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Visualizing a qubit

Geometry of states

|ψ〉 (Normalized): Sphere dim = 2n+1 − 1 = 3, 7, . . .

Pure state ρ = |ψ〉 〈ψ|; (forget phase)
dim = 2n+1 − 2 = 2, 6, . . .

Mixed (unnormalized) state

ρ =
∑

pj |ψj〉 〈ψj | , pj ≥ 0; convex cone

Normalized state Tr(ρ) = 1; capped cone

Convex body, pure states on bdry

dim[states] = (2n)2 − 1 = 3, 15, 63, . . .

Pure
Mixed

Oded Kenneth, Yosi Avron () Visualizing 2 qubits December 13, 2010 3 / 19



Visualizing a qubit Bloch sphere

Bloch (Poincare) ball

State of qubit: ρ = 1+~n·~σ
2 , |~n| ≤ 1

Pauli matrices: σµ = {I, σx , σy , σz},

σx =

(
0 1
1 0

)
, etc.

Convex; dim[ball ] = 3

All pure states on bdry–Generally true

All points on bdry pure –Generally false

Fully Mixed

Pure
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The problem of visualizing 2 qubits

2 qubits

Entanglement, Separable, Witnesses

Two qubits are not 2 Bloch Balls

Separable Mom—Pure product: |00〉

Entangled Mom — 4 Bell
√

2 |β0〉 = |00〉+ |11〉

Pure |ψ〉 =
∑

xµ |βµ〉,
∑3

0 |xµ|2 = 1, x ∈ S7

Statesl: ρ2 = 4× 4 positive matrix;
unit trace; Convex body; 15 dimensions

All pure states on bdry

Few, Codim=8, states on bdry, pure

Pure
Mixed

Pure

Fully Mized
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The problem of visualizing 2 qubits What is entanglment

What is entanglement?

Rosen’s envelopes

Classical independence P(x , y) = PA(x)PB(y)

Classical correlations: P(x , y) =
∑

pj P
j
A(x)P j

B(y)

Quantum to classical: P ⇔ ρ

Separable states ρ =
∑

pj ρ
j
A ⊗ ρ

j
B , pj ≥ 0

Not all q-states are separable–these are entangled
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The problem of visualizing 2 qubits Witnesses

States and witnesses

Unnormalized states = cone of positive matrices

ρ =
∑

pj |ψj〉 〈ψj | , pj ≥ 0

Cone of separable

ρsep =
∑

pj ρj ⊗ ρj , pj ≥ 0

Witnesses: Dual cone to seperable

Tr(W ρsep) ≥ 0

Witness

Separable

States
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The problem of visualizing 2 qubits Witnesses

Swap: Mother of all witnesses

S |a〉 ⊗ |b〉 = |b〉 ⊗ |a〉 , a, b = 0, 1

Positive on pure products 〈ab|S |ab〉 = 〈ab|ba〉 = |〈a|b〉|2 ≥ 0

Bell singlet:
√

2 |β2〉 = |01〉 − |10〉
S |β2〉 = − |β2〉
Singlet is entangled: 〈β2|S |β2〉 = −1

Cube (witnesses) Octahedron (separable) are dual

Platonic Faces Vertices Edges

Cube 6 8 12

Octahedron 8 6 12

Tetrahedron 4 4 6
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The problem of visualizing 2 qubits Equivalence classes

Singular values

Singular values represent equivalence class of matrix W by
spectrum(

√
W †W )

Singular values useless for entanglement: Separable–|00〉–and
entangled –|βµ〉– share singular values (1,0,0,0)

Need introduce locality: Alice/Bob
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The problem of visualizing 2 qubits Equivalence classes

Q-operations

Quantum operations ρ→ MρM∗

Positivity preserving ρ ≥ 0⇒ MρM∗ ≥ 0

Examples : Evolution–M unitary
Measurment—M projection

Q-Operations: Partial order vs equivalence

Equivalence if M invertible

Examples : Evolution–Equivalence
Measurment—Partial order

Local operation M = MA ⊗MB ; Respects separability

Local operations can’t create Entanglement
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The problem of visualizing 2 qubits Local operations

