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The adiabatic quantum transport in multiply connected systems is examined. The systems considered
have several holes, usually three or more, threaded by independent flux tubes, the transport properties of
which are described by matrix-valued functions of the fluxes. The main theme is the differential-geometric
interpretation of Kubo’s formulas as curvatures. Because of this interpretation, and because flux space
can be identified with the multitorus, the adiabatic conductances have topological sighificance, related to
the first Chern character. In particular, they have quantized averages. The authors describe various
classes of quantum Hamiltonians that describe multiply connected systems and investigate their basic
properties. They concentrate on models that reduce to the study of finite-dimensional matrices. In partic-
ular, the reduction of the “free-electron” Schrddinger operator, on a network of thin wires, to a matrix
problem is described in detail. The authors define “loop currents” and investigate their properties and
their dependence on the choice of flux tubes. They introduce a method of topological classification of net-
works according to their transport. This leads to the analysis of level crossings and to the association of
“charges” with crossing points. Networks made with three equilateral triangles are investigated and
classified, both numerically and analytically. Many of these networks turn out to have nontrivial topologi-
cal transport properties for both the free-electron and the tight-binding models. The authors conclude
with some open problems and questions.
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I. INTRODUCTION

In this work we study adiabatic transport in multiply
connected systems. A typical system might be a meso-
scopic piece of normal metal with several holes, shown
schematically in Fig. 1(a), or the network shown in Fig.
1(b), which is made of thin, mesoscopic, normal-metal
wires. Yet another setting is the array of Josephson junc-
tions. Figure 1(b) is a degenerate version of Fig. 1(a) hav-
ing the same topology.! In either case, the holes are
threaded by flux tubes, carrying independent fluxes,
which serve as drives and controls. The electrons (Coop-
er pairs) do not feel the magnetic fields associated with
the fluxes; they feel only the vector potentials. This gen-
eralizes the setting in the original Bohm-Aharonov effect
(Aharonov and Bohm, 1959, 1961) in two ways. First, we
allow several, possibly many, holes. Second, we allow for
time-dependent fluxes. In the Bohm-Aharonov effect
there is one hole and the flux is fixed. The insistence on
several holes turns out to be important in that the theory
trivializes in the one-hole and two-hole situations. So,

IThe two figures are of the same homotopy type.
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FIG. 1. A multiply connected domain Q in R% (a) with three-
holes threaded by three flux tubes &, ;; (b) a degenerate ver-
sion of (a) made of thin connecting wires.

for the most part, we shall consider systems with at least
three holes. Time-dependent fluxes are used to drive the
system by generating electromotive forces (emf’s) around
the respective holes.

By a general result (Byers and Yang, 1961), observ-
ables, in the time-independent case, depend on the flux
periodically with period of one flux quantum. In emu
and atomic units the flux quantum unit is 27. Due to
this periodicity, it turns out that for certain purposes the
flux space may be identified with the multidimensional
torus. This may be viewed as the basic reason for many
of the interesting features of the Bohm-Aharonov effect
and its multiflux generalizations. It turns out that, for
certain purposes, flux space can also be viewed as a mul-
titorus in time-dependent situations where the time
dependence is adiabatic. This, more than the topology of
the system in coordinate space, is the basic reason for the
topological aspects of the adiabatic transport that we dis-
cuss.

As in the Bohm-Aharonov effect, the phenomena we
study are a result of quantum coherence and so require
that the wave function be coherent over the sample and
“know” about the holes. Such rigidity is present in su-
perconductors over macroscopic lengths and in normal
metals under more stringent conditions on length and
temperature scales. We shall return later to the setting of
superconductivity. Let us first briefly review the
normal-metal situation.

When the length scale of the system is mesoscopic (i.e.,
a few hundred angstroms) and the temperature is in the
sub-Kelvin range, the electronic wave function is
coherent over the entire system and quantum effects are
important. Quantum conductance in mesoscopic systems
at low temperatures is a rapidly developing subject, part-
ly because of its obvious technological significance and
partly because of the interest in quantum coherence. The
reader may wish to consult the review of Imry (1986) on
this burgeoning subject. A considerable amount of work
has been devoted to multiply connected systems with a
single hole, such as the ring and the lasso in Fig. 2 (see,
for example, Umbach et al., 1984). Periodicity of the
dissipative conductance in the flux threading the hole,
with the period 27, has been observed in the thin rings
(Chandrasekhar et al., 1985; Webb et al., 1985). In
thick, dirty rings the period is halved to 7 (Alt’shuler
et al., 1981; Sharvin and Sharvin, 1981; Alt’shuler,
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FIG. 2. Multiply connected domains with a single hole: (a) a
ring; (b) a lasso.

1985). It is also expected that rings have persistent
currents that depend (periodically) on the fluxes and that
flow even in the absence of driving emf’s (Biittiker et al.,
1983). Another quantum aspect is nonlocality. For ex-
ample, the (dissipative) conductance of the tail of the las-
so in Fig. 2(b) depends (periodically) on the flux thread-
ing the ring. The conductances in mesoscopic systems
can be sample specific (Gefen et al. 1984; Biittiker et al.,
1985), and Onsager relations can be subtle (Benoit et al.,
1986; Biittiker, 1986b). Gefen and Thouless (1987)
looked at mechanisms that lead to dissipation in small
rings and, in particular, at the role of quantum interfer-
ence and localization.

When the geometry becomes more complicated, as in
the case of multihole systems, the various issues dis-
cussed above become issues in the more complicated set-
tings. However, new issues, that have no analog in the
one-loop setting, also arise. Nondissipative quantum
conductances that have topological significance is one.
This is the subject of this work.?

In multiply connected systems with several holes, a
matrix of transport coefficients relates the current around
one hole to the emf around another. Although somewhat
pedantic, it is useful to distinguish between charge trans-
port and conductance: conductances are defined as the
linear coefficients that relate currents to emf’s in situa-
tions where the emf’s are (asymptotically, in the distant
future) constants or harmonic functions of time. Charge
transports relate the charges transported around holes to
the increase in some of the fluxes by a single quantum,
where the fluxes are asymptotically (both in the distant
past and distant future) time independent.’ The adiabatic
transport coefficients are defined by the limit where the
fluxes change adiabatically (the time scale is determined
by the minimal gap in the spectrum), so the emf’s are all
weak. By general principles, for finite systems, there is no

2In Yurke and Denker (1984), quantum network means the
study of capacitors and inductors quantized by imposing the
canonical commutation relations. This is a different problem.

3Due to persistent currents, the transport we consider is actu-
ally associated with the excess charge transported by the in-
crease in flux.
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dissipation in this limit.* In particular, in a single loop,
the adiabatic transport is trivial. In multiloop systems
there can be nontrivial, adiabatic, and nondissipative
transport. :

The Hall effect is an example of a case in which an emf
in one loop transports charge around another loop, and
the quantum Hall effect illustrates that this can be done
with no dissipation.> Let us explain. The Hall effect is
shown schematically in Fig. 3(a). The classical (ordinary)
Hall effect (Hall, 1879) is basically a room-temperature
phenomenon, and the (integer) quantum Hall effect (von
Klitzing et al., 1980; see also Prange and Girvin, 1987
for a collection of review articles) is a low-temperature
phenomenon. Quantum mechanics turns out to be im-
portant already in the ordinary Hall effect, even though it
is observable in macroscopic systems at elevated temper-
atures. Indeed, there is no classical explanation of the
anomalous (holelike) Hall coefficients that occur in cer-
tain materials. The classical Hall transport is accom-
panied by some dissipation. In the quantum Hall effect,
the transport is nondissipative (at least in the region of
the plateaus).

The quantum Hall effect may be viewed as a quantum
phenomenon associated with multiply connected systems.
The multiple connectivity is, in fact, central in some
theories.® Indeed, the original argument of Laughlin
(1981) is a gauge argument applied to a geometry of a sin-

gle loop. Subsequent theories (see below) that rely on the

identification of the Hall conductance with a standard to-
pological object actually need two loops (Avron and
Seiler, 1985; Niu and Thouless, 1987). Since the topolog-
ical view will be central to much of what follows, we re-
call the motivation for the two loops. It is presented in
Fig. 3(b), where the battery in Fig. 3(a) has been replaced
by a time-dependent flux tube, and the ammeter in Fig.
3(a) by a second, independent, flux tube. (We shall ex-
plain later precisely in what sense flux tubes play the role
of batteries and ammeters.) This structure leads to the
identification of the Hall conductance with the first
Chern number. (We shall discuss below the differential
geometric and topological significance of the first Chern
numbers.)

The study of nondissipative conductances in networks
is closely related to the topological-geometric view of the

4The convention we follow here is that the adiabatic limit is
not defined when eigenvalues cross.

5Classical networks are another example in which emf’s in
one-loop transport charges around another loop. This
phenomenon is, however, intrinsically related to dissipation:
the associated tranéport matrix is symmetric. The nondissipa-
tive transport that we study below has an antisymmetric trans-
port matrix. We thank S. Ruschin for a discussion on this
point.

6The Born-von Karman periodic boundary conditions that
are common in much of solid-state physics may also be viewed
as a way of effectively making the system multiply connected.
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FIG. 3. The Hall effect. (a) The square represents the Hall
probe acted on by a magnetic field. The system is driven by a
battery ¥V, and the Hall current I flows through the loop with
the ammeter. (b) The Hall effect viewed as a two-loop system.
The battery is replaced by a time-dependent flux tube, and the
ampermeter by a time-independent flux tube.

quantum Hall effect. In fact, we have chosen to study
networks partly because it is a setting that is tailored to
the theory and does not have some of the difficulties that
the Hall effect presents. In the Hall effect, the multicon-
nectivity is not believed to be an essential feature of the
actual systems; the wave function is probably not
coherent in the leads and the electronic circuitry. In net-
works the wave function is assumed to be coherent
throughout.

Networks differ from the Hall effect not only in setting
but also in some of the basic properties of the transport.
The Hall conductance is actually a property of the sample,
and the connecting leads in Fig. 3 are not believed to be
important for the actual value of the Hall conductance.
(This is believed to be related to the fact that the samples
are macroscopic.) In networks the conductance matrix
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reflects the multiconnectivity. In a sense, networks are
like a quantum Hall effect without a magnetic field acting
directly on the system and without a Hall probe.

There is actually a further and deeper connection with
the integer quantum Hall effect. One of the interesting
theoretical developments that followed the experimental
work of von Klitzing has been the recognition that non-
dissipative Hall coefficients have geometric significance.
The geometry that enters is related to the way (a family
of) spectral subspaces curve inside the (infinite-
dimensional, flat) Hilbert space. Kubo’s formula for the
Hall conductance is an expression for this curvature.
The curvature is related to the Berry or holonomy phase
(Simon, 1983; Berry, 1984). This fact’” was noted by
Thouless, Kohmoto, Nightingale, and den Nijs (1982) in
a special case, and was later recognized to hold in great
generality (Niu .and Thouless, 1984; Avron and Seiler,
1985; Tao and Haldane, 1986). In particular, as we shall
see, the geometric interpretation is not special to the Hall
conductance and holds also for networks.

The classical Chern-Gauss-Bonnet-type formulas say
that integrals of curvatures over closed surfaces are in-
tegers. The integers associated with integrals of the
aforementioned curvature over closed two-dimensional
manifolds are known as first Chern numbers (Chern,
1979; Choquet-Bruhat et al., 1982). In the topological-
geometrical view, the quantization of the Hall conduc-
tances observed by von Klitzing can be interpreted as a
combination of the basic facts that nondissipative trans-
ports are curvatures and that flux space is a torus with
Gauss-Bonnet-Chern theorem (Niu and Thouless, 1984;
Avron and Seiler, 1985; Kohmoto, 1985; Niu, Thouless,
and Wu, 1985; Avron, Seiler, and Shapiro, 1986; Tao and
Haldane, 1986; Avron, Seiler, and Yaffe, 1987; Niu and
Thouless, 1987). The precise statement is, in fact, that
for general multiparticle Hamiltonians describing finite
systems, the (adiabatic) Hall conductance, averaged over
the threading flux in the current loop at zero temperature,
is generically quantized to be integer multiples of
e2/27# (=1/27, in the present units). [Why the Hall
experiments measure averages, and why the quantization
is stable for finite temperatures, finite emf’s, and macro-
scopic systems are questions outside the scope of this
work and not yet fully understood in a general frame-
work (Laughlin, 1981; Niu and Thouless, 1984; Avron,
Seiler, and Shapiro, 1986; Kunz, 1987; Niu and Thouless,
1987).]

Multiply connected systems with many holes offer a
rich setting, as there are many conductances related to
curvatures. Such conductances have quantized averages.
The averaging, even when the number of fluxes is large, is

"The nontriviality of the bundle that arises in the study of
Schrodinger operators with periodic structure and magnetic
fields was first noted by several Soviet authors as early as 1980
(see Dubrovin and Novikov, 1980; Novikov, 1981; Lyskova,
1985, and references therein).
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FIG. 4. A disconnected network with three loops that has trivi-
al topological conductances.

only over the single flux, distinguished by the current
loop. The integers obtained are therefore functions of
the remaining fluxes and are periodic with period of a
flux unit. (The setting is also richer because it allows, in
principle, for higher Chern numbers.)

As in the theory of the Berry phase, degeneracies
(points of level crossings) play the role of sources for the
Chern numbers and can be assigned integer ‘“charges”
(Herzberg and Longuet-Higgins, 1963; Longuet-Higgins,
1975; Alden Mead and Truhlar, 1979; Simon, 1983; Ber-
ry, 1984). Flux space, with points of charges removed,
has an interesting second homology, which, together
with a basic curvature (two-form), determines the Chern
numbers. The case in which the charges are discrete is
particularly simple, for then the information can be or-
ganized in a table. This is the generic situation for
three-flux networks.

The adiabatic transport coefficients relate three dis-
tinct topological spaces: the physical network in three-
dimensional space; the multidimensional punctured torus
in flux space; and, finally, the bundle of spectral sub-

spaces in the Hilbert space. The Chern numbers describe

the twisting of these bundles and are related to the

‘geometry of the network. For example, in a disconnected
~ network, like Fig. 4, the transport coefficients associated

with loops in distinct components are naturally expected
to vanish. An outstanding problem is a deeper under-
standing of the ways the three topological spaces are re-
lated. It is interesting to recall that formulas that relate
electric properties and topological properties of networks
in ordinary three space have a distinguished predecessor,
Ampere’s law is related to the linking number and plays
a role in knot theory (Flanders, 1963).

We say that a network is trivial if all its Chern num-
bers vanish (or are ill defined because of nongeneric
crossings). We shall see that networks with one or two
fluxes are trivial in this sense. This is not to say that the
transport properties of one- and two-loop networks are
trivial. In a trivial network there can still be a current
flowing in one loop due to an emf in another. The (adia-
batic) current is trivial only in the sense that its average
over the flux in the current loop vanishes and that it
lacks the topological significance of Chern character.?
Nontriviality guarantees interesting topological transport

8In the case of nongeneric crossings, the adiabatic limit may
become empty.
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properties that are expected to have a certain robustness
against sample specificity. We focus on nontrivial net-
works, and establish nontriviality by explicit model cal-
culations. Results for tight-binding and one-dimensional
network Hamiltonians, corresponding to various three-
flux networks, are given. It turns out that nontrivial net-
works abound, and as a rule of thumb networks are non-
trivial except for a reason. Because of the topological na-
_ture of the problem, at least the qualitative features of the
results, and in particular the nontriviality, should survive
for more realistic Hamiltonians.

The nontrivial three-flux networks that we shall de-
scribe below are a three-way quantum switch. By this we
mean that depending on the value of the controlling flux
in loop 1, say, the average current in loop 2, due to an

emf in loop 3, will either ﬂdw, not flow, or flow in re-~

verse. The switch is periodic in the controlling flux with
period 2. It is an honest three-state switch in the sense
that the average current in loop 2 is a 1, 0, or — 1 multi-
ple of the emf. The switch is stable in the sense that each
state is determined by an interval in the controlling flux.
In fact, the controlling flux has to be varied on the order
of a (fraction of a) flux unit to alter the state of the
switch. Multistate switches, such as the five- and seven-
state switches, where the currents are multiples of the
emf’s that are larger than unity, presumably arise-in the
study of multiloop networks. The nine networks that we
have analyzed have only a few loops, and four of them
turn out to be three-way switches for most states. Some
of the networks turn out to be two-way switches in some
states, that is, the averaged current can be made to
change direction when the flux is reversed, but cannot be
stopped. The other five networks are trivial.

Il. SCHRODINGER OPERATORS
FOR MULTIPLY CONNECTED DOMAINS

Consider a multiply connected domain Q [see Fig. 1(a)]
embedded in three- or two-dimensional Euclidean space.
Suppose that Q is a finite, smooth manifold and has
smooth boundary 3Q). € is threaded by A independent
flux tubes. <I>j is the flux in the jth tube, and ® is the
vector (@, ...,P,). Let A be the associated vector po-
tential. We think of A as a one-form, or a vector field, as
is convenient. A is closed on , that is, the associated
magnetic field d A vanishes on (), expressing the fact that
all the fluxes are outside . d is the exterior derivative,
and we use boldface to denote that the differentials are
taken with respect to the coordinates in configuration
space. We allow time-dependent fluxes so A may gen-
erate an electric field —d, A. The electric field need not
vanish on , since the emf’s around the holes are —®. @
are the periods of A, that is,

<I>j=fyjA, 2.1

where 7 is a loop in Q around the jth flux tube. Unless
otherwise stated we shall always assume that a gauge has
been chosen so that the fluxes are represented by a pure
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vector potential, that is, there is no ®-dependent scalar
potential. Also, it is.convenient to choose the vector po-
tential so that =0 corresponds to A=0. Finally, the
situations we have in mind are those in which the time
dependence resides in the fluxes alone: we do not consid-
er cases in which the flux tubes are, say, jiggled inside the
holes. This means that we take A to be linear in .

Given A, we associate with it a Schrodinger operator
H( A) for electrons moving in Q. In the single-particle
case, with no background fields, the operator is (up to a
factor 1)

H(A)=1(—iV—A)?, (2.2)

where (—iV— A) is the canonical velocity. Dirichlet
boundary conditions are imposed on 9. The general
multiparticle case is more complicated only in that the
operator is decorated by particle indices and interaction
terms that are ® independent. These complications do
not affect the analysis below in any essential way, except
for a messier notation. We stick with Eq. (2.2) for the
sake of clarity.

H(A) determines the dynamics according to the
Schrodinger equation,

9,0, =H(A), . (2.3)

In much of the following we shall be interested in the
limit where the flux tubes, and therefore A, change adia-
batically. As is well known, the analysis of this limit
reduces to the spectral study of the family of operators
H(A), ie., time may be regarded as a parameter. We
denote by E;( A) and ¢;( A) the eigenvalues and eigen-
functions of H ( A) for fixed fluxes, i.e.,

H(AW;(A)=E,( A)Y;(A) . 24)

By general principles (Kato, 1966; Reed and Simon,
1972-1978), H( A) has a discrete spectrum in [0, « ),
something borne out by the notation. Equation (2.4) does
not determine ¢;( A) uniquely, as there is a phase ambi-
guity. A convenient choice will be singled out when
needed.

