

# Swimming as a gauge theory

With Oren Raz

# Message

- · How to analyze control problem with pictures
- · Solving ODE on path space with landscape diagrams
- · Non abelain gauge fields without QCD



#### Outline

- Adiabatic swimming is statics
- Swimming and linear response
- Slender is beautiful: Cox for pedestrians
- An Abelian swimmer
- Metric and curvature in the space of controls
- Purcell non Abelian swimmer

#### Showtime: Robot race



Robot race

Najafi and Golestanian, 2004

Euglena



http://lifesci.rutgers.edu/~triemer/movies.htm#Metaboly

# Adiabatic swimming is F=0



Stokes:  $F=6\pi\mu RV$ 

Newton

$$F = m\dot{V}$$

$$O\left(\frac{R}{T}\right) O\left(\frac{R^3}{T^2}\right)$$

In adiabatic limit, for small objects, equation of motion is

$$F_{total} \approx 0$$

#### Abelian Sysiphian swimmer





Linear reposne

$$F_x = \mu_x(\theta)\dot{X} + f_1(\theta)\dot{\theta}_1 + f_2(\theta)\dot{\theta}_2$$

Swimming equation:

$$dX = A_1(\theta) d\theta_1 + A_2(\theta) d\theta_2$$

# Three problems

$$dX = A_1(\theta) d\theta_1 + A_2(\theta) d\theta_2$$

- 1. Generalization to Euclidean motions (non-Abelian).
- 2. Compute the Gauge potential A from hydrodynamics
- 3. Analyze the ODE on control space?



# Weirdness of Low Reynolds: Dragging needles

$$F = k\ell V, \quad k = \frac{2\pi\mu}{\log\ell/R}$$

slenderness

$$F = 2k\ell V$$



Friction of one ball

Number of balls

# Cox for pedestrians



$$dF(x) = k(\mathbf{t}(\mathbf{t} \cdot \mathbf{v}) - 2\mathbf{v})d\ell,$$

$$\dot{X} F_X = f_ heta \, \dot{ heta} + f_X \, \dot{X} \ \dot{X} f_X = k(\cos^2 heta - 2) \int_0^\ell ds \,, \quad f_ heta = 2k \sin heta \int_0^\ell s \, ds$$

#### Connection and curvature



Stroke: closed path in control space

$$dX = A_1 d\theta_1 + A_2 d\theta_2$$
$$ddX = \mathcal{F} d\theta_1 \wedge d\theta_2, \quad \mathcal{F} = \partial_1 A_2 - \partial_2 A_1$$

Area enclosed by stroke  $S(\gamma)$ 

No loss of information (abelian)

$$\oint_{\gamma} dX = \int_{S(\gamma)} ddX$$

# Example: Aebelian swimmer



# Gauge issues: What's good about curvature?



# How to plot 2 forms?

$$ddX = \mathcal{F}d\theta_1 \wedge d\theta_2, \quad \mathcal{F} = \partial_1 A_2 - \partial_2 A_1$$

Need a metric in control space

$$dS = \sqrt{\det g} \ d\theta_1 \wedge d\theta_2$$

Can plot function

$$\frac{\mathcal{F}}{\sqrt{\det g}}$$

#### Dissipation: Metric in control space

$$Power = \sum g_{ij}(\theta) \ \dot{\theta}_i \dot{\theta}_j$$

Example: the abelian simple swimmer

$$6\dot{x}^2 + 2(\dot{\theta}_1^2 + \dot{\theta}_2^2) - 6(\dot{\theta}_1\sin\theta_1 + \dot{\theta}_2\sin\theta_2)\dot{x}$$

# Pictures for ode on control space



Optimizer exists because the curvature vanishes on bdry

#### Purcell non-Abelian swimmer



$$E(\theta, x, y) = \begin{pmatrix} \cos \phi & \sin \phi & x \\ -\sin \phi & \cos \phi & y \\ 0 & 0 & 1 \end{pmatrix}$$

Euclidean motions: Non commutative group

#### Lab frame

Lab frame

$$dx^{\alpha} = \mathcal{A}_{j}^{\alpha} d\theta_{j} \quad x^{\alpha} = (\phi, x, y)$$

Gauge fields are not function of controls

$$\mathcal{A}_{i}^{\alpha}\left(\phi,\theta\right) = R^{\alpha\beta}(\phi)A_{i}^{\beta}\left(\theta\right); \quad R^{\alpha\beta}\left(\phi\right) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{pmatrix}$$

# Body frame

$$dy = A_j d\theta_j$$

Lie algebra valued objects

Composition: matrix multiplication

$$E(\gamma) = \prod_{\theta \in \gamma} E(dy^{\alpha}(\theta))$$

Gauge fields A are matrix valued function of the controls

#### Non Abelian curvature

dy Lie algebra valued

$$\delta y = \mathcal{F}d\theta_1 \wedge d\theta_2$$

Curvature: Matrix valued

Matrix form:

$$\mathcal{F} = \partial_1 A_2 - \partial_2 A_1 - [A_1, A_2]$$

In components: 
$$\mathcal{F}^{lpha}=\partial_1A_2^{lpha}-\partial_2A_1^{lpha}+arepsilon^{0lphaeta}\left(A_1^0A_2^{eta}-A_2^0A_1^{eta}
ight)$$

Note that the rotational curvature remains abelian

#### Stokes failure



Precise information on small strokes Qualitative information for large strokes

#### Curvatures



Optimal swimming efficiency, Hosoi and Tam

Optimal distance stroke
Tam and Hososi





#### Conclusions

- Control problem with pictures
- · Solving ODE on path space with landscape diagrams
- · Introduction to Non abelain gauge fields

