Entanglement on demand: Time reordering

Bisker, Gershoni, Lindner, Meirom, Warburton

Bell \$tates

$$egin{array}{c} \mathbf{e} \ |0
angle_A\otimes |1
angle_B & \pm |1
angle_A\otimes |0
angle_B \ |0
angle_A\otimes |0
angle_B & \pm |1
angle_A\otimes |1
angle_B \ |0
angle_A\otimes |0
angle_B & \pm |1
angle_A\otimes |1
angle_B \ |0
angle_B & \pm |1
angle_A\otimes |1
angle_B \ |0
angle_B & \pm |1
angle_A\otimes |1
angle_B \ |0
angle_B & \pm |1
angle_A\otimes |1
angle_B \ |0
angle_B & \pm |1
angle_A\otimes |1
angle_B \ |0
angle_B & \pm |1
angle_A\otimes |1
angle_B \ |0
angle_B & \pm |1
angle_A\otimes |1
angle_B \ |0
angle_B & \pm |1
angle_B \ |0
angle_B & \pm |1
angle_B & \pm |1
angle_B \ |0
angle_B & \pm |1
angle_B & \pm |1
angle_B \ |0
angle_B & \pm |1
angle_B & \pm |1
angle_B \ |0
angle_B & \pm |1
angle_B & \pm |1
angle_B \ |0
angle_B & \pm |1
angle_B & \pm |1
angle_B \ |0
angle_B & \pm |1
angle_B & \pm |1$$

Maximally Antangled
Good for Quantum information

a n d { \

Qubits

Flying quabits: Photons Storage qubits: Nuclear spin Working qubits: Electronic states

Photons: encode qubit in polarization

$$|0\rangle = |H\rangle$$
, $|1\rangle = |V\rangle$

Down conversion

Nonlinear optics:

$$a_{2k,D}^{\dagger} \left| 0 \right\rangle \longrightarrow a_{k,H}^{\dagger} a_{k,V}^{\dagger} \left| 0 \right\rangle$$

$$|V\rangle_A \otimes |H\rangle_B + |H\rangle_A \otimes |V\rangle_B$$

Which path ambiguity

On demand

Quantum dots

$$|e\rangle = |eh\rangle, \quad |E\rangle = \left|(eh)^2\rangle$$
 $photon\ zap \rightarrow \left|(eh)^2\rangle\right| \rightarrow |photon\ pair\rangle$

Can one entangle the pair?

Which path and entanglement

Entanglement: A 2 photon analog of interference

Color monitors the cascade

Monitoring: Kills ambiguity and entanglement

What is entanglement?

Classical vs quantum probabilities

independence

$$P_{ab}(j,k) = P_a(j)P_b(k)$$

Correlations due to common preparation

$$P_{ab}(j,k) = \sum_{\alpha} p_{\alpha} P_a^{\alpha}(j) P_b^{\alpha}(k)$$

Classical probabilities

Any probability distribution is a weighted sum of independent

$$P(j,k) = \sum_{\alpha\beta} P(\alpha,\beta) \, \delta_{j,\alpha} \delta_{k,\beta}, \quad P(\alpha,\beta) > 0$$

Independent (sure) events

Common preparation

Quantum probabilities

Quantum independence

$$\rho_A \otimes \rho_B \longrightarrow Prob(j,k) = Tr_A(\rho_A P_j) Tr_B(\rho_B P_k)$$

Correlations due to common preparation

$$ho = \sum_{i} p_i \,
ho_A^i \otimes
ho_B^i, \ p_i > 0$$

Separable states

States that are not separable are entangled

Entangled states

Separable states

$$ho = \sum_i p_i \,
ho_A^i \otimes
ho_B^i, \ p_i > 0$$

Independent up to common preparation

There are states, $\rho > 0$, that are not separable!

Definition: States that are not separable are entangled

Separable and entangled states

Octahedron=separable Tetrahedron=all states

Horodecki's, Leinaas Myrheim Uvrom, Kenneth Avron, Bisker

Entanglement (Peres) test

$$\rho = \begin{pmatrix} A & B \\ D & C \end{pmatrix}, \quad \rho^P = \begin{pmatrix} A & D \\ B & C \end{pmatrix}$$

If transform has negative eigenvalue state is entangled

Example: Bell state

$$\rho = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \rho^P = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Negative eigenvalue is a measure of entanglement

How monitoring kills entanglement

 $|\langle f|g \rangle|$ is a measure of entanglment

Monitoring: Energy scales

Entanglement needs $\Gamma > \Delta$

Why making Δ small is hard

Forcing degeneracy: Stevenson et. al., Hafenbrak et. al.

Life in protected subspace

 Δ is due to spin orbit interaction - Relativistic effect

Ambiguity up to order

Space time diagrams: Lindenr

J. Finley

Order Monitors the path

Reordering

Reimer et. al.

Fixing the order

Forcing ambiguity

How much entanglement?
Can reordering be done on demand, i.e. unitary?

Photon field from cascade

$$|E,e\rangle = \sum f(k_1, k_2; E, e) a^{\dagger}(k_1) a^{\dagger}(k_2) |0\rangle$$

Photon field for 2 paths

$$|E,e_h\rangle \to h(k_1,k_2), \quad |E,e_v\rangle \to v(k_1,k_2)$$

How much entanglement?

Entanglment small
$$\langle h|v\rangle \approx 0$$

By phase cancellation not by lack of overlap

$$W=e^{i(\gamma_h-\gamma_v)}, \quad \gamma_{h,v}(k_1,k_2)$$
 manifestly unitary

$$h = |h|e^{i\gamma_h}, \quad v = |v|e^{i\gamma_v}$$

$$\langle E, e_h | W | E, e_v \rangle = \langle |h| ||v| \rangle$$
 Not small

How much overlap?

Setup

Concluding remarks

- ► Test: Make the experiment
- Dephasing
- Fight Wigner von Neuman

Special thanks to Jonathan Finely