motion in Range L to leading order L−1(Ṗ)

Suppose (4 simplicity) H(φ) =
∑

ejPj(φ)→ ∂φH =
∑

ej∂φPj

Since Tr(Pj∂φPk) = 0

tr(ρ∂H) =
∑

j ej tr(L−1(Ṗ)∂φPj), P = P0

,
Orbits and approximants
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Kähler

Kähler structures

The symplectic structure ω defines an area form
The metric g defines length
Compatible: Coinciding areas det g = detω

Basic example: g =

(
1 0
0 1

)
ω =

(
0 1
−1 0

)
Transport matrix f = 1

1+γ2

(
γ 1
−1 γ

)
The inverse transport matrix f −1 =

(
γ 1
−1 γ

)
Anti-Symmetric part immune to dephasing
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Kähler Complex structure

Kähler is complex structure

P⊥(∂1P + τ∂2P) = 0, Im τ > 0 =⇒ Kähler

Harmonic oscillator, M = R2

H(φ) = 1
2(p − φp)2 + 1

2(x − φx)2

P(φ) = U(φ)PU∗(φ), U(φ) = e i(φpx+φxp)

Coherent states⇐⇒ P⊥(ip + x)P = 0⇐⇒Kähler

Ground state bundle is Kähler

Τ

x

Φ

p
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Kähler Qubit and QHE

Qubit and QHE

Spin 1/2 M = S2

P(θ, φ) = U(θ, φ)PU∗(θ, φ), U(θ, φ) = e iθ(cosφσx+sinφσy )

By symmetry, enough to check at north pole

2P = 1 + σz , 2P⊥ = 1− σz

(1− σz)(σx + iσy )(1 + σz) = 2(σx + iσy )(1 + σz) = 0

QHE

B
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Kähler Qubit and QHE

Summary

Transport in open quantum systems geometric

Dephasing dynamics induces geometry on control space

Dissipation ∝ Fubini-Study metric

Non-dissipative transport ∝ adiabatic curvature

Kähler structure =⇒ immunity of Chern numbers
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