Gauge transformations play an important, and oc-
casionally confusing, role. A general gauge transforma-
tion may depend on the fluxes, and so is time dependent
if the fluxes are, and may have an additional time depen-
dence not coming from the fluxes. Let U be a multiplica-
tion unitary, that is, locally, U = exp(—iA), which is
smooth in ® and ¢t and x €EQ (x may be a local coordi-
nate). The primed and unprimed systems, related (local-
ly) by

Y=U¢, A'=A—dA,
H'(A)=UH(AU'+V,+d-v, , 2.5)
V,=—iUd,U'=—3,A, Vo=—iUdU",

have the same electric and magnetic fields acting on Q
and describe equivalent dynamics. Nonboldface d
denotes the exterior derivative with respect to the fluxes.
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bV, is the canonical pairing between the vector b,
describing the flow in flux space, and the one-form V.
dA has periods that are integral multiples of 2:

dA=2mn;, n;€Z, (2.6)
Yj

where, as before, y; is a loop in Q around the jth hole.
Such U’s do not have a smooth continuation to the holes
if the periods are nonzero, and this is why the fields in
the holes can be different. Indeed, from Egs. (2.1) and
(2.5),

' =d—-27n , _ 2.7

where n is a vector with integer components #;. It fol-
lows from Eq. (2.5) that if the fluxes are time indepen-
dent, Hamiltonians with distinct fluxes that are related
by Eq. (2.7) are unitarily equivalent and describe
equivalent dynamics. So, for time-independent questions,
flux space may be thought of as a multitorus. We shall
refer to this as the Bohm-Aharonov periodicity. It is also
known as the Byers-Yang theorem (Byers and Yang,
1961). As we shall see, this will also carry over to some
time-dependent questions in the adiabatic limit.

The next question we want to consider is the relation
between dynamics that have the same (2, same fluxes, and
same emf’s, but different flux tubes. For example, consid-
er two systems, identical except for the fact that some of
the flux tubes have been moved about in their respective
holes (see Fig. 5). In the time-dependent case, such sys-
tems have inequivalent dynamics. This is easy to under-
stand in physical terms: different flux tubes, or flux tubes
that are positioned in different places in the holes, have
different A’s acting on , and induce different electric
fields —9d, A on Q. These electric fields are related only
through the same emf’s on each loop, but their local be-
havior is different. There is no reason for the dynamics
in such cases to be equivalent. The corresponding Ham-
iltonians are not related by a gauge transformation.

Let us consider some concrete examples of flux tubes
that illustrate the different fields and dynamics that can
arise. One of the examples is a choice of flux tubes that
make the Schrodinger operator periodic in the fluxes.
The existence of such a choice will play a role in later
sections.

Consider a planar Q and let x =(p;,0;) be cylindrical
coordinates with origin in the jth hole. Let

(a) (b)

FIG. 5. Two identical systems, except that the flux tubes have
been placed in different positions in the holes.
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h
Ax)= 3 ®,d(6;)27 (2.8)
j=1

(away from 6=0 and 6=2#). This A is manifestly
closed on Q (it is locally exact) and satisfies Eq. (2.1).
Suppose now that ® is time dependent. Then there is a
nonvanishing electric field acting on £ given by

no. B,
-3 &, —L. 2.9)

= 2mp;

The field clearly depends on the choice of origin of the
coordinates, which is the position of the tube in the holes.
For example, if  is a thin ring, the electric field is uni-
form only if the tube is placed at the center of the ring.
There is no reason for the dynamics to be determined by
& and & alone; further details about the flux tubes
matter. '

As a second example for a choice of flux tubes or vec-
tor potentials, consider the singular gauge field

h
A(x)= 3 ®;7(x)d8(x —C;),
j=1

(2.10)

where C ; are cuts in Q that make it simply connected
(see Fig. 6) and 7 is a unit vector orthogonal to the cut.
This A also satisfies Eq. (2.1). For fixed ¥, the Hamil-
tonians corresponding to various choices for the cuts C;
in Eq. (2.10) [or the tubes in Eq. (2.8)] are unitarily
equivalent. However, if the ® are time dependent, the
dynamics are distinct. In fact, the electric field associat-
ed with Eq. (2.10) is zero everywhere except on the cuts
and is given by
h
— 3 ¢,a(x)8(x —C;) . (.11
j=1

The choice of C; clearly matters.

The Schrédinger operator associated with the flux
tubes of Eq. (2.10) is — A on the cut domain, Fig. 6, with
exp(i®;) boundary conditions across the cut C;. The
differential operator is thus independent of @, and the ®
dependence comes solely from the boundary condition,
which is manifestly periodic in ®. The nice thing about
this choice of flux tubes is that they give a Hamiltonian
that is manifestly periodic in ® as well. For this choice,
the time evolution is as if flux space were the 4 torus T".
And this holds even for time-dependent fluxes. For other
choices of the flux tubes, say Eq. (2.8), this is not the case,

A fiz\ |
¢~ ®4 & “Ca

FIG. 6.  made simply connected by drawing appropriate cuts
C;. #is normal to the cut.




880

and flux space is better thought of as R”.

It is, of course, natural to ask what dynamical proper-
ties are independent of the choice of flux tubes and are
functions of ® and —® alone. A telated question is un-
der what condition does the Bohm-Aharanov periodicity
extend to time-dependent situations. It is, of course,
reasonable to expect that in the adiabatic situation, some
form of the Bohm-Aharonov periodicity should survive.
However, it may survive for certain observables but not
for others. Note that once certain properties are known
to be functions of the fluxes and the emf’s alone, one may
choose the flux tubes to be those that make the Hamil-
tonian periodic in the fluxes. We shall use this to estab-
lish the Bohm-Aharonov periodicity of the averaged adi-
abatic transport coefficients.

A reader interested in the general structure and theory
may want, at this point, to skip the next two sections and
proceed with Sec. V on loop currents. The following two
sections are devoted to the formulation of special classes
of Hamiltonians for which the analysis reduces to the
study of finite matrices. This simplification has no bear-
ing on the general theory of adiabatic transport that we
describe in Secs. V-XI, but it is of considerable use in
the actudal computation of the transport properties for
specific networks, something we return to in Secs. XII
and XIII.

. TIGHT-BINDING HAMILTONIANS

From formal point of view, the Hamiltonians of the
preceding section were distinguished by periodic depen-
dence (up to unitary equivalence) on a set of parameters,
i.e., fluxes. The simplest operators of this kind are, of
course, periodic matrix- functions. Finite matrices are
especially useful when one is interested in concrete exam-
ples and in actual computations and not just in the gen-
eral structure of the theory. Operators of the tight-
binding type retain much of the structure of the original
Schrodinger operator and lead to the study of finite ma-
trices.

The tight-binding model arises from the Schrodinger
equation in the limit of strongly attractive atomic poten-
tials, hence the name. For a system made of N atoms,
each contributing n atomic levels, the relevant Hilbert
space, in the one-particle case, is C"V. The tight-binding
Hamiltonian is the restriction of the appropriate
Schrodinger operator to this subspace. We shall consider
the case of n =1.

We choose to formulate them in a way that is natural
from a graph-theoretic point of view. The reasons for
doing so are partly that this is a nice mathematical for-
mulation and partly that this brings out the possible
relevance of the subject to areas outside solid-state phys-
ics. Similar operators arise in lattice gauge theories for
different reasons (Wilson, 1974).

With the network ) we associate a directed graph,
Fig. 7, with vertices V, edges E, faces F, the cells C.
There are, of course, no cells in planar graphs. A cau-
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4 3

>
1 -2

FIG. 7. A directed graph with four vertices, five edges, and two
faces. The valence of vertex 2 is 3 and of vertex 1 is 2.

tionary word about terminology in warranted. We used
the term graph in a more restrictive sense than is usual in
graph theory, as the graphs we consider have metric
properties. For example, in Secs. XII and XIII we focus
on graphs made of equilateral triangles. In graph theory
edges have no lengths, so there is no notion of equilateral
triangles. Consequently the notion of planarity is also
distinct from that in (nonmetric) graph theory.

We denote by a lower-case letter an elemient of a set
denoted by an upper-case letter, so v is a vertex in V.
Moreover, |-| assigns to - a number. Thus | ¥V | and
| E | are the number of vertices and edges, etc. |e | is
the length of e and |v | is the valence (coordination
number) of the vertex v. We consider only simple graphs
in which edges are uniquely specified by their vertices.
e =(v,u) is an edge directed from v to u. Figure 8 shows
a graph that is not simple.’

We consider physical networks, embedded in Euclide-
an space. For connected networks the vertices, edges,
etc., are related by the Euler characteristic,

|C|—|F|+|E|—|V]|=—1. (3.1)

The incidence matrix gives an algebraic description of
the graph (Wilson, 1972; Biggs, 1974). [v,e] denotes the
vertex-edge incidence matrix, defined by

[v,(v,0,)]=6(v,v,)—b6(v,v;) . (3.2)

The edge-face [e,f] and face-cell [f,c] incidence ma-
trices are similarly defined. They obey the ‘“boundary of
the boundary is zero” rule (Patterson, 1969):

2 [v,elle,f1=0, Z[ef1lf>c]=0. (3.3)
E F

The Laplacian of a graph is the | V' | X | ¥ | matrix

9Nonsimple graphs are actually of interest, since nontrivial
bundles appear in this case already for 2 X2 matrices. For sim-
ple graphs, the lowest rank of matrices with nontrivial bundles
is 4.
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FIG. 8. A graph that is not simple. The two vertices do not
determine a single edge.

[Al,=— X [u,ellvse] . (34
E
For simple graphs,

v —|v| foru=v,
[Al,,= {+1 for (u,v)EE , (3.5)
0 otherwise .

On a graph of a regular lattice, A is the discrete Lapla-
cian. In particular, if ¢ is a function on the vertices such
that Ay =0, then 1 is harmonic in the usual sense that its
value at a given vertex is the mean of its neighboring
values. It is known that the spectral properties of A are
related to the topology of the graph (Wilson, 1972; Biggs,
1974).

The operator in Eq. (3.5) describes a tight-binding
model for a “molecule” made of atoms placed at the ver-
tices of the graph, in the absence of magnetic fields.
There is unit hopping between atoms connected by an
edge, and the electrons experience an on-site interaction
| v | . From a solid-state physics point of view, a simpler
and more natural operator to study is one in which the
diagonal in Eq. (3.5) is replaced by zero. (This is the case
if the atoms at the vertices of the graph are identical.)
We stick with the graph-theoretic choice (but the solid-
state terminology).

The Laplacian carries no information on the fluxes
threading the graph. From a graph-theoretic point of
view, fluxes lead to the consideration of a “gauge in-
cidence matrix” that is a U(1) generalization of Eq. (3.2).

Fluxes and gauge fields can be defined intrinsically on
the graph. It is not necessary to think of them as embed-
ded in Euclidean space. Fluxes ®(f) are defined on the
faces, and gauge fields a (e) are defined on the edges. The
fluxes are constrained by the zero divergence of the mag-
netic fields

S [f,cl®(f)=0, (3.6)
F J .

and are related to the gauge fields by the discrete version
of Eq. (2.1),"
D(f)= 3 [e,flale) . (3.7)
E
By Eq. (3:3), such ®(f)’s automatically satisfy Eq. (3.6).

Pure gauge fields are ‘“‘gradients” of functions on the ver-
tices,

agle)= > [v,e]A(v), (3.8)
v
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with ®(f)=0 by Eq. (3.3). The space of nontrivial pure
gauges is |V | —1 dimensional [since A=const has
ag(e)=0]. The space of all gauge fields is | E | dimen-
sional and the space of admissible fluxes is |F | — | C |
dimensional, due to the constraint of Eq. (3.1). The num-
ber of flux tubes, or holes, is therefore h = |F | — | C |.
From the Euler characteristic, Eq. (3.1), it follows that
the flux tubes determine the gauge fields modulo pure
gauges. :

The gauge incidence matrix D (a) is the linear map
from G!7! to C!E | defined by

[D(a)],,=[v,e]exp{i[v,elale)/2} . (3.9)

The tight-binding Hamiltonian is, by analogy with Eq.
(3.4),

H(a)=D"(a)D(a) . (3.10a)
Explicitly
|v] for u=v ‘,
[H(a)],,= {— exp[ia(e)] for e =(u,v), (3.10b)

0 otherwise .

As a tight-binding model, H (a) describes a “molecule”
in a magnetic field so that the fluxes through the various
faces are given by ®. The magnetic fields modify the
hopping terms to exp[ia(e)]. The graph-theoretic for-
mulation leads to the on-site potential |v |, and, as dis-

, cussed above, this is not a particularly natural choice in

the tight-binding model. In tight binding it is more natu-
ral to let the on-site potential be a fixed constant, if all
the atoms are identical. In the general case of distinct
atoms, the on-site potential depends on the binding ener-
gy of the atom. Moreover, in the general case, the hop-
ping need not have identical magnitudes.

We shall stick with Eq. (3.10) for the sake of concrete-
ness. This choice does not affect the analysis, for we
focus on stable (topological) properties. In particular,
setting the diagonal to zero would not change the overall
picture, but would modify details. For regular graphs,
that is, graphs in which |v | is the same for all vertices,
like the tetrahedron, the two notions essentially coincide.

H(a)isa | V| X | V| self-adjoint matrix that reduces
to —A for a(e)=0. We recall some of its basic proper-
ties. First; one has the (sharp) bounds

2max |v | >H(a)>0. (3.11)

vEV

The right-hand side of Eq. (3.11) follows directly from
Eq. (3.10a). The left-hand side follows from considera-
tion of the eigenvalue equation for the largest component
of the eigenvector. Actually, H(a) is strictly positive
definite if ®=£27n, n €Z" and has a one-dimensional
kernel if ® =2mn. To see this, note that from

(¢ |H(a)|¢)=|D(a)| P> (3.12)
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it follows that the kernel of H(a) is the kernel of D (a).
The equation D (a)y=0 says that
Ylu)= expliale)J¥(v), e =(u,v). (3.13)

This is consistent on the graph provided the periods of
a(e) on the loops are integer multiples of 2, that is, pro-
vided ®=2mn. In particular, for a(e)=0, the ground
state O has the eigenvector (1,1,1,...).1°

Tight-binding Hamiltonians gauge transform in the
usual way:

H'(a)=H(a")+3,A ,

(3.14)
a'(e)=ale)+ Y [v,e]A(v) .
v

H(a) and H(a') are unitarily equivalent and so have the
same spectrum.
H(a) is strictly periodic in the gauge fields:

H(a)=H(a+2mn), n€Z!El . (3.15)

This relates Hamiltonians with different fluxes:

Q' (f)=P(fH+27 3, [e, fln(e) . (3.16)
E

For the applications that we consider in Secs. XII and
XIII, this relation is enough to guarantee the existence of
gauges in which the Hamiltonian is periodic in all the
fluxes.

The space of gauge fields is R/, but because of Eq.
(3.15) it may be thought of as T!£!. In RI'Z! sits an
R!YI~! subspace of pure gauge transformations. The
space of distinct gauge fields is therefore R”, where 4 is
the number of holes:

h=|F|—|C|=|E|—|V|+1., (3.17)

In view of Eq. (3.15), the gauge-distinct Hamiltonians are
naturally defined on T".

In conclusion, the simplest set of models with the
structure of the general case discussed in Sec. II are
periodic matrices of the tight-binding type. As we shall
see, even for quite small matrices interesting things hap-
pen. An example with 4 X4 matrices will be analyzed in
detail in Sec. XII. This elementary aspect is one of the
appeals of the theory.

10 (a=1r) has top state with energy 2 | v | for the same eigen-

vector if the graph is regular.
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IV. SCHRODINGER OPERATORS
FOR NETWORKS OF THIN WIRES

Networks of one-dimensional connecting wires are
idealizations corresponding to physical networks in the
limit that the widths of the wires are small relative to all
other length scales in the problem. The corresponding
Schrodinger operators have, of course, the basic features
of the general case discussed in Sec. II, and like the
tight-binding model offer some simplifications. The first
and obvious simplification is that the partial differential
operator of Sec. II is replaced by an ordinary differential
operator. The second simplification is that, at least for
the case of “free electrons,” the problem can be further
reduced to matrices. In fact, the matrices turn out to be
close relatives of the tight-binding Hamiltonians.

There are several reasons for considering this subclass.
First, it is a natural class to consider and it is a useful
description of various physical settings. Second, to ex-
amine the stability of the transport properties of net-
works, it is useful to compare how sensitive they are to
the dynamics. Free electrons are in some sense on the
other end of the spectrum from those that are tightly
bound, and so offer an interesting alternative dynamics.

The formulation of wave equations on networks of
one-dimensional wires has a long history, partly because
the setting arises in many areas of physics: single-mode
acoustic and electromagnetic waveguide networks (Mit-
tra and Lee, 1977; Ramo, Whinery, and van Duzer,
1984); organic molecules (Ruedenberg and Scherr, 1953;
Platt, 1964); superconductivity in granular and artificial
materials (deGennes, 1981; Alexander, 1983); and meso-
scopic quantum systems (Imry, 1986). The construction
of wave equations for such networks is a topic in its own
right. Ruedenberg and Scherr, who were apparently
among the first to address the problem, based their for-
mulation on the analysis of the limit of wires of finite
thickness. Alexander generalized this to networks in
external magnetic fields. Recently, the problem came of
age in a series of mathematical works by Exner and Seba
(1987), whose formulation is based on the von Neumann
theory of self-adjoint extensions of formal differential
operators.

Our aims in this section are, first, to formulate
Schrodinger operators for one-dimensional networks;
second, to motivate this formulation by showing the rela-
tion to the original partial differential operator; and final-
ly, to describe the reduction to a matrix problem for
“free electrons.” This section contains a fair amount of
known material and is of an expository nature. Readers
familiar with Alexander’s work may want to skip it.

In the limit of narrow wires, part of the geometric in-
formation in ( is lost. Some of it translates to dynamical
information in the one-dimensional wave operator in the
form of various potentials. We shall first formulate, in an
ad hoc way, the operator, and later make the connection
with the limiting procedure. With the network we asso-
ciate the following potentials: (1) the ‘“vector” potentials
A(x,e), which are roughly the tangential component of
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A at the point x on the edge e; (2) scalar potentials
V(x,e); and (3) vertex potentials A(v), which are associat-
ed with the vertices. All these potentials are real.

The wave function ¢ is a vector in %Lz(e), with com-

ponents ¥(x;,e;). The Schrodinger operator, acting on
the edge e, is the ordinary differential operator

(H(A)(x,e)=([—id, — A(x,e)]*+ V(x,e))P(x,e) .
(4.1)

¥ has a unique value at the vertices and satisfies the
Sturm-Liouville type of boundary conditions,

> [v,ell(—id, — A(x,e))y)x,e) | , = —iMv)P(v) ,
< .

(4.2)

where ¥(v)=¢(x,e) | ,.

We first discuss Eq. (4.1) and examine the relation of
the potentials to the magnetic and geometric information
in the original multidimensional problem, and then we
discuss Eq. (4.2).

Consider the eigenvalue problem

(—iV— AW=EW¥ (4.3)

in a striplike domain, Fig. 9, with Dirichlet boundary
conditions. Note the absence of a scalar potential in Eq.
(4.3). Q is essentially straight, with x the coordinate
along it and y that in the transverse direction. In the lim-
it of small width, the y coordinate becomes!! a “fast vari-
able” relative to the “slow variable” x, so ¥ admits a
Born-Oppenheimer decomposition (Born and Oppenhei-
mer, 1927)

W(x,y)=P(x)n, (y), ' (4.4)

where 7,(y) is a normalized eigenstate of the transverse
(fast) motion, i.e.,

(—id,— A, )0, () =W (x)n, (») . 4.5)
y y

Write {u | ) for the scalar product in the y coordinates,
i.e.,

= [dy pym, ) . (4.6)

(n|n)(x)=1 by normalization. With the ansatz Eq.
(4.4), the slow variable w#(x) solves the ordinary
differential equation

{[—id, — A (x)—i{n |3, 7)) PP+ W(x)
+ {90, m)2x)+(8, |3, M }Y(x)=E(x) . 4.7)

By the normalization of 7, i {7 |9d,m)(x) is a real-valued
function. A, (x)=(n| A, |n)(x). We see that the vec-

1By scaling the x and y coordinates to order unity, say, one
finds that the x coordinate has a heavy mass associated with it
while the y coordinate has a light mass.
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FIG. 9. A narrow striplike domain for which the study of the
Laplacian reduces to the study of an ordinary differential equa-
tion in the Born-Oppenheimer approximation.

tor potential in Eq. (4.1) has the tangential component of
the vector potential A, corrected by gauge fields arising
from the transverse motion:

Alx,e)=(n| A, | ) x)+i{n|d,n)(x). (4.8)

The emergence of gauge potentials in the slow dynamics
whose origin is in the fast dynamics is a feature of the

Born-Oppenheimer theory (Alden Mead and Truhlar,

1979; Combes, Duclos, and Seiler, 1981; Wilczeck and
Zee, 1984; Alden Mead, 1987).