Local Equivalence operations

MA,B ∈ SU(2)

dim[SU(2)] = 3

Visualized in 9 dimensions

4-D visualization

12-D Equivalence class

9-D visualization

6-D Equivalence class

MA,B ∈ SL(2,C)⇒ detMAB = 1

dim[SL(2,C)] = 6

Visualized in 4 dimensions

Reversible filtering
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The problem of visualizing 2 qubits Local operations

Equivalence classes: Single qubit

SU(2) trace preserving

Entropy labels equivalence classes

ρ = xµσµ, x
µ transforms like a Lorentz vector under SL(2,C)

Rest frame is the trace minimizer

Entropy preserved

Entropy

x

t

Oded Kenneth, Yosi Avron () Visualizing 2 qubits December 13, 2010 12 / 19



Visualizing 2 qubits

Optimal characterization

Find M ∈ SL(2,C)2 minimizing tr W → tr(MWM∗)

Minimizer ”diagonalize” W →
∑
ωµ |βµ〉 〈βµ|

ωµ: entanglement singular values

Bell states; Swap witnesses; Tetraheder=states; Octaheder=Separable
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Visualizing 2 qubits

Spectral characterization

Replace W †W =⇒ W̃W ;

The good choice (Wootters)

W̃ = σ W t σ, σ =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 = σy ⊗ σy

Example 1: W = |00〉 〈00| ,→ W̃ = |11〉 〈11|;
Example 2: W = |βµ〉 〈βµ| = W̃

Theorem

• For any witness (state) ω2
µ ≥ 0 eigenvalues of W̃W
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Visualizing 2 qubits

Examples

Table: Selected SL(2,C)points

Name state ρρ̃ Point

Product |00〉 0 (0,0,0,0)

Bell |β0〉 |β0〉 〈β0| (1,0,0,0)

Fully mixed I/4 I/16 1
4(1,1,1,1)

Swap S S2 = I 1
2(1,1,1,-1)

Remark: detS = −1 affects choice of roots (and normalization)
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Visualizing 2 qubits Tetrahedron of states

Tetrahederon of states

Spectrum(ρρ̃)= Spectrum(
√
ρρ̃
√
ρ) ≥ 0

Spectrum=Positive quadrant in 4D;

Cross section: Tetrahederon

Vertices: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

Pure

Fully Mized

Vertices of triangle: orthogonal unit vectors in 3D Vertices of tetrahedron: orthogonal unit vectors in 4D
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Applications Peres test

Peres test

Partial transposition

2ρ =


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 , 2ρP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Peres thm: If ρ ≥ 0 while ρP 6≥ 0,⇒ ρ entangled

Geometry of Peres test

Coherence 6= entanglment

©!2006!Nature Publishing Group!

!

pairs, in contrast to the case of classically correlated photon pairs
emitting into random bases, for which the average degree of
correlation should be less by a factor of 2.
To fully measure the two photon polarization state, a quantum

state tomography scheme was used23,24. The procedure, detailed in
the Methods section, constructs the two photon polarization density
matrix from a linear combination of cross correlation measurements
using 16 different polarization combinations.
The real component of the two photon polarization density matrix

for the reference dot A is shown in Fig. 3a. The stronger elements all
lie on the diagonal, with the strongest outer elements indicating
polarization correlated emission. The inner diagonal components are
due to uncorrelated photon pair emission, from background counts
and dephasing of the exciton state. The form of this density matrix is
consistent with imperfect polarization correlated photon pair emis-
sion seen previously7–9, and illustrated by the example density matrix
of Fig. 3f. The density matrix for the degenerate dot shown in Fig. 3b
has similar diagonal elements, but now shows significant outer, off
diagonal elements. This is a feature associated with polarization
entangled photon pairs, illustrated by the predicted density matrix of
Fig. 3g.
A similar density matrix is obtained for dot C, tuned to zero

