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Time reordering
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Qubits

Flying quabits: Photons
Storage qubits: Nuclear spin
Working qubits: Electronic states

Photons: encode qubit in polarization



Down conversion

Nonlinear optics: asy,.p 10) — aj, gaj, v |0)
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Which path ambiguity



On demand
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Quantum dots

E) = |(eh)?)
photon zap — ‘(eh)2> — |photon pair)

Can one entangle the pair?



Which path and entanglement

Entanglement: A 2 photon analog of interference



Color monitors the cascade
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Monitoring: Kills ambiguity and entanglement



What is entanglement?

Classical vs quantum probabilities

independence Pa,b(ja k) = Pa(j)Pb(k)

——
= %‘5
ey
=k

Correlations due to common preparation

Pup(5, k) = > pa Py (5) Py' (k)



Classical probabilities

Any probability distribution is a weighted sum of independent

P(3,k) = Z P(a, 3) 53'415%:,,5")’: P(a,3) >0
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Independent (sure) events Common preparation
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Quantum probabilities

Quantum independence

pa®pp — Prob(j,k) =Tra(paP;)Tre(ppPr)
Correlations due fo common preparation

p=> Dipy®pg, pi>0

1

Separable states

States that are not separable are entangled



Entangled states

Separable states

p=> Dipy®pg, pi>0
i

Independent up to common preparation

There are states, p > 0, that are not separablel

Definition:States that are not separable are entangled



Separable and entangled states

Octahedron=separable
Tetrahedron=all states

Horodecki's Leinaas Myrheim Uvrom, Kenneth Avron, Bisker



Entanglement (Peres) test
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If transform has negative eigenvalue state is entangled

Example: Bell state
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Negative eigenvalue is a measure of entanglement



How monitoring Kills entanglement
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Monitoring: Energy scales

E) t [ = Radiative width ~ 1ueV

™ e0) | A = detuning ~ 30ueV
€h

wn~ leV

empty dot = |0)

Entanglement needs I" > A



Why making A small is hard

leV

Principle of level repulsion

A A

A ~ 30ueV
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Field

Spin-Orbit: Protected subspace

Forcing degeneracy: Stevenson et. al. , Hafenbrak eft. al.



Life in protected subspace

A is due to spin orbit interaction - Relativistic effect

S4B s

In principle easy In principle hard




Ambiguity up to order

Space time diagrams: Lindenr

Detector Detector

J. Finley Order Monitors the path



Reordering Reimer et. al.

1 ' l + J
vV H V H
Detector Detector Detector Detector
Fixing the order Forcing ambiguity

How much entanglement?
Can reordering be done on demand,i.e. unitary?



Photon field from cascade
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Photon field for 2 paths

‘E.} eh> — h(klj kg), ‘E, 6-?_;> — U(kl; kQ)
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How much entanglement?

Entanglment small (hlv) = 0O

By phase cancellation not by lack of overlap

W =e0n=) g (ki k2)  manifestly unitary

h = |h|eh, v = |v|eT

(E,en| W |E,ey) = (|h|||v]) Not small



How much overlap ?

Little overlap Large overlap
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Concluding remarks

» Test: Make the experiment
» Dephasing
» Fight Wigner von Neuman

Special thanks to Jonathan Finely