We now examine the scalar potentials. Since the origi-
nal operator, Eq. (4.6), had no scalar potential, the scalar
potentials in Eq. (4.7) have their origins in the geometry
of O and the dynamics of the fast variables. As the width
of Q shrinks to zero, W(x) is dominant and shoots to
+ o as (width)™2 by the uncertainty principle. This
makes E in Eq. (4.7) shoot to + « as well. To obtain a
finite limit, a simple renormalization is required, which is
familiar from the study of points interactions (Albeverio
et al., 1988). Suppose that as the width shrinks to zero

W(x)—E—>W(x)—k?, 4.9)

where W(x) and k? are both finite. That is, we remove
from W (x) and E the same large constant (which may be
identified with the constant attractive potential that
keeps the electrons confined to Q). This, together with
the other two (subdominant) potential terms in Eq. (4.7),
defines V(x,e) in Eq. (4.1). It is instructive to note that
for the limit Eq. (4.9) to exist, the wires must be of almost
uniform width. Indeed, differentiating Eq. (4.9) gives

3 W(x)=0(1), | (4.10)

s0 9, (width) is of order (width)?.
In the special case of uniform and straight wires we
may choose

7,0 = | exp ifyAy(x,y')dy']]u(y)—>,u(y) @.11)

independent of x and A. In this case V(x,e) is constant
(which one can take to be zero) and A(x,e) is the tangen-
tial component of the vector potential.!?

I2Twisting wires have additional geometric information that
translates to dynamical information. In the case of the wave
equation (without vector potential) this has been studied in Ber-
ry (1987), Haldane (1986), and Kugler and Shtrikman (1987).
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In the following we restrict ourselves to networks of
straight wires of uniform cross sections. We call these,
for short, free electrons. The eigenfunctions of Eq. (4.1)
are then ‘

Y(x,e)=explia(x,e)][¥  (e) exp(ikx)
+v¢_(e)exp(—ikx)], (4.12)
where '
alx,e)= [ A,y , (4.13)

and ¥ and ¢_ are the amplitudes of the forward- and
backward-moving waves on e.

We now want to “explain” the boundary condition
(4.2). It was originally derived by Ruedenberg and
Scherr (1953) by considering the zero-width limit of the
multidimensional junction. Exner and Seba show that
such boundary conditions describe all the self-adjoint ex-
tensions of the operator (4.1). The scattering theory of
junctions, an approach that has gained popularity in the
quantum theory of complex systems (see, for example,
Anderson et al., 1980; Shapiro, 1983), gives some insight
into Eq. (4.2).

Let 9, 0u(v) be the |v | -vector of incoming/outgoing
amplitudes toward the junction v, with components
Yin /our{€,0) (Where the edges e are incident on v):

Yinle,0)=8(1,[v,e])y  (e)exp{i(k | e | +a(e))+8(—1,[v,e])y_(e)} ,
Youle,0)=8(1,[v,e])y_(e)exp{i(—k |e | +a(e))+8(—1,[v,e]P (e)},

where

a(e)=al|e |,e), a(—e)=—ale), (4.15)

satisfy Eq. (3.7).

With each vertex v associate a scattering matrix
S (k,v), which is a unitary |v | X |v | matrix relating
the incoming and outgoing amplitudes:

S (k,0);,(v) =1, (v) . (4.16)

The current flowing toward v on e is k[ | ¥;,(v,e)]|?
— | You(v,€) | %], so the total current flowing toward the
vertex v satisfies Kirchoff’s first law,

kST din(0,0) | 2= | oulvre) | 21=0, 4.17)
e
by the unitarity of S. Current is conserved at the ver-
tices. Conversely, current conservation implies the uni-
tarity of S.13 '
Define point junctions by the requirement that ¢ has a
unique continuation to the vertices, that is,

Pin(0,€) + o (v, €)= {k(v) | Pin(v))

where («(v)| is a |v |-vector characterizing the vertex
and the right-hand side is e independent. In vector nota-
tion, using Eq. (4.16),

(4.18)

[14+S(k,0)]]| ¥,) =) | P,(0)) | T) , (4.19)
where |I) is the |v | -vector
ID=(1,1,1,...,) . (4.20)

Equation (4.19) gives the operator relation

3Current conservation, Eq. (4.17), implies that S'S must be a
diagonal unitary and positivity implies that it is the identity.
We are indebted to L. Sadun for pointing this out to us.
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(4.14)

S(w)=—1+1]1){x(v)] . (4.21)

Since S is unitary, the two equations, s's=1 and
SST=1, lead to

— | ID{kv) | — [ k)T | + | &(0)) | v | {xl(v)] =O(‘,1 -
[ k() [v [ k()| = | D) {k(v) ] k(0)){T] . '

The second equation says that |(v)) is proportional to
|I). The first constrains the proportionality constant to
lie on a circle with radius 1/ |v | in the complex plane,
which is tangent to the imaginary axis:

S(k,w)=—1+(2/|v | )cos[0(k,v)]

X exp[if(k,v)] | I){I] , (4.23)
with 0<8(k,v)<w. This singles out a circle in the
| v | --dimensional space of unitary matrices.'* Note that
(in the spinless case considered here) S(k,v) of a point
junction is automatically time-reversal invariant: time
reversal says that (4;,(v))*=1,,(v), from which it fol-
lows that S =S’. Equation (4.23) is of this form.

To relate 6(k,v) of Eq. (4.23) and A(v) of Eq. (4.2),
rewrite Eq. (4.2) as’

kAT (#3,(0) = Poue(0)))
= —iMONT | (YD) + o)) /|0 | . (4.24)

Substituting Eq. (4.23) in Eq. (4.16) and then in Eq. (4.24)

14After the completion of this work, we received JINR pre-
prints (Exner and Seba, 1987) in which Eq. (4.23) is derived. ‘We
thank F. Gesztesy for drawing our attention to these works.
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gives

Av)=— |v | k tan[0(k,v)] .  (4.25)

If A(v)5£0, then, as the energy k2 varies from O to oo, the
scattering matrix traverses the full circle of point scatter-
ers in the space of unitaries. !’

YP(x,e)= explia(x,e)]{¢(u)sin[k( |e | —x)]+(v)sin(kx)exp[ —iale)]} /sin(k |e |),

We conclude this section by describing a method, fol-
lowing- Alexander (1983), that further reduces the study
of the operators associated with one-dimensional net-
works to the study of finite matrices.!® The wave func-
tion on the edge e=(v,u) can be written in terms of its
values on the vertices, u and v:

(4.26)

where k > 0. t(x,e) has, by construction, a unique value on the vertices and satisfies the eigenvalue equation (4.1) with
zero scalar potential. Substitution in the boundary conditions, Eq. (4.2), gives the matrix equation

h(k,a)p=0,

N

with ¢ the | V' | -vector on the vertices and 4 (k,a) the | ¥ | X | ¥ | Alexander-de Gennes matrix:

[h (@)1, =8(u,0) [ 3 | [e,0] | cot(k |e | )—Aw)/k | — 3 8([u,v],e)-ZRLEALE)]
E ' E

The equation det[4 (k,a)]=0 determines the spectrum
{k}{®)|j=0,1,...,®ET"} of the Schrodinger opera-
tor. This is an implicit-eigenvalue problem for the ma-
trix h (k, ®).

In the special case of no scattering potential at ver-
tices, A(v)=0, and edges of equal lengths, which one may
then take to be unity with no loss of generality, Eq. (4.28)
simplifies to

ho(k,a)p=0 , (4.29)
where
[v | cos(k) for u=v,
[Aolk,a)],, = {'— expliale)] for e=(u,v), (4.30)

0 otherwise .

Here hy(k,a) is periodic in k and a with period 27. It is
remarkable how close it is to the tight-binding Hamil-
tonians H(a) of Sec. III. In fact, for a given graph,

hy(0,a)=H(a) . 4.31)

The Bohm-Aharnov periodicity and the gauge proper-
ties discussed in Sec. III transfer to this case as well. An
interesting new ingredient is that the parameter space
can now be thought of as the (4 + 1)-dimensional torus.
The & torus is as in the tight-binding case. An extra
period comes from k. ,

The map k%— cos(k) maps the unbounded spectrum
of the Schrodinger operator on a finite set. More explic-
itly, for fixed flux, the eigenstates are naturally paired
(because of the symmetry of the cosine function), and

I5This does not explain why A is k independent. Formally,
this can be related to the question of the choice of self-adjoint
extension; see Exner and Seba (1987).
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(4.27)
sin(k |e |) - (4.28)
r
each has two quantum numbers:
k_(®@)=[27—k;(®)]+27n . (4.32b)

Here kj((b) is in [0, 7], and n natural. As we shall show,
J runs over the finite set 1,..., |V |. [ky;,(®P) is con-
strained to be positive.]

In contrast with the situation in the tight-binding case,
the Hilbert space can-accommodate an infinite number of
fermions. The n dependence is simple and explicit, and it
is natural to expect that the problem can be fully ana-
lyzed by thinking of k as an angle and considering one
period of cos(k).

Consider the set {(k,®)|®E[—m,7]", k€[0,27],
det[hy(k,a)]=0}. It may be thought of as the graph of
“energy bands” over flux space restricted to its basic
periods. Some of its basic properties are listed below.

(a) The bands are periodic in ® (by Bohm-Aharonov
periodicity); they are invariant under the reflection
®—->—P (by complex conjugating), and also under
k — 27—k [by the symmetry of cos(k)].

(b) For fixed ® there are | ¥ | bands, counting multi-
plicity, in the interval k €[0,7]. [This follows from the
self-adjointness of /(k,a) and property (e) below.]

(c) The set of bands has a property that we shall call
“m-shift” invariance, which is reminiscent of an
electron-hole symmetry. - By this we mean that the ker-
nels of ‘hy(k,a) and hy(k +m,a+7) coincide. = is the
vector (1,1, ...,1)in R!E!. This follows from

holk,a)=—hy(k +ma+m) . (4.33)

16Some of the formulas that we shall write below do not make
sense if sin(k | e | )=0. These should be interpreted as the lim-
it when & has a small imaginary part.
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A shift of 7 of the gauge fields translates to the shift of
the fluxes: ‘

D(f)—>P(f)+7 3 [e,f]
E

=®(f)+m| f | mod(27) .

| f ] is the number of edges of f. If | f | is even, then
Eq. (4.34) is the identity on the flux torus. If, however,
| £ ] is odd, Eq. (4.34) is a shift of 7 in the corresponding
flux. We conclude that the spectrum is invariant under

(4.34)

(k,®)—(k +7,®+7F) , (4.35)
where Fis the | F | -vector
F(fi=|f]| . (4.36)

This is a global property of the spectrum, not necessarily
a property of any given band. This is illustrated in Fig.
10.

(d) The bands touch the plane cos(k)=1 at the single
point ®=0. This follows from Eq. (4.31) and the strict
positivity of the tight-binding Hamiltonians, proven in
Sec. III. When combined with Eq. (4.35) this also gives
the result that the spectrum touches cos(k)= —1 at the
single point F7r. Note that these are the points where Eq.
(4.26) is ill defined. »

(e) hy(k,a)>0, as an operator identity, for cos(k)> 1,
and similarly hy(k,a)<0 for cos(k)<—1. For
cos(k) > 1, this is seen from the fact that hy(k,a) is an in-
creasing function of cos(k), and from (d) above. Combin-
ing this with (c) above gives the result for cos(k) < 1.

For a given graph, the implicit eigenvalue problem as-
sociated with free electrons, Eq. (4.29), and the explicit
eigenvalue problem associated with the tight-binding
Hamiltonian describe rather different physics. Conse-
quently it is remarkable that both lead to the reduction of
a partial differential operator to related matrix problems.
In fact, more is true. For regular graphs the eigenvalue
problem (and, as we shall see below, also the topological

conductances) turn out to be simply related:
cos(k)=1—E/|v | , (4.37)

where E is the eigenvalue for the graph-theoretic tight-

cos(k) /\ cos(k)
t : 4

: j T~ ]

-7 m -m m

(a) (b)

/'\

FIG. 10. Possible (schematic) spectra for hy(k,P): (a) whén the
flux is through a face with an odd number of edges; (b) when the
flux is through a face with an even number of edges.
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binding model, and k? is the corresponding eigenvalue
for free electrons. (A similar relation holds for the stan-
dard tight-binding model with zero on-site interaction,
but again, only for regular graphs.)

The last point we discuss in this section is the normali-
zation of the wave function. The length in the original
Hilbert space induces a metric in the vector space C!V!.
Writing | ¢) for the two-vector ((u),(v)) associated
with the edge e =(u,v) we find for the eigenstates

[¥(x,0|>=Cy | M(k;e) | ),

where M (k ;e) is the 2 X 2 positive, Hermitian matrix

(4.38a)

1
Mk;e)m————
(ko) 2sin’(k |e |)
E(k,e) explia(e)]n(k,e)
X\ exp[ —iale)In(k,e) E(k,e) ’
with
Ek,e)=|e | _M%L"Jl 4.39)
and

n(k,e)zirl(i%cjill— e | cos(k |e]).

As a consequence, eigenstates are normalized according
to

||¢Hz=%|l¢(9,xﬂ|2= 2 P [M (k)] ¥0),

uvEV
(4.38b)
where M (k)isthe | V' | X | V| (positive) matrix
Slek)|[ev]| for u =v
S 2sin¥(k |e|) ’
[M(B)]w =1 expliate)lnte) ¢\, (440

2sin’(k |e |)
0 otherwise .

For determining the spectrum, the correct normaliza-
tion is not an issue. For most observables, however, it is.
In particular, it is important for the calculation of the
transport. We return to this in Secs. X and XI. As we
shall see there, for the averaged transport coefficients, it
turns out that because of the topological interpretation
the normalization is, in fact, not an issue.

V. LOOP CURRENTS

In circuit theory, it is convenient to introduce loop
currents so that Kirchhoff’s first law of current conserva-
tion at each vertex is automatically satisfied. Let I(f) be
the loop current associated with the elementary face f
and I (e) be the current in the edge e. The two are relat-
ed by

I(e)=S [e.fU(f) . (5.1)
F ,
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Loop currents are the basic objects in quantum networks.
In this section we define and examine the observables as-
sociated with them.

We motivate the definition by the following considera-
tion: to “measure” the current flowing around the mth
flux, consider a virtual change 8®,,. This creates a virtu-
al emf around the mth loop, which does not affect the
state of the system (this is what we mean by virtual), ex-
cept that the current now goes through a potential drop.
The virtual change in energy of the system is

SE=—I(m)8d,, . (5.2)

This suggests that —9d,,H ( A) is the observable associat-
ed with the mth loop current. Here, and throughout, we
use the convention d,, an,m. For the Schrodinger

operator of Sec. II,
—20,,H(A)=(—iV—A4)-(3,, 4)
+(0,, AN—iV—A4). (5:3)

It is convenient to introduce form notation such that

h
IW)= 3 Imy)de,, ,

(5.4a)
m=1
h
UyP))= 3 Im,y))do,, , (5.4b)
| m=1
h
dH= 3 (8, H)d®,, , (5.4c)
m=1
with the flux-averaged current defined by
_ 1 o
(I(m,y))=- fo dd, I(m,p) . (5.5)

Equation (5.4) enables us to write some of the formulas
without excessive indexing.
The loop current for a system at the state 1 is'’

I(m,¥)=—{¢|3,,H |¢) (5.6a)
in components and
I(Y)=—<y¢|dH | ¢) (5.6b)

as a one-form.
Equation (2.5) can be used to define loop currents for
different choices of gauge. '
It is instructive to examine the relation of the loop-
current operator with the conventional current-density
operator, given by (up to factor 1)

(—iV—A)8(x —y)+8(x —y—iV—A). (5.7)

17For the corresponding thermodynamic identity, see, for ex-
ample, Byers and Yang (1961).

18The following is meaningful for the Schrédinger operators of
Secs. IT and IV. For tight-binding Hamiltonians, one has to use
the virtual work argument of Eq. (5.2).
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In a single ring, loop and edge currents coincide, so we
consider this case. Let x =(p,0) be the canonical cylin-
drical coordinates with the z axis threading the ring. The
current operator associated with a section of the ring
with fixed azimuthal angle 6, is

8(60—6,) 8(60—0,)

p(90)~, Vg p(eo) ’ (5-8a)

+Ug

where vy is the velocity operator in the 6 direction.
Equation (5.8a) follows from integrating the current den-
sity over the 6, sections of the ring. The average current
(over 0) is therefore )

1
21

1 1
p(e) U9+Uep(9) . (58b)

Suppose now that the ring is threaded by a flux tube,
so that the electric field associated with it is azimuthally
oriented. The vector potential describing the most gen-
eral flux tube is

Alx)=PdA(x), (5.9)
where
A(O+2m)=A(0)+1 . (5.10)
The loop-current operator is
(9gA) (3pA)
o ‘. (5.11)

o VoY)

Comparing Egs. (5.8) and (5.11), we see that the normal-
ized weight 6(6—6,) in Eq. (5.8a) is replaced by the nor-
malized weight 1/(27) in Eq. (5.8b), and by a general
normalized weight (3,A). The weight (which need not be
positive) in Eq. (5.11) characterizes the flux tube. For ex-
ample, the flux tube of Eq. (2.10), associated with a singu-

lar gauge field, that is supported on a half-line along the

radial direction, has all the potential drop at 6,. The as-
sociated A is a staircase function of the azimuthal angle,
i.e., the integral part of ®(0—6,)/27. The correspond-
ing loop current coincides with the current (5.8a). If, on
the other hand, the tube is that of Eq. (2.8) and generates
uniform fields A(6)=(® /27)0, the loop coincides with
the average edge current, Eq. (5.8b). In steady state,
current is conserved and is independent of the choice of
A. The loop current (5.11) and the edge currents (5.8)
coincide. :
The basic definition of loop currents says that we may
interpret the fluxes threading the loops as “ammeters” of
loop currents.!® The examples discussed above show that

190One way to actually measure the loop currents is to observe
the change in the fluxes resulting from induction. This is dis-
tinct from what is méant here by the statement that fluxtubes
are ammeters. The theoretical framework neglects all induction
effects. Induction is briefly discussed in Sec. XIV.
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different ammeters, i.e., different flux tubes, measure dis-
tinct, although related, currents that coincide in steady
states. The situation is like that in Sec. II, where
different driving flux tubes gave distinct dynamics even
though the fluxes and emf’s were the same. Clearly, a
particularly natural and convenient set of observables to
focus on are those that are independent of the flux tubes
and depend only on the fluxes ® and emf’'s —®. This
corresponds to our desire to define the transport
coefficients as ratios of currents to voltages, paying no re-
gard to how the electric field and currents are distribut-
ed. As we shall see in Secs. VI and VIII, if the transport
coefficients are defined via flux averaging, they have this
property: the same (averaged) loop currents are mea-
sured by all “ammeters’ and “batteries.”

Suppose now that H( A) is time dependent, because
some of the fluxes are. Let |1,) solve the time-
dependent Schrodinger equation. Then, using the chain
rule, Eq. (5.4), we can rewrite the mth loop current as

I<m’¢t)=—ial<¢t]am¢t> s (5.12a)
which, in form notation, is
I(¢t)=—iat<¢t|d¢t) . (5.12b)

Equations (5.4) and (5.12) are the basic equations of ““loop
transport.” In the next section we shall see that, in the
adiabatic limit, the loop currents are related to geometri-
cal properties of the bundle of spectral subspaces of the
Hamiltonians.

VI. ADIABATIC EVOLUTION AND TRANSPORT

When the fluxes generating A vary slowly in time, the
evolution generated by H( A) respects the spectral struc-
ture. This is the content of the adiabatic theorem.
Namely, let P( A) be a spectral projection for H( A).
Then states in P( A) at time O evolve to states in P( A) at
time ¢, up to a small error term. Technical conditions
aside, the theorem holds provided P( A) is separated by
gaps from the rest of the spectrum. We make this as-
sumption throughout.

A convenient way to study the evolution in the adia-
batic limit is to introduce an adiabatic Hamiltonian, an
idea that goes back to Kato (1950). It generates an evolu-
tion that respects the adiabatic theorem with no error.
As we shall see below, there is a choice to be made. One
choice is to require that the evolution approximate the
physical evolution the best it can. This leads to the fol-
lowing choice of generator (Avron, Seiler, and Yaffe,
1987):

T,(A)=i[3,P,P] .

(6.1a)

Another choice, the one originally picked by Kato, is to
take as generator

H(A,P)=T,(A). (6.1b)
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Although Eq. (6.1b) appears to be less motivated, it is, in
certain ways, a more convenient choice for our purposes.
In either case, the evolutions U4 have the property

Ung(PCA(0))=P( A(1))Un4(2) . (6.2)

This is the precise meaning of the statement that the evo-
lution respects the spectral structure of the Hamiltonian.
Because of this, U,y has geometric significance as it
defines transport of states in the bundle of spectral sub-
spaces associated with the projection P( A).

It is convenient to use form notation:

F(A)=i[dP,P], dP=7 (3;P)d®d, . (6.3)
k

Equation (6.1b) can be rewritten as
H(A,P)=09,9-T(A), (6.4)

where the vector 3,® gives the flow in flux space. A cen-
tered dot denotes the pairing of vectors and forms, so, for
example, 3;,-d®;, =56;. T'(A), being a one-form, has a
natural interpretation as the connection on the bundle of
projections.

U o4 parallel transports vectors in P( A), and so is use-
ful in the study of the geometry of the spectral subspace.
Curvature is related to the noncommutativity of trans-
port in different directions (Arnol’d, 1978), so parallel
transport around a closed loop in flux space need not be
the identity but rather a general unitary in U(n),
n =dim(P). The jk component of the curvature is

U (infinitesimal loop in jk plane)—1
| area of loop |

Cl)jkz (6.5)
From the evolution equation, the curvature associated
with the projection P, for a small square loop in flux
space, is given by?°

In a component-free notation, @ is the curvature two-
form:

o=P(dP)\(dP)P . (6.7)

It is imaginary as

o'=—ow. (6.8)

We now proceed to show that the components of w are
the matrix elements of the conductance.

The adiabatic current in the mth loop, I ,4(m, ), is the
obvious analog of Eq. (5.12), where ¥ now solves the adi-

20Up to factors of i this is essentially the standard formula that
says that the curvature is d 4 —i A 4, where A is the connection
one-form. For the generator in Eq. (6.1a) the curvature is
—iTP(3;H —3,H)P 4 P[0;P,0, P]P, where T is the period as-
sociated with the loop. The first term in this expression is the
“dynamical phase” and has vanishing periods. The second is
the same as in Eq. (6.7).
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abatic evolution. Let P;( A) be the one-dimensional pro-
jection P;(A)=|y¥;( A))(¢;(A)| associated with an
isolated eigenvalue Ej(d)). We may, and do, choose
¥;( A) according to the adiabatic evolution along the
path shown in Fig. 11. This determines ¥;( A) with no
ambiguity up to an overall constant phase on ®ER".
Undoing the calculation leading to Eq. (5.12) [which
turns out to be the same as replacing H in Eq. (5.6) by the
adiabatic generator Eq. (6.1a)], one finds

Inalm, )= —8,E,(®)

A
¢2——>———-

[}

¢

FIG. 11. A choice of paths for the adiabatic phase factors.

—if (8,,,1/1,-( A)[0,¢;( A))
iar¢j=i¢'d¢j=HAd(A)¢j > (6.10)
—{3,4;(A)| 3y, (AN} . (6.9 and the fact that
By assumption, no levels cross, so the derivatives are well ‘ _ ,
defined (see Sec. VII). Using the Schrodinger equation <¢’ [ Hagl A ij)-Ej(q)) (6.11)
for the adiabatic evolution, Eq. (6.1a), gives
J
Ing(m,p;)=—3,E(®)—i 3 D, (t)((3,,1,( A)| 3 %;( A)) — (3, ;( A)|3,,¢;( A))) . (6.12)
k

In index-free notation,

I,4(P;)= —dEj'—i(d¢j( A)| dy;( A))-d(1)= —dE; —i Tr[w(P; )]-d(1) (6.13)

This equation is the basic equation of adiabatic transport and plays a central role in all that follows. The transport ma-
trix i Tr{w(P;)] in Eq. (6.13) is, in view of Eq. (6.7), the curvature two-form. Written in longhand, i Tr[w(P)] is an
h X h matrix w1th loop indices.

The current in Eq. (6.12) or Eq. (6.13) is affine in the emf’s: in the absence of emf’s there are persistent currents glven
by —dE;. Persistent currents are common in atomic physics and manifest themselves in diamagnetism. Persistent
currents also occur in macroscopic systems with macroscopic coherence, such as superconducting rings. Biittiker,
Imry, and Landauer (1983) have suggested that persistent currents also occur in mesoscopic normal-metal rings, but
this has not yet been observed. Another remarkable feature of Eq. (6.13) is that the currents at time ¢ are determined by
the emf’s at the same time: the adiabatic transport has no memory. This implies that the adiabatic ac conductance is
frequency independent (being the Fourier transform of a delta function in time).! Finally, there are no power-law
correction terms in the adiabatic transport (Klein and Seiler, 1988).

The adiabatic transport coefficients i Tr[w;(P)] depend on the flux tubes, i.e., depend on a choice of vector potential
A, for P depends on A. This is as one expects from the discussion in the previous sections. Distinct flux tubes drive
the system differently and measure its response differently. When we consider the transport of current averages, two
nice things happen. First, the transport coefficients become independent of the flux tubes and become a property of the
fluxes alone. Second, the persistent currents disappear, and one gets the usual linear response.

The average mth loop current is, by Eq. (5.5),

M=t

ynll P (6.14a)

[} 2 .
(IAd(m,Pj)) == fo 17d<I>m { (6m¢j( A)|3,¢;( A))— (8,1#]-( A)|9d,v¥,(A) Tr[o(P;)]-® .
T,,(®) is the line $+A3,,, A going from O to 27. The persistent currents, being complete derivatives, have vanishing
averages and drop from (6.14). The average transport coefficients, defined as the Fourier transform of the kernel in Eq.

(6.13), written out as a matrix, are

f2#d<1>kf
]

Syl PRRC: 121! A)|d¢,(A f

277

278 aa )P lim =5 — m (€0, (A)| 3,0, A))—(3,¥,(A)|D,,¥,(A))}

Tr[w(Pj )] . (6.14b)

21For the quantum Hall effect there is experimental support for the quantization of the ac conductance (Kuchar et al., 1987).
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T),,(®) denotes the 27 X2 square slice in flux space,
passing through ®. Properties of the transport that fol-
low from Eq. (6.14) will be discussed in Sec. VIII.

The adiabatic response is strictly linear and has no

memory. The physical response presumably has both

nonlinear corrections and memory. This raises the issue,
how good is the adiabatic approximation? A study of the
nonlinear corrections to linear response in the context of
the Hall effect has been made by Thouless and Niu
(1984). However, there appears to be no understanding
of these issues from a general mathematical point of
view. For questions about tunneling, the adiabatic limit
is known to be very good in the sense that corrections are
often exponentially small in the time scale. Tunneling is,
however, only one of the issues. And, although it is natu-
ral to expect that g,4 and {(g,4) approximate the physi-
cal transport g and (g ), this has not been shown in any
great generality. Avron, Seiler, and Yaffe (1987) have
shown that (g,,) and {(g) are close if interpreted as
charge transport (with error that is polynomial in the in-
verse time scale), and suggest that g,4 and g, without
averaging, may actually not be close to each other. The
case of constant and harmonic emf’s appears to be largely
open, at least from a rigorous mathematical point of
view.

VIl. LEVEL CROSSINGS

The assumption that E;(®) is an isolated eigenvalue
entered in several places in the previous section. First,
the adiabatic theorem requires no level crossings; second,
dP; and dE; may not exist at crossing; and, finally, the
zero average of the persistent current relies on E;(®)’s
being smooth and periodic. So points in flux space where
levels cross are where the theory in the previous section
breaks down. In an almost dialectic fashion, these points
are also the source of nontrivial transport. If no levels
cross anywhere in flux space, {ga4)(P) vanishes identi-
cally. If levels do cross, the adiabatic transport is not
defined at crossings, but is defined away from crossings
and may be nontrivial. This says that crossings are
where the ‘“‘sources” of the transport are located. For
this reason, getting a handle on crossings is a key issue in
understanding the transport.

There are three questions that we address in this sec-
tion: (1) What is the local behavior of P near level cross-
ings? (2) How big is the set of crossing points in the gen-
eric case? and (3) What can one say about crossings
when the network has symmetries? This is a ‘“‘service
section,” where relevant information that is needed later
is collected. Many of the results are standard. [For a
general overview on level crossings see Berry (1983).]

The Hamiltonians introduced in Secs. II, III, and IV
are all entire functions of the fluxes. The projection
P;(®) is given by

1 dz
Pi(D) vy H(®)—2

J T 2mi (7.1)
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where v; is a contour surrounding the jth piece in the
spectrum, Fig. 12. For convenience of notation we
suppress henceforth the index j. P(®) inherits the
smoothness of H(®) as long as ¥ stays outside the spec-
trum. If H(®) is periodic, or periodic up to unitary
equivalence, then P(®) inherits that too. Finally, if
P(®) is a finite-dimensional projection, then
Tr(H*(®)P(®P)) is smooth in P for all k. In particular,
isolated energy bands are smooth. However, when gaps
in the spectrum close, so that ¥ is pinched, smoothness
may be lost. Let D (P) be the set of points in flux space
where P is not smooth. Points in D (P) must be points of
level crossings. Because of Egs. (2.5)-(2.7), if ¢ €D (P)
then ¢+ 27k €D (P). So if we think of flux space as R”,
D (P) is periodic there. It is, however, better to think of
flux space as T".

Consider the local behavior of E;(®) and P;(®) near a
two-level crossing at ¢. Restricting the Hamiltonian to
the degenerate subspace at ¢ gives a 2 X2 Hermitian ma-
trix function

(Y| H(A | WY |H(A) | @)
(| H(A) | ¥) @ |H(A)| @)

=¢€)(P)l+e(P)o,

h(d)=

(7.2a)

where | ) and | @) are the two independent eigenvec-
tors of H( A) at ¢. Here €(®) is a real three-vector
valued function, and o is the triplet of Pauli matrices.
The two eigenvalues of Eq. (7.2a) are

E (@)=€)(®)t |e(D)] , (7.3a)

from which it follows that e(¢)=0. The eigenprojections
are

P (®)=[1+&P)-0]/2 . (7.4)

€ is the unit vector associated with €. Because of the ab-
solute value in Eq. (7.3a) and the normalization to unit
vectors in Eq. (7.4), neither E_(®) nor P.(P) need be
smooth at ¢. In € space, Eq. (7.3a) describes a conic, Fig.
13. Berry and Wilkinson (1984) call such points diabolic.
The eigenvalues are continuous in € but not smooth, and
the projections are not even continuous near €=0. [The
fact, as well as the example, are classical results due to
Rellich (1969).]

The behavior in ® space can be more complicated, and
things depend on the way ® space is mapped on € space.
The simplest case is when the map is characterized by its
linear piece. Because we are interested mostly in three-
flux networks, we restrict ourselves to the case in which

E-plane

FIG. 12. A contour in the complex plane associated with a
spectral projection.
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FIG. 13. A conic singularity.

® space is three dimensional. This is a particularly sim-
ple situation. Since € is entire in P,

3
@)~ 3 (3,€) | 4dD,,) . (7.5)

m=1
We denote the linearized map from @ to € by V®g, that
is,

[Veely =06 - (7.6a)

Now, if the linearized map is of rank 3, then the descrip-
tion of the singularity as conic holds in the ® variables as
well. In particular, in three-flux networks, diabolic
points are those where

det[V® €] | 40 . (7.6b)

For the tight-binding Hamiltonians, the linearized
map, Eq. (7.6b), can be written down by inspecting the
graph. This is especially useful if one wants to compute
the charges “by hand.” Let us briefly describe this.

Let e =(u,v) be an edge and a(e) the associated vector

potential. For the tight-binding Hamiltonian H(a) one
has

g *( iale) | o —iale)
<¢ da(e) > il —¢*(u)p(v)e ™ y*(v)p(u)e 1.

(7.7)

For the sake of simplicity suppose that a gauge has
been chosen so that a(e)=®(e) for A of the edges, and
a(e)=0 for all other edges. (All the examples we consid-
er in Secs. XII and XIII are of this form.) Suppose that
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¥ and @ span the degenerate subspace. Then from Egs.
(7.7) and (7.2a) one finds for the derivative of the map

e +ie) . : .
ail)(e)l :¢*(u)‘P(U)enb(e)_w*(v)cp(u)e—t(b(e) ,
de, (7.8)

aq)( ) Im[lll*(u ,¢, v)e i¢(e)_¢*(u)¢(v)ei¢(e)] .

Similar analysis can be made for two-level crossings in
the de Gennes—Alexander problem, Eq. (4.29). Let | )
and | @) be two degenerate eigenvectors of hy(kg,d),
with eigenvalue zero. Construct the 2 X2 Hermitian ma-
trix function of ® and %,

€k, ®)+ ek, ®) o

(Y| holk,®) | ¢) (Y| ho(k,®)| @)

(@ holk,®) | %) (| ho(k,®)| ) (7.2b)

This defines a map from (k,®) space to the (€, €) space.
The energy bands near (k,,$) are given by the vamshmg
of the determinant,

€4k, ®)—€*(k,®)=0 (7.3b)

This is a conic in (€y,€). If the Jacobian of the map is
nonvanishing, it is also a conic in (k,®). The assumption
that the degeneracy is isolated translates to e€(k,®)s40
for (k,®) on a small three-sphere centered at (kg,¢).

We now turn to the second question, how big is D (P)?
This question was first posed by von Neumann and
Wigner (1929), who also proposed a counting rule that
gives the answer. A somewhat more precise formulation
of the question is, in the space of “all” Hamiltonians
what is the dimension of the space of Hamiltonians with
degenerate eigenvalues? This, of course, depends on
what one means by “all.” The convention in the statisti-
cal theory of spectra (Dyson, 1964; Porter, 1965) is that
for problems with magnetic fields, with or without spin,
“all” means complex Hermitian matrices.

The space of Hermitian nXn matrices is an n2-
dimensional vector space. To illustrate the von
Neumann—Wigner strategy we start with a warmup and
show that the space of nondegenerate Hermitian matrices
is of full dimension.

The unitary that diagonalizes -a given Hermitian ma-
trix with fixed nondegenerate spectrum,

E, <E,< " <E, (7.9a)
is determined up to a diagonal unitary matrix. So there
is a one-to-one correspondence between nondegenerate
Hermitian matrices with fixed spectrum and elements of

U(n)/[U(D]" ' (7.10a)

Since dim[U(n)]=n?, the space in Eq. (7.10a) is n(n —1)
dimensional, which together with the n dimensions asso-
ciated with varying E; gives n2, the full dimension.

Now consider the Hermltlan matrices with, say, a de-
generate ground state. Equation (7.7) is replaced by
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E,=E,< - <E, . (7.9b)

The corresponding diagonalizing unitaries are identified
with elements of

Un)/[U()]"2XxUR)] . (7.10b)

This space is n (n —1)—2 dimensional. The dimension of
the space associated with varying E; is n —1 so, altogeth-
er, the space with a twofold ground-state degeneracy is of
dimension n2—3. The codimension is 3 and is indepen-
dent of n. [For an alternative derivation, see Avron and
Simon (1978).] It has n —1 components. More generally,
the space of Hermitian matrices with m-fold degeneracy
has n —m + 1 components with codimension given by??

(m —1)+dimU(m)—m dimU(1)=m?2—1. (7.11)

Thus the n —1 components with twofold degeneracy are
connected by ‘“‘filaments” of codimension 8, with triplet
degeneracies. The codimensions are independent of the
size of the matrices and hold for operators that are limits
of matrices and have discrete spectra. [For recent in-
teresting mathematical developments on the crossing rule
see Friedland et al. (1984).]

The von Neumann—-Wigner theorem suggests that a
family of operators depending on n parameters has eigen-
value crossings on a set of codimension 3 in parameter
space. This is an ansatz. It is not a theorem, because the
n-parameter family may be embedded in a special way in
the space of all Hermitian matrices. In fact, when taken
too literally, the ansatz has easy counterexamples.?> The
ansatz says that D (P) is of codimension 3 and is a set of
points in a three-flux network, lines in four-flux network,
etc. We find that the ansatz holds for many networks,
and when it fails, it does so for an identifiable and often
interesting reason.

We have already mentioned the fact that D (P) acts as
a source of transport and that getting a handle on D (P)
is the major step in the calculation of {g,4)(P). It is
therefore natural to consider symmetric networks in
which group-theoretic methods can be used to give infor-
mation on D(P) and P. Symmetric networks have a
point symmetry group G associated with the graph. G
induces representations on the vertices, edges, and faces,
which we denote by G (V), G (E), and G (F), respectively.
D (P) is invariant under G (F). Points in the flux space

22In the case of real symmetric matrices the U(m) and U(1) in
Eq. (7.11) are replaced by O(m) and O(1), respectively. This
corresponds to the spin-zero, time-reversal-invariant situation.
In the spin-{ time-reversal-invariant situation, Sp(m) and Sp(1)
replace U(m) and U(1). This will be discussed in a forthcoming
work of one of us (J.E.A.) with R. Seiler and B. Simon.

23Consider the Schrédinger equation on the line with potential
V(x;$), depending on n parameters ¢ so V— 0 at |x | — 0.
The von Neumann-Wigner ansatz gives codimension 2 in this
(real) case and clearly fails arbitrarily badly as the spectrum is
simple for all ¢ due to a Wronskian identity.
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that are invariant under a (nontrivial) subgroup of G (F)
are points of symmetry. Group theory can sometimes
say something about crossings at symmetry points. Un-
fortunately, there is no guarantee that D (P) is contained
in the set of points of symmetry, as there may be acciden-
tal degeneracies.

As an illustration, consider the tetrahedral network. It
is associated with the tetrahedral graph shown in Fig. 14.
G is the tetrahedral group T,, and its character table is
given in Table I taken from Landau and Lifshitz (1977).
|V |=|F|=4, |E|=6. The tight-binding Hamil-
tonian and the Alexander—de Gennes matrix with ®=0,
or ®=(m,7,7), are invariant under T (V). [Take
a(e)=® for all edges.] Because the graph has fixed
valence |v | =3, the eigenvalue problem for the tight-
binding and the de Gennes—Alexander cases are related
by Eq. (4.37).

By inspection one sees that the four-dimensional repre-
sentation associated with the vertices has

X(C,)=0, X(C;)=1, X(E)=4,
(7.12)
X(S,)=0, X(o,)=2.

So the four-dimensional Hilbert space decomposes ac-
cording to

A +T, . (7.13)

This says that =0 and ® =(,7,7) have points of tri-
ple degeneracy. For ® =0 the nondegenerate subspace is
A(1,1,1,1), AEC and is associated with the eigenvalue
zero for the tight-binding Hamiltonian, and
cos(k |e | )=1 for the de Gennes—Alexander matrix.
The triple degeneracy lies in the orthogonal complement
to (1,1,1,1), with eigenvalue 4 in the tight-binding case
and cos(k |e|)=—1 for the de Gennes—Alexander
case. At ®=(m,m,7), in the gauge where all bonds are
—1, the same vector is the top state, with eigenvalue 6
for the tight-binding case and cos(k | e | )= —1 in the de
Gennes—Alexander case. The triply degenerate state has
eigenenergy 2 in the tight-binding case and
cos(k | e | )=41 in the de Gennes—Alexander case [cf. Eq.

4.35)].

¢, é

by 2
' $3

FIG. 14. The tetrahedral graph.
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TABLE 1. Character table for the tetrahedral group.

T, E 8C, 3C, 60, 65,
4, 1 1 1 1 1.
A, 1 1 —~1 -1
E 2 —1 2 0 0
T, 3 0 —1 —1 1
T, 3 0 —1 1 —1

Methods of group theory can also be used to reduce
the matrix problem to smaller invariant spaces along
symmetry lines. This can sometimes be used to compute
explicitly the band functions along such symmetry direc-
tions. We shall see several applications of this in Secs.
XII and XIII that permit analytic calculations of the
crossing points as solutions to quadratic equations.

Finally, we want to recall that methods originally
developed in the context of the Bloch theory of solids
(Herring, 1937) can be used to tell when time reversal to-
gether with other symmetries implies level crossings.

Points of level crossings contain global spectral infor-
mation. It turns out that for the tetrahedron they occur
at symmetry points, so the global character of the prob-
lem is taken care of by symmetry. The global aspect of
the problem is also the hard part of the analysis. Net-
works with no symmetry can therefore only be analyzed
numerically. Even for networks with symmetry, where
group-theoretic methods give some crossing points, there
appears to be no way, except brute (numerical) force, to
show that there are no other ‘“‘accidental” points of level
crossings. It would be useful to have “sum rules” that
would indicate whether a set of crossings is complete or
not. One set of such rules will be described in Sec. X.

Vil. GEOMETRY AND THE FORM CALCULUS
FOR PROJECTIONS

We want to examine properties of the adiabatic trans-
port i Tr[w(P)] of Eq. (6.13). The calculus involved is
that of forms of projections. As pointed out by Bellissard
(1986a), there is a relation to noncommutative geometry
(Connes, 1969; Witten, 1986).

One important question that we have already raised in
Sec. V, and that we address here is what transport prop-
erties depend only on the emf’s and fluxes but not on oth-
er details about the flux tubes. From a mathematical
point of view the answer turns out to be quite simple:
transport is described by a closed two-form. A natural
equivalence is to identify closed two-forms that differ by
an exact form. This is the cohomology associated with
the two-form, and, as we shall explain, it has the desired
properties. In particular, it implies that the flux-
averaged transport has this property. These, as well as
related issues, are the subject of this section.

i Tr[w(P)] is a closed two-form. To see this, note that
P2=P gives :

P(dP)+(dP)P =dP, P(dP)P=Q(dP)Q =0, (8.1)
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where Q =1—P. It follows that
P(dP)Y=P(dPYQ, j odd,
P(dP)Y=P(dPYP, j even .

(8.2)

Now, since P2=P and d?=0, forms that are constructed
from P and (dP) have the property that odd forms map P
to Q and Q to P. In particular, the trace of any odd form
vanishes. Since o is an even form, dw is an odd form,
and so d Tr[w(P)]=0.

Another interesting property of Tr[w(P)] is linearity.
That is, if P, and P,, as functions of the fluxes ®, are
mutually orthogonal, then

Tr(w(P, +P,))=Tr(o(P,))+Tr(w(P,)) . (8.3)

This is remarkable because w(P) is cubic in P. In view of
Eq. (6.13), Eq. (8.3) may be interpreted as the additivity
of the conductance for noninteracting fermions.

We want to consider different flux tubes, that carry the
same fluxes, in the same basket. The Hamiltonians
H(A) and H( A’) are unitarily equivalent, and so the
corresponding projections are related by unitaries U (®).
For the applications in Sec. XI we do not wish to exploit
the full unitarity of U, and instead consider the more
general setting where P’ = vPU" and

viv=1. (8.4)

(We do not need to assume UU =1 for the following cal-
culation.) P’ is a projection if P is. By explicit, tedious
calculation,

w(P')=UP(w(P)+id (PVP)—(PVP*)PU' , (8.5

where, as before [cf. Eq. (2.5)], V= —iU'dU. As a conse-
quence

Tr(wtP'))=Tr(w(P))+id Tr(PVP) . (8.6)

Tr(w(P')) and Tr(w(P)) differ by an exact form: a coho-
mology class is singled out. So, if we consider the trans-
port two-form, i Tr(w(P)), modulo exact forms, we get a
transport property that is common to all flux tubes and
depends only on the fluxes. We shall return presently to
the question of what it means in practice to look at trans-
port in cohomology. Before doing that, however, let us
consider another important consequence of Eq. (8.6).

The gauge fields A and A’ are linear in ®. Therefore
(locally) U(®)=exp(iPA), and V =AdP is a one-form
that is independent of ®. So, the @ dependence of

- (PVP)(®) is determined by P. Now, from Sec. II we

know that there are choices of flux tubes that make P
periodic in flux space with a period of one flux unit. Any
other choice of flux tubes is related to this one by an ap-
propriate U(®). For this choice, each of the two terms
on the right-hand side of Eq. (8.6) is periodic in ¢ and so
is the left-hand side. We conclude that the adiabatic
transport i Tr(w(P)) is periodic for all flux tubes [even
those for which the Hamiltonian is not periodic, like Eq.
(2.7)]. This establishes the fact that, for the adiabatic
transport, flux space may be identified with the torus T*,
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This may be viewed as a generalization of the Bohm-
Aharonov periodicity, i.e., the Byers-Yang theorem, to a
class of time-dependent problems.

How does one measure a cohomology class?. The
answer to this is suggested by de Rham theory (Flanders,
1963), which says that the study of periods is a way to
study the cohomology. Consider a closed, two-
dimensional surface C in that portion of flux space where
P is smooth, i.e., in T#/D (P). The Chern number associ-
ated with the projection P and the surface Cis

L,
ch(P,C)=—~ [ i Tr(a(P)) . (8.7)

By Stokes-Poincaré theorem (Arnol’d, 1978) this is an in-
variant in cohomology, i.e.,

ch(P,C)=ch(P’,C) , (8.8)

where P'=UPU" and is real by Eq. (6.8). (It is actually
an integer by a more complicated argument.) Also, if C
is homologous to C' in T"/D (P), then, by the closedness
of ® (and Stokes-Poincaré theorem again)

ch(P,C)=ch(P,C’) . (8.9)

Of particular interest are two-dimensional sections of
the torus T},;(®) that do not intersect D (P). Combining
the definition of Eq. (8.7) with the basic formulas for the
average transport, Eq. (6.15), we have

[<gAd)(Pj)]k1=Ch(Pj,Tk1(<D)) . (8.10)

We see that the average adiabatic transports are proper-
ties of the cohomology class. They depend on the fluxes
and emf’s and are independent of the detailed fields gen-
erating them. We note, also, that from the periodicity in
flux space the kl transport coefficient in Eq. (8.10) is a
function of all ® but ®; and ®,. So, in a two-flux net-
work, the averaged transport coefficient is an antisym-
metric 2 X 2 matrix of numbers (it is actually the zero ma-
trix, as we shall see later), and in a three-flux network it
is a 33 antisymmetric matrix whose entries are func-
tions of one variable, etc.

ch(P,C) are topological invariants in the sense that
they are independent of the details of the flux tubes and
depend only on the fluxes. Actually, they are invariants
in a stronger sense of deformations of the network Ham-
iltonian H. To see this, note that a general (self-adjoint)
deformation of H can be decomposed into three
“transversal” pieces: (1) deformations of the set of level
crossings D (P); (2) deformations of the spectrum that
keep the spectral subspaces invariant; and (3) isospectral
deformations, i.e., deformations of the spectral subspaces
that keep the spectrum invariant. ch(P,C) is invariant
under (1), for if C does not intersect D (P), it also does
not intersect a deformation of D (P). ch(P,C) is invariant
under (2), for (P) is invariant (it depends only on the
projection P, not-the energies E). Finally, isospectral de-
formations are given by unitaries and the invariance of
ch(P,C) under these follows from Eq. (8.6).

We now recall the proof that ch(P,C) is an integer if P
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Cz2

FIG. 15. A covering of a closed surface S? by two contractible
surfaces with a common boundary y.

is one dimensional. [By Eq. (8.3) this extends to finite-
dimensional P’s that are deformations of sums of one-
dimensional ones.] Let C =C; 4 C,, with C, , contracti-
ble and ¥y =90C,; = —9C, (see Fig. 15). Since C, is con-
tractible there is a choice of smooth phase for ¥, so that
P=|¢;){¢,|. Then

i [ TrtatPD=i [ (pilddy) .

The left-hand side is independent of the choice of (phase
for) ¢, [see Eq. (7.1)]. The right-hand side is Berry’s
phase (Berry, 1984), associated with the parallel transport
along the curve y. Since the adiabatic evolution along y
is unique and is independent of whether we think of y as
the boundary of C, or of C,, it must be that

(8.11)

S Qildv) = [ 4yl dy,)+2min (8.12)
14 4
with n integer. It follows that
J T P= [ Trto(P)+ [ Tra(P)
=27rin , (8.13)

proving the integrality.

We conclude by noting the physically obvious fact that
there is no transport between the disconnected pieces of a
network. Namely, if the loops / and m belong to discon-
nected pieces in the network, then [{g,q)(P)];, =0. To
see this, choose a representation in which the Hamiltoni-
an factorizes as

H (®))®1+10H,(P,), Oo=(D,,P,) . (8.14)
This relation carries over to the projections and it makes
(P (P)) vanish identically on any two-surface made of
fluxes in disconnected components.

IX. TIME REVERSAL

Time reversal is the single most powerful tool in the
analysis of networks. ‘For Schrddinger operators, time
reversal is the statement

H(®)=U,H*(—®)U} , 9.1)
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where U, is a fixed (®-independent) unitary. For spin-
less electrons, in a gauge where H (®=0) is real, and in
the “coordinate representation,” Uy=1. For spin-1 elec-
trons in the same gauge and representation, Uy=io,. It
follows that

P(®)=UyP*(—®)U} , 9.2)
and so
iTr(w(®))=—i Tr(o(—P)) . (9.3)

We write o(®) for «o(P(P)). Equation (9.3) is
Onsager’s relation (Onsager, 1931).%* It also follows from
Eq. (9.2) that D (P) is invariant under inversion:

DPp)=I[D(P)], (9.4)
where
I(®)=—, 9.5)

if one thinks of flux space as R”. If one thinks of flux
space as T*, then Eq. (9.5) is interpreted modulo 27.
From Eq. (9.3) we get

ch(P;,C)=—ch(P;,I[C]) . (9.6)

Let T,,,(®) be the Im slice of the torus in flux space pass-
ing through ®. Then

I[T),,(®)]=T),,(—-2); - 09.7)

see Fig. 16. Comibining Eq. (8.10) with Egs. (9.6) and
(9.7) gives the antisymmetry of transport in the fluxes:

(gag N @)= —(gag ) —P) . (9.8)

This is a weaker version of Onsager’s relation. (It is a
statement about averages only.) In particular, in a net-
work with only two fluxes, (g4’ is & 2X2 matrix of
numbers, and so zero. (Zero is the only antisymmetric
number.)

Equation (9.8) makes certain periods vanish. Suppose
that T, is a section that is invariant under inversion,
e.g., the planes ®, =0 (®, =), ks4l,m. If T}, does not
intersect D (P) then, from Eq. (9.8),

ch(P, T}, )=0, Ty, =I[T},]. 9.9)

If the two-torus T, intersects D (P), the period is not
defined. However, as we shall see, something can be said
about this case as well.

We have already mentioned the fact that D (P) acts as
the source of charge transport. In a three-flux network
D (P) is, generically, a discrete set, and the “charge” of
the point ¢ € D (P) is defined by ch(P,Si) where Si is a

248trictly speaking, Eq. (9.3) is only a statement about the adi-
abatic transport, defined in Sec. VI. Whether it also applies to
the physical transport depends on how well the two approxi-
mate each other. See the discussion in Sec. VI.
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¢

FIG. 16. The inversion of the section T}, (®), with, say, /=2,
m=3, is the Im section though —® with the same orientation,
i.e., T[m( ’“q))

small two-sphere centered at ¢ (with outward drawn nor-
mal). Now, if €D (P), —¢ €D (P)by Eq. (9.4), and?’

I[S3]=—8%4 (9.10)

(see Fig. 17). Note the difference in the way inversion
acts on the orientation of two-tori and two-spheres.
Combining Egs. (9.10) and (9.6),

ch(P,S2)=ch(P,S2,) . (9.11)

Degeneracies that are images of each other under inver-
sion have the same charge.

We now return to sections of the torus that are invari-
ant under inversion, T}, (®)=I[T,,(®)], and intersect
D(P). Let # be the normal to the section. Then
I[T),,(®+7€)]=T,,(®—A¢€), and the translated sec-
tions will not intersect D (P) for € small. Therefore, their
periods are well defined. From the closedness of w(P)
and Eq. (9.8) we obtain

charge(T),,(®))= (ch(P, T}, (P+1Ae€))
—ch(P, T, (®—1i€))

=2ch(P, T}, (P+1fi€)) . (9.12)
Thus such planes are evenly charged. We learn that in
either case, whether the invariant planes are charged or
not, the periods of their € translates are determined by
the charges on the invariant planes. We shall make use

25To see why Eq. (9.9) holds, recall that the area form of the
n-sphere is

xj

(- )+ dxo A -+ Ndx;_ Adx; (A -+ Ndx, .
J

Ix |
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i )

¢

FIG. 17. The inversion on an even sphere at ¢ is a sphere at
— ¢ but with reversed orientation.

of this fact in the next section.

Here we have considered the action of time reversal
alone. Of course, time reversal is more powerful when
combined with other symmetries (Herring, 1937).

X. CLASSIFICATION OF THREE-FLUX NETWORKS

The transport properties of three-flux networks with
discrete D(P;)’s are determined by the charges
ch(Pj,S’i ), ¢€D (P;). This information can be arranged
in tables that list the coordinates of the various charges.
The corresponding matrix of average transport functions
(gag ) P;) can then be read directly from the table, as we
shall proceed to explain. Toward the end of this section
we introduce various notions of stability of the topologi-
cal conductance and define n-type and p-type networks.

The set of Chern numbers {ch(P,C)} for all spectral
projections P and all closed two surfaces C has a linear
structure, so it is enough to have the periods for bases of
the projections and bases, in the sense of homology, for
surfaces in T?/D(P). We first discuss the choice of a
basis for the spectral projections. The point we want to
make is that the first natural choice is actually not the
best. That is, taking P; to be the projection on the jth ei-
genvalue, so that j is an energy label, is bad because it
contains redundant information: D(Pj), D(Pj+1), and
D(P;_) are not independent. A better choice is to take
P; to be the projection on the spectrum for all energies
below the jth gap. D (P;) is then related to the set where
the jth gap closes and is independent of D (P ), k+j. In
other words, it is better to take j to be a gap label rather
than an energy label. This choice also turns out to be the
right choice in other contexts (Johnson and Moser, 1982;
Thouless, 1983; Dana, Avron, and Zak, 1985; Avron and
Yaffe, 1986; Bellissard, 1986b; Kunz, 1986]. By Eq. (8.3),
this choice makes ch(P;, T (®)) the matrix of average
transport in the ground state of the j-electron system.

In the general case, j runs over the naturals. In the
special case of tight-binding models, the Hilbert space is
C!Yl,sojrunson 1,..., |V |. In this case P, =1,
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and the associated curvature vanishes identically. For
this reason, in tight-binding models, it is enough to con-
sider jin 1,..., |V | —1. A similar thing occurs for
free electrons, as we shall explain below.

Now we come to picking a basis for the two-chains. If
we let z{?) be the basis of the second homology of the
torus in flux space with D(Pj) removed, then, clearly,
every closed two-chain z‘?) can be written as a linear
combination with integer coefficients

z2P=3 nz? , (10.1)
k

up to homology, so the basic periods ch(Pj,zf(z’) deter-

mine all periods:

ch(P;,z?)=3 n,ch(P;,z{?) . (10.2)
k

H,(T3/D(P)) is clearly spanned by three basic sec-
tions made of two-tori, T}, ,m =1, 2, 3, and |D(Pj) |
spheres Sé that surround the points ¢ in D (P;). This
seems to suggest that, given j, one needs |D(P;)| +3
periods. Actually, time reversal leads to relations be-
tween the periods, so only the “charges” are needed. In
fact, not even all the charges are needed, as it is enough
to have those in the half-torus, as we proceed to explain.

The three periods associated with slicing the torus can
be disposed of. Choose a slice that is invariant under in-
version, e.g., take the slice through O or . If this slice
happens to intersect D (P), the relevant period is that of
an e-translate which does not intersect D (P). Then, as
discussed in Sec. IX, the period is half the charge on the
invariant slice. In particular, it is zero if the invariant
slice does not intersect D (P), so the charges determine
the periods of three basic sections of the torus.

The adiabatic transport {g,q)(P;) is now determined,
for all ®, by translating the above planar slices, picking
up the charges swept in this process. We conclude that
the charges determine the transport.

Not all the charges are, however, independent. By Eq.
(9.11), the periods of Si and Sz_¢ are the same, so it is
enough to know the periods in half of the torus, say,
0<®, < 7. Finally, even the charges in half the torus are
not completely independent, for their total charge is zero.
To see this, observe that the charge of half the torus is
half the charge of the full torus, by Eq. (9.11). The
charge in the total torus is, however, easily seen to be
zero from the periodicity of (g4 ).

The charges provide an efficient way of displaying the
transport properties. More interesting is that the charges
“localize’ the problem: the charge at ¢ is a local proper-
ty of the bundle associated with P and can be computed
from properties of the Hamiltonian near ¢ by methods of
perturbation theory. In practice this means that it is
only necessary to diagonalize the Hamiltonian at the
point ¢ itself. This is an improvement over Eq. (6.14),
which requires diagonalizing the Hamiltonian on a pla-
nar section of the torus, and so requires global informa-
tion on the bundle. (Of course, one still needs to know
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where the eigenvalues cross, and this involves global in-
formation.)

We illustrate this with an example. Consider an isolat-
ed two-level crossing, and let A (®) be as in Eq. (7.2a).
The map from the space of 2 X2 self-adjoint matrices to
R? given by

€(®)=L Tr(h (®)o) (10.3)

has €(¢)=0, but €(P)s£0 for ¢ on a small sphere sur-
rounding ¢. This is a consequence of the assumption that
¢ is an isolated degeneracy [see Eq. (7.3a)]. Equation
(10.3) defines a continuous map from the two-sphere Sé
to R®*/0~S?% (Here ~ denotes equivalence in homoto-
py.) Such maps are characterized by their degree (Du-
brovin et al., 1984), and, as we shall now show, the de-
gree is —(charge).

From Eq. (7.4) the projection P_ associated with the

gap is

P_(®)=1[(1-&®D)0)], (10.4)
and by Eq. (6.7) the curvature is
@(P_)=Tr[P_(dP_)dP_)P_]
=—+Tr[o-&o-dé)o-dé)]
= Lexdede. (10.5)

In the second step we used Tr(dP dP)=d Tr(P dP)
=d Tr(P dP P)=0. Therefore the charge is

1
2y __ 1
ch(P_,S%)= oy fsﬁw(P‘)

1 A JA A
== fsiexde de . (10.6)
The right-hand side is —(degree) of the map from the
two-sphere .S 3,, to the two-sphere ().

In this way, the averaged conductances can be comput-
ed by diagonalizing the Hamiltonian for a discrete set of
points D (P). Equation (10.6), however, still involves in-
tegration. In numerical calculations integrals may be
tedious, so it is nice that, in the generic situation, calcu-
lating the degree actually reduces to computing the
determinant of a single 3X3 matrix. This observation,
made in a related context, is due to Simon (1983). Con-
sider the linearized map of Eq. (7.6). Its determinant is
the Jacobian of the transformation from ® space to e.
The degree is the sign of the Jacobian. It follows that

ch(P;,S%)=—sgndet(Vee) . (10.7)

This formula holds only if det(V®e€)40. If the deter-
minant vanishes, the degree is not determined by the
linearized map and could be any integer: 0, +1, +2, etc.
It would be useful to have formulas that would cover
some of the cases in which the degree is not determined
by the linearized map.

The bundles that arise in the study of the reduced
free-electron problem admit a similar analysis, but turn
out to have more structure. We recall that the relevant
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line bundle ¢;(®) satisfies Eq. (4.29) for an appropriate
cos[k;(®)].

By analogy with the previous case, let V® € denote the
linearized map from (k,®) to (€y,€) in Eq. (7.2b). If this

- map is of full rank, the analog of Eq. (10.7) is

charge(ky,¢)=—sgndet(Ve) . (10.8)

The bands of the tight-binding model with zero on-site
potential have an analog of the “m-shift” invariance dis-
cussed in Eq. (4.35). It says that if (E,®) is in the spec-
trum, so is ( —E,®+F), and both have the same eigen-
vectors. As a consequence,

charge(E,¢)= —charge( —E,p+7F) . (10.9a)

The reason for the minus sign is that the “m shift” flips
the sign of the energy, and this flips the “projection
below” to a ‘“‘projection above.” The graph-theoretic
tight-binding models do not have this invariance, except
in the case of regular graphs, for which similar considera-
tions give

charge(E,¢)= —charge(—E +2|v | ,¢+7F) .
(10.9b)

The band spectrum of the free-electron model also has
the “mr-shift” invariance, as discussed in Sec. IV, for both
regular and irregular-graphs. It says that hy(k,¢$) and
holk +m,p+| f | ) have the same kernel. As a conse-
quence,

charge(k,d)=charge(k +m,p+7F) . (10.9¢)

There is no sign change, in this case, for the ordering of
energies is preserved by the map. Similarly, 4,(k,¢) and
ho(2m—k,$) have the same kernel. This gives yet anoth-
er relation for the charges:

charge(k,¢)= —charge(2m—k,¢) . (10.9d)

As a consequence of Egs. (10.9c) and (10.9d) it is clearly
sufficient to list the charges with k €[0, ], rather than
[0,277], and in this interval one has

charge(k,¢): —charge(mr—k,¢p+7F) . (10.9¢)

The topological conductances of free electrons on a
network with | V' | vertices, and edges of equal lengths,
are periodic functions of the number of electrons with
period 2| ¥V | (and are antiperiodic with period |V |).
This is a consequence of the reductiontoa |V | X |V |
matrix problem, which makes the eigenvectors indepen-
dent of the quantum number » in Eq. (4.32). [Since the
metric in Eq. (4.39) is not periodic in k, there is a gap in
this argument that will be patched in the next section.]
The |V |-electron system, like the no-electron system,
has trivial transport. For the classification problem this
means that the charge tables have to cover band indices
JEL ..., |V]|—1

This periodicity is interesting from another point of
view. In networks with few loops and few electrons, one
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may expect the topological conductances to be relatively
simple functions, with few jumps from one integer to
another, and of order unity. This should be the case, for
there is no large number in the problem. However, in
‘mesoscopic systems with few loops, the number of elec-
trons can be quite large, and this could make the topolog-
ical conductances complicated. In particular, large
values and wild oscillations cannot be excluded a priori.
For noninteracting electrons, we see that this is not the
case, as the number of electrons is counted modulo | V' |
and so is kept small. This suggests that the conductances
should be “relatively simple.”

Finally, we note that regular graphs have equivalent
transport properties for the three models we have con-
sidered: the graph-theoretic tight-binding, the tight-
binding with zero on-site potential, and the de
Gennes—Alexander model. This follows from the fact
that regular graphs, by definition, are such that |v | is
the same for all vertices. The two tight-binding models
then differ by a constant, and the implicit and explicit ei-
genvalue problems are related by Eq. (4.37). Since the
eigenvectors in the three dynamics are the same, the only
distinction comes from the scalar product, which is
different in the tight-binding and the free-electron cases.
However, modulo a technical point that will be discussed
in the next section, it is a basic feature of the Chern char-
acter that it is independent of the differential structure
(i.e., the scalar product). This leads to the identity of the
charges.?

An interesting aspect of the topological conductance
concerns the issue of electrons and holes. In the Hall
effect, electrons and holes are distinguished by comparing
the direction of the actual current with the naive expecta-
tion that comes from analyzing the motion in crossed
electric and magnetic fields. In networks there is also the
possibility for both signs (the Chern number is not con-
strained to be of definite sign), and it is natural to try to
classify networks by types as well, as a kind of generaliza-
tion of the electron-hole concept (Avron, Seiler, and
Shapiro, 1986). To do so, one has first to decide on a
“naive expectation” and then to call the conductance
electronlike if it agrees with that and holelike if it does
not. In contrast with the Hall effect situation, where the
“naive expectation” does not require any nontrivial
quantum-mechanical calculation, in networks there ap-
pears to be no “naive expectation” in this sense.?’ It is
natural to take the free-electron model for the network as
a benchmark and call the conductances electronlike or
holelike if they agree/disagree with the free-electron pre-
diction. This definition, however, is conditioned on the
stability and simplicity of the topological conductance, as
we proceed to explain.

26We thank B. Simon for this observation.

27The “naive expectation” for a network made of ordinary
resistors cannot be used to define types, for this gives a sym-
metric, instead of antisymmetric, matrix.
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The free-electron model could, in principle, have com-
plicated conductance functions as in Fig. 18(a), and the
tight-binding model for the same graph could be as in
Fig. 18(b). In such a case the tight-binding model is nei-
ther n-type nor p-type. The type is well defined if the
graph of the topological conductance does not change
signs too often. Simplicity of the graph is related to no-
tions of stability that we proceed to formulate for three-
flux networks.

We say that the i-j conductance is flux stable if it is of
fixed sign for ®, €(0,7). A network is flux stable if all
pairs of the conductances are. If the free-electron net-
work is nontrivial and flux stable, and if some other dy-
namics associated with the same graph is also flux stable
and nontrivial, its type is well defined. If the dynamics
leads to trivial transport, we say that it is insulating.
(This definition fails in the case where the free-electron
dynamics give zero topological conductance, and some
other dynamics does not.)

Another stronger notion of stability is related to the
stability of types when the number of particles is not
fixed. We say that the i-j conductance is p stable if it is
flux stable and the sign is independent of the number of
electrons.

A natural set of questions is the following.

(a) When are networks flux stable? General networks
are expected not to be flux stable. However, as we shall
see, all the nontrivial networks made of three equilateral
triangles turn out to be flux stable.

(b) Are there simple rules for determining when a given
dynamics leads to electronlike or holelike behavior?

(c) When are networks u stable? Again, a priori, one
expects that the sign of the conductance could depend on
the number of electrons. As we shall see, eight out of
nine three-flux networks turn out to be u stable in the
tight-binding dynamics. For such networks, the type is
not affected by coupling to a bath with fixed chemical po-
tential.

(9adhz r\
! Pz —>
™
(o}
oE (a)
(gAﬂ)lZ
1
o P
¢ —>
(b) ?

FIG. 18 The putative graphs of the topological conductances:
(a) for the free-electron model; (b) for the tight-binding model.
There is no natural way to decide whether the tight-binding
model is n-type or p-type.
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Xl. CHERN NUMBERS: REDUCTION TO A
MATRIX PROBLEM

One of the interesting aspects of the average conduc-
tances is that an object that arises in the study of certain
partial differential operators can be computed reliably by
studying finite matrices. In Sec. IV the partial
differential Schrodinger equation was reduced to an ordi-
nary differential equation in the limit of thin wires. For

most questions the ordinary differential equation is only |

an approximation. The average conductances, being to-
pological invariants, are insensitive to deformations, so
the ordinary differential equation result is exact if the
wires are sufficiently thin and one is not too close to level
crossings.zs A further reduction, from the ordinary
differential equation to a matrix problem on the vertices,
involves no further approximation. Since a wave func-

exp[ia(e,x)]

(T(kK)Y)x,e)= sin(k |e|)

Using this map one can write the curvature two-form in
Eq. (6.12) in terms of the de Gennes—Alexander |V |
vector. This yields direct, although somewhat longish,
formulas for the curvature in terms of these |V | vec-
tors.

T'(k), the adjoint of T(k), is a linear operator from

the range of T'(k)to G! V' I such that
TN KT (k)=1. (11.2)

TT' is not the identity, but because of Eq. (11.2) it is a
projection. We apply Eq. (8.6) with

P'=Tk)PTH k), V=—iTN(k)dT k),
Tr(w(P'))=Tr(w(P))+d Tr(PV) .

(11.3)

Equation (11.3) says that the curvature associated with
the | V| X | V| projection matrix and the curvature as-
sociated with the projection in the eEaLz(e) Hilbert space

differ by an exact form in flux space R*/D (P). In partic-
ular, to compute the unaveraged conductance directly,

{¥(u)sin[k (| e | —x)]+y(v)exp[ —iale)]sin(kx)} .

dT =i(da(x,e))(To,)— |e |dk cot(k |e | )T +dk T

from which we get
J ax[Ty]*(x)[(dT)p)(x)=(4,[T'dTle) ,

where [T7dT] is a 2 X 2 Hermitian matrix with entries

28The same argument can be made about the tight-binding limit.
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tion on the vertices determines the wave function on the
edges, it is clear that computing the conductances of the
network is a matrix problem.

Our purpose here is twofold. First, we want to de-
scribe explicit formulas for the unaveraged conductances
that apply directly to the matrix problem. This requires
the right Riemann metric (i.e., scalar product) in the ma-
trix space, which is induced from the Hilbert space
metric. Second, we want to close a gap in an argument
made in the last section, that is, to complete the proof
that the averaged conductances, i.e., the Chern numbers,
can be computed directly from the matrix problem
without regard to the “‘right” metric, using, for example,
the usual “flat” scalar product.

Let e =(u,v) be an edge with vertices ¥ and v. Let ¢
be the wave function on the vertices with components
P(v). Fix the edge e. Define a linear map T (k) from
C!V! to @L%e) by

(11.1)

r

one may use Eq. (11.3) together with the |V | X |V |
projection matrix P(®) of the Alexander—de Gennes
problem. Because of the metric M (k) of Eq. (4.40), P is
related to the normalized eigenvector with eigenvalue O
by

[P(®)],, =¢(u) 3 y*(v)I)M(K)],, - (11.4)
“

Because of the metric M (k), the actual computations
are, of course, more involved. Similarly, one can write
formulas in terms of eigenfunctions rather than projec-
tions.

For the computation of Chern numbers, however, one
may use the flat metric. The issue at stake is whether
(PV) in Eq. (11.3) is periodic in flux space. If so, the
periods over the torus for the matrix, and the Hilbert
space problem, are the same. The period for the matrix
problem is a Chern number and by deformation argu-
ment it is independent of the metric, so it remains to
show that PV in Eq. (11.3) is periodic.

From Eq. (11.1) it follows that

(|e] —x)cot[k(]|e | —x)] 0

0 x cot(kx) |’ (11.5)

(11.6)
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sin®(k | e | )(TTdT)“=f dx sin’[k( |e | —x)][ i da(x,e)— | e | dk cot(k |e |)

+(|e |x)dkcotlk |e | —x)],

sin(k | e | XT'dT),= [ dx sin’[k(|e | —x)]sin(kx)exp[ —iale)]

X[—ida(x,e)— | e |dk cot(k | e | )+x dk cot(kx)] ,

(11.7)

sin’(k |e | )(TTdT)n:f dx.sin®(kx)[ —i da(x,e)— | e | dk cot(k | e | )—x dk cot(kx)] .

The ® dependence comes from the ® dependence of k,
dk, da, and exp(—ia). The first two are periodic in ® by
the noncrossing. The third is ¢ independent, and the
fourth is periodic, at least for the applications in Secs.
XII and XIII. It follows that [T*dT] is periodic. It is
also smooth in ® provided sin(k | e | )540.

Xll. NONTRIVIALITY: THE HOLES EFFECT

The general structure in the preceding sections is con-
sistent with {(g,q) =0 identically. A basic question,
therefore, is whether there are nontrivial networks. Our
original interest in networks came from our interest in
the Hall effect and so did much of our early intuition
about what one should expect. The first networks we
looked at were two-flux networks, because they are the
simplest, and because the Hall effect also has two loops.
Not surprisingly they were all found to be trivial for the
same reason that there is no Hall conductance in zero
magnetic field, namely, time reversal. One needs a third
loop and a third flux to play the roles of the crystal and
magnetic field. Next, we looked at three-flux networks.
The first was that of Fig. 19, which looks like the Hall
effect expect that a hole replaces the Hall sample and &,
replaces the magnetic field B. This graph is nonplanar
and the associated tight-binding model was indeed found
to be nontrivial. However, as we subsequently realized,

P, ®P,

$Q

FIG. 19. A three-loop graph that mimics the Hall effect and
whose corresponding tight-binding model is not trivial.
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nonplanarity is not essential for nontriviality, and neither
is the close correspondence with the Hall effect. In fact,
nontrivial networks appear to be ‘“‘generic.” Here we
focus on one particular planar network that is a close rel-
ative of Fig. 19 and that is shown in Fig. 20. We dub it
the holes graph. We present the analysis of the tight-
binding and the free-electron models for this graph.

One reason for singling out the holes graph is histori-
cal: this was the first graph we analyzed in detail. From
a textbook, didactic point of view this is an unfortunate
choice for, as it turns out, this is a complicated model.
The tetrahedron and the gasket of the next section are
symmetric graphs, and this simplifies the analysis. So the
holes graph is actually a typical representative of the
harder, low-symmetry, models. A reader who would
rather first study a model that can be analyzed in a few
lines of calculation is referred to the subsection on the
tetrahedron in the next section. With the graph we asso-
ciate two dynamics: the (graph-theoretic) tight-binding
and the free-electron dynamics. Since the graph is not
regular, there is no reason why the dynamics should coin-
cide, and a meaningful comparison of the transport prop-
erties can be made. In particular, as we shall see, both
lead to nontrivial (topological) transport.

We shall first describe the numerical and analytical
methods involved and the way the results will be present-
ed. The same methods and conventions hold in the next
section, where results for a whole batch of graphs are
given.

As we have explained in Sec. X, the hard part of the
problem is the global piece of isolating level crossings.

3 $3 4
L

FIG. 20. The graph of the holes effect. ® and ® denote fluxes
going into and out of the plane. The gauge field is chosen so
that a phase @, is associated with the edge (1,3), @, with the
edge (2,4), and ®; with the edge (3,4). The graph has five ver-
tices, seven edges, and three loops.
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The two main tools are numerical method and the appli-
cation of symmetry principles. The numerical method is,
of course, quite powerful as it applies to general graphs,
and is easily adaptable from one network to another. We
have used the two methods in tandem, in the sense that

the numerical results often suggested analytic deriva--

tions. Let us first describe the main features of the nu-
merical analysis of networks.

Isolating the points of degeneracies is not trivial from a
numerical point of view, because the finite numerical ac-
curacy may blur a true degeneracy with near avoided
crossing. One way to test for degeneracies is to compute
the Chern number associated with small spheres or
cubes. This is the complex version of an idea proposed
many years ago by Herzberg and Longuet-Higgins (1963)
and Longuet-Higgins (1975) in the real case. (In the real
case the sphere is replaced by a circle, and the two-form
by a one-form associated with adiabatic transport.) If the
charge is nonzero, there is at least one degeneracy there;
if it vanishes, no firm conclusion can be made. So, in
principle, it is possible to divide the unit cell in flux space
into small cubes and compute the charge of each cube by
an appropriate surface integral. In practice this method
is very expensive in computer time, for the unit cell has
to be divided into many cubes- if the degeneracy is to be
identified with some precision. Further, each of the small
cubes has to be wrapped by a fine mesh for the surface in-
tegrals. The mesh has to be fine enough so that the sur-
face integral is close to an unambiguous integer. And
finally, the integrand requires diagonalization of the
Hamiltonian at every point of the mesh. A typical CPU
time for such an integral, for a five-vertex network on an
IBM 3081D, is on the order of 1000 sec. Instead of this
systematic but time-consuming procedure we have used a
simpler method that suggests where points of level cross-
ings may lie. Once these were isolated, their charges
were computed by surface integrals. We then checked
that we did not miss charges by computing Chern num-
bers for many planar slices of the unit cell.

We looked for degeneracies by directly examining the
smoothness of the projection. If we divide the cube with
a mesh of size €, then normalized eigenvectors away from
a degeneracy satisfy

[ (¢;(®) | ¢;(D+e€)) | =1—0() . (12.1a)

Near a degeneracy the projection need not be close to 1.
For example, if a diabolic crossing is midway between P
and ®+e¢, then [see Eq. (7.4)] (¢;(®)|¢;(P+e))
=0(€?). In general one has

| {3, (®) | (D) | =L[1+&P)-&D)], (12.1b)

with a “typical value” of order L. We chose a sequence
of 6j=27T/(3X2j), j=1,...,10 and computed the over-
lap in Eq. (12.1) for successive €; if the overlap was not
close enough to 1. Once a small cube with a possible de-
generacy was identified, its charge was used to decide on
crossing.

The charges have been computed numerically as a sur-
face integral using a formula that is equivalent to Eq.
(8.7). [Since standard programs for diagonalization of
matrices yield eigenvectors rather than projections, it
proved convenient to write the analog of Eq. (8.7) in
terms of eigenfunctions.]

The symmetry principles can be applied only on a
case-by-case basis. For the holes graph the permutation
of the vertices

U=(12)(34)(5), (12.2a)

implementable as a unitary transformation on the Hamil-
tonian, is equivalent to

(D), D,,D3)— (D, D, —D3) . (12.2b)

The set of points in flux space that are left invariant un-
der the combined action of U and time reversal defines
“symmetry” points. They lie on two planes, which turn
out to play a special role. The planes are

(P, — P, D;), (7—DP,7+P,,D;) . (12.3)
Another set of symmetry points are those that are left in-
variant under the action of U alone. These lie on two
lines, and these lines also play a special role. The lines
are given by

(P,9,0), (&,P,7). (12.4)

As we shall see, the symmetry points turn out to be the
loci of level crossings in both the tight-binding and the
free-electron models. Moreover, the symmetry can be
used to reduce the Hamiltonian to invariant subspaces,

TABLE II. The charges for the tight-binding model corresponding to Fig. 20, the holes effect. Only
the charges in the half-cube of flux space with ¢; in [0,7] are listed. They have identical inversion im-

ages. cos(ma)=1—V2 or a~0.867.

No. b/ E Gap Charge Multiplicity
1 (2,-23,1) 1 1 -1 2
2 (3,30 1 1 1 2
3 (a, —a,a/2) 3-V2 2 1 2
4 (a,,0) 3—V2 2 —1 2
5 -%%3 3 3 —1 2
6 (£,2,1) 3 3 1 2
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where the eigenvalue equations can be solved analytical-
ly, as we shall see below.

Following the classification scheme described in Sec.
X, we collected the results in a single table. Table II de-
scribes the results for the tight-binding dynamics and
Table III those for the free-electron dynamics. The
tables are organized as follows. The coordinates of the
crossings are listed under ¢. E is the corresponding de-
generate energy. The gap that closes at this degeneracy
is listed under “gap.” Gap 2 means that the second and
third levels cross at that point. Gap index j describes the
transport properties of the j-electron system in the
ground state. By general principles (see Sec. X), it is
sufficient to consider j =1,..., |V | —1.

With each point listed in the table one can associate a
cluster of points by symmetry operations. For the holes
graph there is a quadruplet associated with U and time
reversal. All the points in such a cluster have identical
charges. In the tables, we denote by multiplicity the
number of distinct points in the torus obtained by apply-
ing these symmetry operations. The numbering in the
first column is arbitrary, but we have grouped crossings
according to their gap index.

The data in the tables are a mixture of numerical re-

_J
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sults and analytic calculations in the following sense.
The coordinates of degeneracies (and sometimes the
charges, too) are analytic statements. However, the
claim that there are no other degeneracies is based on nu-
merical evidence.

The (graph-theoretic) tight-binding Hamiltonian corre-
sponding to the graph of Fig. 20 is

2 0 —e 0o -1
0 2 0 — 1
H®)=|—e ™ 0 30— 1
0 iy -y o
—1 —1 1 -1 4

(12.5)

Because the Hamiltonian is 5X 5, the eigenvalue equa-
tion, det[ H (®)—E]=0, can be written out analytically
with a finite amount of human effort. Although this
computation can be done “by hand” it is actually easier,
and possibly safer, to compute it mechanically using one
of several available formal manipulation programs. (We
have used REDUCE.) The result is

det[H(®)—E]=—E’+14E*—70E*+152E*—137E +38—2((2—E)(3—E)—1)[cos(®;) +cos(P,)]

—2(2—E)*cos(®;) —2(2— E)(cos( P, +D3) +cos( P, — D3)) —2 cos(P; — P, + P;) .

(12.6a)

Points of (double) degeneracy are the simultaneous zeros of this and

da

7 det[H (®)—E]=0,

dE

(12.6b)

—‘Ldec[H(cp)—E]z —5E*4+56E3—210E*4+304E —13742(5—2E)(cos(®;)+cos(P,))

+4(2—E)cos(®P3)+2(cos(P; + P3) +cos(P, —P3)) .

TABLE III. The charges for the free-electron model associated with Fig. 20, the holes effect. Only the charges in the sections ¢; and
k in [0,7] are listed. There are identical charges at flux-inverted points, and opposite ones at 2m—k. ¢,/7~0.6824, ¢,/m~0.4299,

¢y/m~1.6618, ¢,/m~0.051.

No. ¢ cos(k) Gap Charge Multiplicity
1 (77— 17— $1,0) —i’—gﬂ 1 1 ‘ 2
2 (m—oy, —T+ ¢, m—¢) _—lg_\/7 1 —1 2
3 (63,85, 1—_8‘/—3 2 —1 2
4 (B3, — b ) L 2 1 2
5 (7= sy — T+ 3y —3) _—lzﬂ 3 1 5
6 (=5, 7 —$3,0) e 3 | 2
7 ($1,— 1) - 4 1 2
8 ($1,1,) Lv? " 1 2
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Equations (12.6a) and (12.6b) for the degeneracies have
the following obvious symmetries. If (¢;,E;) is a solu-
tion, so is (—@;,E;), and if (¢,,¢,,43,E;) is a solution, so
is (¢2’¢1) _¢37Ej ).

The advantage of having explicit formulas like Egs.
(12.6a) and (12.6b) is not so much for finding the solu-
tions, since, in general, this can be done only numerically.
Originally, the entries in the table were derived by com-
bining the numerical results with guesswork, which was
then verified by substitution in Eq. (12.6). With reason-
able numerical accuracy, the coordinates and energy of
the crossings at points 1, 2, 5, and 6 suggest a natural
guess. For points 3 and 4 the key turned out to be the
guess for the energy. Equation (12.6b) then gives a linear
equation for one unknown, coswa.

As we subsequently realized, much of the guesswork
can be replaced by group theory. This approach also re-
vealed a remarkable property of the band functions,
namely, that there are “flat bands” on the symmetry
lines, Eq. (12.4), whose energy is independent of ®. The
energy values for these flat bands are given by the solu-
tion of quadratic equations. The crossing points can then
be computed from Eq. (12.6b). In this way one gets the
entries in the table, as we now proceed to explain.

Consider the symmetry lines in Eq. (12.4). The invari-
ant subspaces under U are

I: (al;a]’a2,a2)a3) ’
(12.7)
II: (a;, —a;,a,, —a,,0) .

a; 5, 3E€C. Iis a three (complex) dimensional space and 11
is two dimensional. Reducing the Hamiltonian of Eq.
(12.5) to II gives a 2X2 eigenvalue problem, and the
band functions on the symmetry lines of Eq. (12.4) are
given as the solution of quadratic equations. The result is
four flat bands:

Ey(®,0,0)=3+V2, Ey(®,®,7)=2+1. (12.8)

The other three bands along these lines are given by a
solution of a cubic equation. We do not know what the
reason is for flat bands in this problem, but because of
this the energies at crossings are known for three of the
six points in the table. From Eq. (12.6a) the coordinates
of points 2, 4, and 6 are given by a linear equation in
cos(P).

Some of the properties of Table II worth noting are as
follows.

(1) In agreement with the von Neumann—Wigner an-
satz one finds that the simultaneous solutions of Eq.
(12.6a) and Eq. (12.6b) are a discrete set {(¢;,E;)}. D(P)
is then the union over j of {¢;}.

(2) For each gap index, the total charge, counting mul-
tiplicity, is zero. This is the neutrality of the cube in flux
space proven in Sec. X. It gives | ¥ | —1 sum rules that
check for the completeness of the set of crossings.

(3) For each gap index, planes with constant ®, or con-
stant @, are neutral. Such planes either avoid all charges
or contain four charges that neutralize in pairs. We dis-
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cuss a consequence of this for the conductance below.
This property is presumably unstable under perturba-
tions.

(4) Generically, one expects only *+ charges. This is
the case here. However, because of the symmetry of the
network it is not possible to argue for this on the basis of
genericity alone.

As we have explained in the previous sections, once the
degeneracies are known, the charges can actually be com-
puted analytically. To make analytic calculations for the
table would require further guesswork for the eigenvec-
tors for one point in the table for each gap index. That
is, three pairs of eigenvectors would need to be guessed.
We have contented ourselves by making this calculation
for the first gap, and verified that the analytic result
agrees with the numerical result. We have chosen point
2 and describe below the computation of its charge.

Two independent eigenvectors with eigenvalue 1 of
point 2, of Table II, are

I ¢)=(Z3, —2391)_170) )
|¢>=(2,1+Z3,Z§,1,1) ’

(12.9)

where z;=exp(2m7i/3) is the cubic root of unity. |)
and | @) are neither normalized nor orthogonal. For our
purpose all that matters is that they are independent.
Restricting the Hamiltonian to the degenerate subspace,
using Eqgs. (7.8), gives

~(9p4)2
1
1
o /3 2w/ 3 m
$—>
(a)
\
~(94)12
1
1 1 1
(o] /3 2mw/3 k4
¢ —>
(b)
—(gaa )12
1
1
[0} /3 2mw/3 T
$—>

(c)

FIG. 21. The 1-2 conductances of the holes effect in the ground
states for the tight-binding model of noninteracting (spinless)
electrons: (a) the one-electron system; (b) the two-electron sys-
tem, (c) the three-electron system. Since the graphs are periodic
and antisymmetric, only half the period is shown. The four-
and five-electron systems have vanishing conductances and are
therefore not shown. The network is p-type, flux and u stable.
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d61=l/'2—3"(d¢1—d¢2+d¢3) N

d62=%(—d(1>1+d¢2+d¢3) ) (12.10)
de3=§(dq>2_dq>3) .

The determinant of this map is —sin*(27/3), so the
charge of point 2 is 1. From the neutrality of the cube
we then learn that the change of point 1 is —1. This
gives all the charges in the first gap.

From the table it follows that the average conduc-
tances [i.e., the periods of Eq. (8.10)] are as in Fig. 21.
The three graphs correspond to the 1-2 conductances in
(a) the one-electron ground state, (b) the two-electron
ground state, and (c) the three-electron ground state.
The four- and five-electron ground states have vanishing
conductances. At most five electrons can be accommo-
dated in the tight-binding Hilbert space for their net-
work. That there are no charges associated with the
five-electron ground state follows from general principles.
However, that the four-electron ground state also has no
charges is a special property of the holes graph and the

|
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tight-binding dynamics. We do not know the reason for
that.

From the neutrality of the @, , sections of the torus, it
follows that [{gaq)];3 and [{gaq)],; vanish identically.
This property is presumably unstable under perturba-
tions.

Finally, we note that the conductances are flux stable,
and u stable in the sense of Sec. X.

With the holes graph we now associate the free-
electron dynamics. The Alexander—de Gennes matrix
ho(k,®) corresponding to this dynamics, assuming a net-
work with unit length links, is

i®,

2 cos(k) 0 —e 0 —1
0  2cosk) 0  —e2 1
e 0 3cos(k) —e'™ —1
0 —e T o™ 3cos(k) —1
-1 —1 —1 —1 4 cos(k)
‘ (12.11)

The eigenvalue equation is det[44(k, ®)]=0, where

det[ho(k, ®)]=144 cos’(k)— 124 cos*(k) 44 cos*(k)( —2 cos(P;) — 3 cos(P,) —3 cos(P,;))

—2cos(k)(2cos(P3—D,)+2 cos(P+P3)—9)

+2(—cos(P;—D,+P3)+cos(P,)+cos(P,)) .

In contrast with the tight-binding network, which can
accommodate only a finite number of electrons (five, in
this case), the frée-electron model can accommodate an
arbitrarily large number of them. The spectrum and the
conductances have a “trivial” dependence on the n quan-
tum number of Eq. (4.32), so only the basic period, 5, as-
sociated with the quantum number j need be covered.
Levels cross at those points in [cos(k),®] that are simul-
taneous zeros of Eq. (12.14) and its derivative with
respect to cos(k). The numerical results are summarized
in Table III.

The free-electron Hamiltonian has flat bands along the
symmetry lines of Eq. (12.4). Using this, the angles ¢;
and cos(k) in Table III can be computed analytically.
Reducing the matrix of Eq. (12.11) to the invariant sub-
space II of Eq. (12.7) gives two of the energy bands as
solutions to a quadratic equation. The result is, again,
four flat bands

cos(k(cp,q>,o>):~—-l~§3-/l ,
(12.13a)
cos(k(<1>,<1>,7r))~_~Lﬁ‘/7 .

From this, and the derivative of Eq. (12.12) with respect
to cos(k), one derives analytic values for cos (¢, ;) of
Table III:
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(12.12)
|
V41
=" 36 ’ (12.13b)
cos(¢ )zﬂm '
T 36 ’
Some further work gives
—31V7+164
( )E——‘—;*-—-——' ,
cos(d) = v+ 13)
V7 (12.13¢)
31V 4164
coslb)= V7 13 -

One can also compute the charges ‘“by hand” when
one does not have analytic expressions for crossing points
and degenerate subspaces, provided one has approximate
(i.e., numerical) vectors that span the degenerate sub-
spaces. For example, for point 1 in Table III, a pair of
degenerate vectors is ‘

[ 1/1) =(a1,a1,a2,a2,a3) s
I <P>=( — 0y, 0y, A, _a590) ’

(12.14)
a;~0.3301, a;~0.046+i0.138 ,
0y ~0.151—0.234, a5~0.338 .

Using Eq. (7.8) one finds for the linearized map
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€,+ie; = (e ’i¢'a1a5+ei¢‘a;‘a, N—d®,+dP,)

—2a5asd®; ,
y (12.15)
e3=Im(e 'aja,+afas(d®,+dP,) .

The determinant of this map is negative, so the charge is
+ 1. (Of course, with numerical values one finds a
nonzero value for the determinant “with probability
one.” In numerical calculations the sign is not enough,
and the actual numerical value has to be sufficiently far
away from zero.) Charge neutrality then determines the
charge of point 2, and the “7 shift” of Eq. (10.9) that of
points 8 and 9. These give half the entries in the table.

From.the table one concludes that the corresponding
graphs for the conductances are as in Fig. 22. The four
graphs describe the 1-2 conductances in the ground state
of the one-, two-, three-, and four-electron systems. In
the five-electron system, the conductance vanishes in the
ground state. For the next five electrons, the picture re-
peats itself up to reversal of signs and order, as discussed
in Sec. X. With more electrons present, the picture re-
peats itself, with the number of electrons counted mod
10.

Comparing the results for the tight-binding and the de

'(g“)lz p
) 1
1 1 1
[¢] w3 2mw/3 m
. ¢>3——->
(a)
(g 4
1F
L 1
[o} /'3 2mw/3 k4
b3 —>
(b)
~(9y4),,
1
1 1 1
o m/3 2w/3 ”
¢3—9
(c)
‘(gAa)lz
1 b
I 1
(0] w3 2mw/3 T
$3—>

(d)

FIG. 22. The 1-2 conductances for free electrons on a network

of thin wires associated with the holes effect graph: (a) The

1(mod 5)-electron systems; (b) the 2(mod 5)-electron systems; (c) |

the 3(mod 5)-electron systems; (d) the 4(mod 5)-electron sys-
tems. All graphs are for the ground-state conductances. The
network is n-type (by definition) and is flux and yu stable.
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Gennes—Alexander realizations for this graph one finds
similarities and differences. Many of the basic features
are common: the conductances are flux stable; points of
level crossing lie on the distinguished symmetry planes
and lines; all charges are *1; and finally, planes with
fixed @, or fixed ¥, are neutral, leading to the identical
vanishing of the 1-3 and 2-3 conductances.

There are also differences, some expected, some not.
One expected qualitative difference is that the free-
electron model has the ‘“7-shift” symmetry that is not
shared by the (graph-theoretic) tight-binding model.
Another (unexpected) qualitative difference is that there
are no charges in the four-electron ground state in the
tight-binding dynamics, but there are charges in the
free-electron dynamics. There are also expected
differences in details: the actual positions of crossings are
distinct.

The tight-binding and the free-electron Hamiltonians
are not close to each other in any sense, so the fact that
their conductance graphs are distinct is not in conflict
with anything. This suggests that an attempt to predict
what would happen in actual settings may require a
reasonably accurate modeling. Both models establish
nontriviality. In fact, they do more, as they show that
given a graph, nontriviality is not special to one dynam-
ics. This suggests that more realistic and more compli-
cated models corresponding to this graph also stand a
good chance of being nontrivial.

Xlll. THREE-FLUX NETWORKS OF EQUILATERAL
TRIANGLES

In this section we collect results for a number of
three-flux networks that correspond to the tight-binding
Hamiltonians for various simple graphs. There are two
reasons for this study. One is related to the question of
stability of nontriviality, namely, that the graph of the
holes effect considered in Sec. XII is not special. The
second reason is a part of a larger program to try to gain
insight into the Chern numbers that characterize various
graphs and dynamics.

The simple graphs we consider are those that can be
made with three equilateral triangles, 1, 2, and 3, carry-
ing independent fluxes ®;, ®,, and ®;. Since, by general
principles, disconnected networks are trivial, we consider
only connected ones. There are six distinct planar graphs
and three nonplanar ones. They are listed in Table IV.
The planar graphs are shown in Fig. 23 and the nonpla-
nar graphs in Fig. 24. The enumeration given in Table
IV goes as follows. Since the network is connected, there
is at least one triangle connected to the other two. Pick
such a triangle and call it (tentatively) 2. Let #(i,j) be
the number of common vertices of the ith and jth trian-
gles. Clearly #(ij) <3 if i£j, so

#(1,2),# (2.3)€{1,2} .
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TABLE IV. The nine distinct graphs that can be made with three equilateral triangles threaded by flux
tubes. Six of the graphs are planar and three are not. Five have nontrivial topological conductances.

Name Planar {#1,2),#(2,3),#} | V| Trivial
~windmill Yes 1,1,1 7 Yes
Giza Yes 1,1,2 7 Yes
gasket Yes 1,1,3 6 No
wide kite Yes 2,1,2 6 Yes
long kite Yes 2,1,3 6 Yes
basket No 2,1,4 5 No
tripod No 2,2,2 5 Yes
holes effect Yes 2,2,3 5 No
tetrahedron No 2,2,4 4 No

Let 1 be the triangle such that #(1,2) > #(3,2). This pro-
cedure may involve a choice for 2 if there are several tri-
angles that connect the other two. In this case, we
choose 2 so that #(1,2) is maximal.

The triplet {#(1,3),4(2,3),#(1,2)} determines a
unique graph up to a possible two-fold ambiguity, which
is removed by specifying | ¥ |. A triplet that specifies a
unique graph is

{#(2,3),#(1,2),#},

(a)
#3
® ® ®
¢| ¢2 ¢3
(b) (d)

o[>S

(e)

FIG. 23. The six planar graphs that can be made with three
equilateral triangles: (a) the windmill; (b) the three pyramids of
Giza; (c) the gasket; (d) the wide kite; (e) the long kite. The
graph for the holes effect is shown in Fig. 20. We have num-
bered the fluxes and vertices only in those cases where such a
numbering is important in the text.
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where # is the number of vertices in the graph that be-
long to at least two triangles. The table is organized lexi-
cographically in {#(1,2)#(2,3),#}. The names are
figments of our imagination.

Of the six planar networks, four are trivial in the sense
that they do not have isolated crossing points, with non-
trivial charges. They all have the property that the
graphs are separable, in the graph-theoretic terminology,
and one-particle reducible, in the Feynman diagram ter-
minology. That is, the graphs are disconnected by cut-
ting one vertex. In addition, the Wigner—von Neumann
ansatz is not satisfied—the degeneracies lie on curves.
Our numerical work suggests that these properties are
stable under perturbations and are not a special property
of equilateral triangles. '

It therefore appears that the results proven at the end

(b)

FIG. 24. Two of the three nonplanar graphs that can be made
with three equilateral triangles; (a) the basket; (b) the tripod.
The third, the tetrahedron, is shown in Fig. 14.
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TABLE V. The charges for the tight-binding Hamiltonian for the gasket, Fig. 23(c). Only the charges
in the half-cube ® in [0,7] are listed. There are identical charges at points with the coordinates

reflected about zero.

(¢p/m)1,1,1) E Gap Charge Multiplicity
2 1 1 1 2
7—v21 '
1 e S —
2 1 2 ) 1
0 7=v13 Vi3 2 2 1
2
0.824 1.454 2 —1 2
1 2 3 0 1
0 112‘{2 5 5 1
1 l_tz‘Ql_ 5 5 1

of Sec. VIII about disconnected graphs has a generaliza-
tion to separable graphs. However, we do not know of a
proof in general. Separability together with symmetry
can be used to show that some periods vanish. For exam-
ple, for the three pyramids of Giza, {gap’12
=(gap )»3=0 is a consequence of the following argu-
ment: (ga4715(®3) is antisymmetric in ®; by the On-
sager relation of Sec. IX. However, ®;— —®; corre-
sponds to permuting the two ‘“free” vertices in triangle
#3. This is implemented by a unitary operator. Uni-
taries leave the Chern number invariant, so {gaq);, is
both symmetric and antisymmetric in ®; and hence zero
identically. By a similar argument, {g,q);,=0 in the
long and wide kites. For the windmill, the same argu-
ment gives {gaq4 )ij =0 for all pairs of loops i, j.

Of the nontrivial networks, the gasket and the
tetrahedron have obvious symmetries; as a consequence a
fair amount of analysis can be done ‘“by hand.”

The numerical procedure for analyzing these networks
is the same as the one outlined in the previous section.
Tables V, VI, and VII list the results for all nontrivial
networks except for the holes graph, which was discussed
in detail in the previous section. We have attempted to
give analytic expressions in most cases.

Recall that tight-binding Hamiltonians can accommo-
date at most | V| (spinless) electrons. The tables give

the coordinates and the charges of level crossings corre-
sponding to projections P; with gap index j. The projec-
tion on the ground state of the one-electron system corre-
sponds to gap index 1, the projection of the ground state
of the two-electron system to gap index 2, etc. Since
there are no charges in the |V | -electron ground state,
all the tables list gap indices from 1to |V | —1.

A. The gasket

The gasket looks like the first iteration in the Sierpin-
sky gasket (Mandelbrot, 1983), hence the name. The
graph has C; symmetry. Among the nontrivial graphs,
the gasket is unique in that the three flux-carrying trian-
gles touch at vertices and have no common edge. All the
other nontrivial graphs have at least one edge shared be-
tween the flux-carrying triangles.

As for all the other examples, there are no ‘‘acciden-
tal” level crossings, in the sense that all crossings lie on
symmetry points in flux space. For the gasket, this is the
line of equal fluxes (®,P,P). On this line, the tight-
binding Hamiltonian corresponding to Fig. 23(c) can be
chosen to be C; symmetric, for example, by putting the
three fluxes on the edges (2,1), (4,3), and (6,5) in the
figure. There are three two-dimensional, invariant vector
subspaces of C:

TABLE VL Tbe cha-rges for the tight-binding' Hamiltonian for the basket, Fig. 24(a). Only points in
the half-cube with ¢, in [0,77] are listed. There are identical charges in the other half.

No. &/ E

Gap Charge Multiplicity
1 (1.222,—0.517,0.517) 1.198 1 1 2
2 (1,1,1) 1%1_7 1 -2 1
3 (3)1,1,1) 2 2 1 2
4 (3,1,1) 2 2 -1 2
5 (0,0,0) 5 4 -2 1
6 (1,1,1) %A 4 2 1

Rev. Mod. Phys., Vol. 60, No. 4, October 1988
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TABLE VII. The charges for the tetrahedron. This table applies both to the tight-binding and the
free-electron model. Only the charges in the half-cube are listed. ‘

No. (®/7)1,1,1) E Gap Charge Multiplicity
1 1 2 1 -2 1
2 1 3—-V73 1 1 2
3 1 3473 3 -1 2
4 0 4 3 2 1

I C2x(1,1,1),

I: C2x(1,z3,2z%), (13.1)

II: C2X(1,z%,z4) .

The six energy bands for this network, which for general
position are given by the zeros of a polynomial of degree
6, split on the symmetry line to three quadratic equa-
tions, associated with the invariant subspaces. One finds

E(®)=2(1%cos(d/2)) ,
(13.2)

Eym(®)=1%1y"T+2cos(P+27/3) .

The corresponding graphs of the energy bands are shown
in Fig. 25. The crossing of the two bands in I occurs at
® =7 and E=2. The crossing of the bands in II and III
occurs at &= and E =(7+V21)/2 and at ®=0 and
E =(7+V'13)/2. Finally, there is a crossing between the
lower band in I and the lower band in III at ®=27/3
and E=2. There is one more crossing between the lower
band in I and the lower band in II, the one associated
with the second gap in the table, that gives a quartic

EA

0 1 >
0] ™

FIG. 25. The energy bands along the body diagonal in the flux
spacecube, for the tight-binding model for the gasket. Only half
the period is shown, since the bands are symmetric.
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equation in cos(®/2). For this, only numerical values
are given.

The charges for all nine crossing points are given in
Table V. Because the degenerate subspaces are essential-
ly identified by Eq. (13.1) one could, presumably, com-
pute the charges analytically. We have not attempted to
do so except for the zero charge at the third gap, which is
computable almost by inspection: this gap closes when
the two bands in I cross. The basis vectors for the degen-
erate subspace, (0,1)x(1,1,1) and (1,0)x(1,1,1), give a bi-
partition of the graph. The gauge fields do not link any
two vertices in any one partition. This makes de;(®) in
Eq. (7.8) vanish identically and implies zero degree, of
course.

Some noteworthy features of Table V are as follows.

(1) The three-, four-, and six-electron ground states

(9pgh2
1
1
(o} wr/3 2m/3 m
s —>
(a)
(Gaghiz
1
1 L )
o} /3 2mw/3 r
' ! b3 —>
(b)
(Gpahy ]
1
1 L
0 m/3 2m/3 m
3 —>
(c)

FIG. 26. The conductances of the gasket in the ground states of
the tight-binding model: (a) the one-electron system; (b) the
two-electron system; (c) the five-electron system. Only half the
period is shown, as the graphs are antisymmetric. The three-,
four-, and six-electron systems have trivial topological conduc-
tances at the ground state. The conductances are flux and u
stable.
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have no charges. We do not know of a simple reason for
that.

(2) In contrast with the holes effect, there are also mul-
tiple charges: 0, =1, 2. The appearance of 0 and £2 is
an indicator of nongenericity. Multiple charges are ex-
pected to disintegrate to elementary charges under per-
turbations. ‘

(3) The total charge for fixed gap label vanishes, as it
should.

(4) Note that (1,1,1)27/3) has an identical image
charge under inversion, i.e., at (1,1,1)(47/3), while
m(1,1,1) is its own image under inversion.

The topological conductances of the network are
shown in Fig. 26 and, like the holes effect, are flux and
stable.

B. The basket

This is a nonplanar graph whose symmetry is not un-
like that of the holes effect. The corresponding tight-
binding model can accommodate at most five electrons.
There are nine points of two-level crossings. The coordi-
nates and charges are listed in Table VI. Note that pro-
jection on the three-electron ground state is free of
charges.

Unlike the holes effect, which had nontrivial conduc-
tance associated with a single pair of loops, in the basket
any pair leads to nontrivial conductances. The identical
vanishing of the 2-3 conductance in the holes effect is not

(9aa)i2
“ -
(o] 7;3 21:'/3 T
¢3—>
\ (a) '
(9aghrz
1
(o] 1r;3 2mw/3 4
¢, —>
(b) 3
-(gag)i2
1
[0} w/3 2mw/3 r
4’3'—9
(c)

FIG. 27. The 1-2 conductances of the basket in the ground
states of the tight-binding model: (a) the one-electron system;
(b) the two-electron system; (c) the four-electron system. Only
half the period is shown as the graphs are antisymmetric. The
three- and five-electron systems have trivial topological conduc-
tances. This network is of mixed type: the four-electron system
has opposite conductances to the one- and two-electron sys-
tems. The network is thus p unstable. It is, however, flux
stable.
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FIG. 28. The 2-3 conductances of the basket in the ground
states of the tight-binding model: (a) the one-electron system;
(b) the four-electron system. Only half the period is shown as
the graphs are antisymmetric. The two-, three-, and five-
electron systems have vanishing topological conductances. The
conductance is flux stable but u unstable.

shared by the basket. Only a remnant of this is seen in
the vanishing of the 2-3 conductance in the two-electron
ground state by a miraculous cancellation, analogous to
the one that occurred in the holes effect for all gap in-
dices. The topological conductances in the ground states
of the 1-5 electron systems are listed in Figs. 27 and 28.
This network is flux stable but not p stable. It is the only
network among those we have considered that is u unsta-
ble.

C. The tetrahedron

Among the graphs in Table IV, the tetrahedron, Fig.
14, is noteworthy: it is the only regular graph; it is the
graph with the least number of vertices; and it has a large
(non-Abelian) symmetry group. A consequence of this is
that the table for the charges can be computed analytical-
ly with relative ease. This is actually something we have
realized with hindsight. Originally we studied the
tetrahedron, as we did all other models, numerically.
The analytic derivation presented below came later.
There is, however, one bit of input from the numerical
work that we shall need, namely, that there are no ac-
cidental degeneracies and charges. All the charges lie on
the symmetry line of three equal fluxes.

Since the tetrahedron is a regular graph, its transport
properties are the same in the tight-binding and the free-
electron models. The energies are related by Eq. (4.37).
For the sake of concreteness we use the tight-binding
language.

The tight-binding Hamiltonian for the tetrahedral
graph is

iP, —i®,

3 —e —e —1

_e—i¢3 3 ——eiq)l -1

——-em)z we__,'q>1 3 R (13.3)
—1 —1 —1 3
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The line of symmetry is

(1,1,1), (13.4)

corresponding to flux ® through three of the faces of the
tetrahedron and flux —3® through the fourth face. The
corresponding Hamiltonian is C; invariant. This symme-
try splits C* into three invariant subspaces:

I: (a,a,a,8) ,

I: (a,az;,az%,0), (13.5)

II: (a,az3,az;0) .

I is two (complex) dimensional, a,B€C, and II and III
are each one dimensional.

The energy bands on the line of symmetry can be com-
puted analytically by reduction to invariant subspaces.
This gives

E{(®)=3—cos(®)+V 3 +cos (D) ,

Ey(®)=3—-2cos(P+27/3), (13.6)

E(®)=3—2cos(®—27/3) .

The bands are shown in Fig. 29.

The two bands in I never cross. Double crossings
occur when one of the bands in I crosses one in II or III.
This occurs at ¢==17/2. Consider 7/2. The lower
branch of E| crosses Ey; at energy 3—V'3, and the upper
branch of E; crosses Ey; at energy 3+V'3. There are
also triple crossings at ¢ =0 and ¢=1, by the general
group-theoretic analysis of Sec. VII. This takes place at
E=4 and E=2. This identifies the crossings and the de-
generate subspaces.

EA

0 d >
(0] g

FIG. 29. The energy bands along the diagonal in flux space, for
the tight-binding model for the tetrahedron. Since the bands
are symmetric under reflection of @, only half the period is
shown.
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A remarkable thing about the tetrahedron is that it is
enough to compute just one charge to get the full Table
VII. For example, the charge of point 2 in the table
determines that of point 1 by the overall neutrality. The
“m shift” then determines the charges of points 3 and 4,
so it remains to compute the charge of 2. Since this is a
two-level crossing, the charge is a degree.

The degenerate subspace of point 2 is spanned by

(1,1,1,V3)x(1,2;,2%,0) . (13.7)

One finds for the linearized map at ¢=mu/2, from Eq.
(7.8),
de;=—d®,+1d®,+1dd,,
V73 V73
7 APt

d63=—%(d¢l+dq)2+dq)3) .

dey=— do,, (13.8)

The associated determinant is negative, so the charge is
+ 1.

In conclusion, we have seen several model Hamiltoni-
ans for several graphs made of three equilateral triangles,
both planar and nonplanar, that have nontrivial Chern
numbers. A common feature of the nontrivial bundles is
simplicity: there are few charges in the j-electron ground
state. There must be at least two in a nontrivial case
(since the total charge is zero), and in all the networks
the actual number is three. Another way of stating this is
the following. All the conductances are flux stable in the
sense of Sec. X. In fact, for most of the graphs the net-
works are also u stable. The only exception is the basket,
which changes type in the four-electron system.

Another simple feature common to the various graphs
is that the degeneracies lie on distinguished symmetry
planes and lines, and the eigenvalue equations on these
lines often factorize, giving relatively simple expressions
for the coordinates and energies of crossings. Finally, the
charges of the degeneracies tend to be small, 0, 1, and 2.
There are no charges larger than 3. This is even more re-
markable when one considers the average conductances,
which take only values O, 1, and —1. None gives an
average conductance of 2 or more. It is reasonable to
speculate that the smallness of the integers is related to
the small number of loops in the networks. However, we
do not know how to relate the number of loops to Chern
numbers.

XIV. CONCLUDING REMARKS AND OPEN QUESTIONS

In this work we have studied nondissipative quantum
transport in multiply connected systems. Such transport
is associated with an antisymmetric matrix of transport
coefficients indexed by pairs of loops. The matrix is a
function of, among other things, the fluxes threading the
loops, and this dependence plays a key role in the
analysis. We have focused on the topological aspects of
the transport properties, and specifically on averages of
the transport matrix that are quantized to be integers.
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The resulting ‘“‘topological conductance matrix” is an
integer-valued function of some of the fluxes in the net-
work. We have described some of its basic properties
and have computed it for several networks. The situa-
tion is reminiscent of the integer quantum Hall effect, in
which the Hall conductance is an integer-valued function
of, say, the magnetic field acting on the Hall probe.
There are two important differences, however. One is
that, in the Hall effect, the integers characterize the crys-
tal, while in networks they characterize the multiconnec-
tivity of the graph. The second is that, in the Hall effect,
the integer is directly measurable, while in networks, in
general, the quantized transport arises only after averag-
ing ‘“by hand.”

In this section we raise some of the questions that have
not been adequately treated in the previous sections, in
the hope that this will stimulate further work.

The most serious gap in the theoretical framework is
that the self-inductance of the system has not been taken
into account. The inductance matrix L;;, with loop in-
dices i and j, relates the flux change in loop i to the
current change in other loops: &®;= 3 L;;8I;. By
changing the flux in one loop to create an emf, the fluxes
in the other loops change too. We have assumed that
these fluxes are fixed. This is equivalent to looking at
networks with no, or very small, inductances. We want
to consider when this assumption is reasonable.

By dimensional arguments, the inductance L, in cgs, is
of order I/ /c where [ is a typical length scale and ¢ the ve-
locity of light. Typical currents are presumably on the
order of the persistent currents, i.e., of order cdE /9®.
The energy scale is that of atomic units, (e*m /#*), and
its dependence on @ is like a dependence on boundary
conditions and so scales like / ~2. Thus typical persistent
currents are of the order (¢ /®)(e*m /#*)(ay/1)?, where
ao,=#*/me? is the unit length in atomic units (Bohr ra-
dius). ®y=7ic /e is the unit flux. It follows that

8D /Do~ (e /#ic)(ag /1) . (14.1)

In mesoscopic systems a, /! is, of course, much smaller
than unity and so is e?/#c, the fine-structure constant.
This says that 8& changes little due to typical currents.
The fact that the change is proportional to the fine-
structure constant is not surprising, for a change in the
magnetic flux at one loop due to a change in the flux in
another loop can be thought of as photon-photon scatter-
ing, mediated by the network. It is interesting, and less
obvious, that the variations in the fluxes actually scale
down with the size.

It is interesting and important to get an accurate han-
dle on the conductances of networks, that goes beyond
the order-of-magnitude calculation presented here. One
reason is that one natural way to measure the currents is
to measure the change of flux in the appropriate loop.
One therefore does not want the inductance to be too
small either, and so the smallness of the change in the
flux is actually a mixed blessing.
 There are many issues that the study of conductance in
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FIG. 30. The conductances of the tetrahedron in the tight-
binding and free-electron models; (a) the one-electron ground
state; (b) the three-electron ground state. Since the graphs are
periodic and antisymmetric, only half a period is shown. The
two- and four-electron ground states have vanishing topological
conductances. The conductance is n-type, flux, and u stable.

networks brings up that deserve further study, for exam-
ple, the unaveraged conductance matrix in the adiabatic
limit. With no averaging, the graph of the conductance
is smooth, so that for the tetrahedron, a figure like Fig.
31 may replace Fig. 30. A detailed study of this for the
graph in Secs. XII and XIII is of interest. Also of in-
terest are corrections to adiabatic transport. Another set
of problems is concerned with the study of networks with

912

1
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FIG. 31. Schematic graph of the unaveraged conductance of
the tetrahedron network: (a) the one-electron system; (b) the
three-electron system. Since the graphs are periodic and an-
tisymmetric, only half a period is shown.
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random potentials on the edges. There are at least two
reasons why this is interesting. The first is that this is, of
course, a natural mathematical and physical question.
The second is that experience with the Hall effect sug-
gests that randomness plays an important role in stabiliz-
ing the integrability of transport: the Hall conductance,
even without averaging, and even at finite, but low, tem-
perature, is a nontrivial integer. This is understood to be
a consequence of random impurities, together with the
macroscopy of the probe. It is therefore not inconceiv-
able that random potentials may have some stabilizing
effects in networks as well. If true, this may make meso-
scopic networks candidates for nondissipating switching
and computing devices.

An interesting set of questions concerns the qualitative
and statistical theory of Chern numbers—understanding
orders of magnitude of the charges, their distribution,
etc. The study of graphs with many loops, with periodic,
quasiperiodic, or hierarchical structures, etc. (Hofstadter,
1976; Rammal and Toulouse, 1982; Domany et al.,
1983) is completely open.

If the electron-hole concept is any guide, then one may
expect that further and deeper understanding of the ques-
tion of types, i.e., p-type versus n-type networks, is a use-
ful pursuit. The related questions of flux stability and pu
stability of the conductances (see Sec. X) also deserve fur-
ther study.

Finally, an important subject we have not treated in
any depth is the study of physical conditions. We have
required coherence of the wave function over the entire
network, and this may be difficult to achieve in practice.
Coherence requires a large mean free path for inelastic
processes. This favors temperatures so low that the tem-
perature is small compared to the gaps in the energy lev-
els. Further, the applied emf’s have to be weak com-
pared to this scale (so that the adiabatic theorem applies).
Since energy gaps scale like (Iength) ™2, this favors small
networks. Networks of mesoscopic scale have energy
gaps typically on the order of microvolts. This dictates
temperatures in the milli-Kelvin range and emf in micro-
volts. The flux-sensitive effects in normal-metal rings
(Biittiker, 1986a, 1986b) suggest that quantum coherence
over mesoscopic networks is feasible today.

We want to conclude the discussion of mesoscopic sys-
tems with a remark that we owe to Y. Imry. Because
mesoscopic networks are so small, it is not obvious how
one can vary the fluxes in the loops independently. A
way to do it is to fold the three triangles out of the plane,
so that they become mutually perpendicular. For exam-
ple, consider the network of Fig. 32, which is made of a
corner of a cube. This network is a deformation of the
tetrahedron and so very likely nontrivial. A magnetic
field aligned with one of the normals will cause flux
changes only in the corresponding loop. In this way the
three fluxes can be modulated independently.

A different setting is that of superconducting networks.
Since the superconducting wave function is coherent over
macroscopic scales at temperatures of a few Kelvin, this
may turn out to be a more favorable circumstance. (But
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FIG. 32. A three-loop network made of the three corners of a
cube. In this case, the fluxes through the mutually orthogonal
triangles can be modulated independently with magnetic fields
that are homogeneous on the scale of the network.

it may be that, for some other reason, more stringent
conditions on temperatures and scales need to be ap-
plied.) Here the wave function is associated with the su-
perconducting order parameter in a Landau-type theory.
This theory has all the relevant formal structure needed
for the geometric interpretation of transport. The two
main differences are that (a) the charge is that of Cooper
pairs and (b) the theory is nonlinear and has i* interac-
tion. These features do not affect the basic structure,
which relies on minimal coupling and the definition of
currents. Of course, the network has to have thin
enough wires so that the fluxes inside the loops are not
quantized and can be varied. In other words, the net-
work could be realized as an array of Josephson junc-
tions. Such arrays have been fabricated and have been
studied before; see, for example, Webb et al. (1983) and
Behrooz et al. (1986). However, the conductance matrix
of such networks, with fluxes that can be independently
modulated, has not been studied as yet. It appears that
the physical conditions relevant to the quantum trans-
port properties should be similar to those relevant to,
say, tunneling phenomena in macroscopic superconduc-
tors. Substantial work has been done in this field of
research, most notably by J. Clarke and collaborators
[see Clarke (1987) and references therein]. We suggest
that the study of nondissipative quantum transport be
considered a part of these general programs.
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