splitting by magnetic field, as shown in Fig. 3d. This again suggests
that the photon pair emission has entangled character.When the field
is increased to 5 T, the splitting increases to 19 meV, and the corre-
sponding density matrix measured is shown in Fig. 3e. As expected,
the off diagonal elements are suppressed, and the dot reverts to
emitting polarization correlated photon pairs. A similar result is
found if the field is reduced to 0 T, where the splitting is 28meV as
shown in Fig. 3c. The imaginary components of the density matrices

were all found to be zero with experimental error, in agreement with
predictions.
The measurements presented above clearly suggest that dots with

small exciton splitting emit entangled photons. We now discuss the
factors limiting the degree of entanglement. In spectroscopy, our
measurements show that the background due to dark counts and
emission from layers other than the dot contributes on average 49%
of the coincidence counts; this is unusually large owing to the
proximity of the dot to the wetting layer, which is necessary to select
dots with zero splitting. If we correct our measurements by removing
the projected number of background counts from the correlation
data, the density matrices of the degenerate and magnetically tuned
dots more closely resemble the ideal entangled case, and the largest
eigenvalues are 0.48 ^ 0.08 and 0.58 ^ 0.04, respectively. The latter,
for which the splitting is minimal, violates the 0.5 limit for classical
correlation in an unpolarized source25. The remaining deviation
from ideal behaviour is attributed to scattering between the two
intermediate exciton spin states7,8. From previous publications where
strong background and entanglement were not present, we estimate
an exciton scattering time similar to the,1 ns radiative lifetime. This
yields a maximum possible eigenvalue of 0.63, in rough agreement
with these measurements.
This suggests that the degree of entanglement may be increased by

resonant optical16,26 or electrical6 excitation in order to increase the
scattering time, or by reducing the radiative lifetime through Purcell
enhancement27,28, or by using dots with larger oscillator strength such
as those formed by interface fluctuations18. Such improvements
could lead to the realization of a semiconductor source of triggered
entangled photon pairs that would be robust and compact, and allow
electrical injection of the carriers14.

METHODS
Sample fabrication and characterization. Samples containing a low density
layer of InAs quantum dots (,1.6 monolayers thick) were grown by molecular
beam epitaxy. A GaAs l cavity containing the dot layer was surrounded by
AlAs/GaAs distributed Bragg reflectors, with 14 (2) repeats in the bottom (top)
mirror, to increase light collection efficiency. A metal shadow mask containing
apertures of,2 mmdiameter was fabricated to isolate the emission of individual
dots. Samples with a range of InAs thicknesses differing by up to ,2% were
characterized in a standard micro photoluminescence system operating at
,10K. Optical excitation was provided by ,100-ps pulses from a 635-nm
laser diode operating at 80MHz. The emission lines are inhomogeneously
broadened by charge fluctuations to ,50 meV, a consequence of the non-
resonant excitation scheme29. Horizontally ([110]) and vertically ([1210])
polarized exciton and biexciton emission was fitted with lorenzian line shapes
to locate the centre energy of each transition. The exciton level splitting can be
determined both from the difference between the horizontally and vertically
polarized exciton or biexciton photons. Taking the average of these two values
removed systematic error associated with changing the polarization optics, and
the splitting S was measured with an estimated precision of ,0.5meV.
Selection of suitable dots. By measuring the splitting of 200 quantum dots, a
relationship of decreasing splitting with increasing emission energy was found20.
For dots emitting at,1.4 eV, the splitting was,0 ^ 10meV. Thus quantum dots
with splitting less than the homogeneous linewidth of ,1.5meV were selected
first by identifying dots emitting close to 1.4 eV, then measuring their splitting.
For dots emitting .1.4 eV, the splitting was inverted, and the lowest energy
exciton line is horizontally polarized. For these dots, the configuration of the
exchange energies and g-factors allows reduction of the splitting with an applied
in-plane magnetic field, driven by partial mixing of optically active and inactive
exciton states30. Thus dots suitable for tuning to zero splitting are conveniently
identified by their emission energy. The proportion of dots that have, or can be
tuned to, zero splitting is ,30%, which could be improved by better growth
control. The proportion of suitably isolated single dots could be improved by
fabrication of smaller microstructures.
Photon pair counting. Quantum dots were optically excited, with the power
adjusted to give optimumphoton pair detection rate to background ratio. At this
power, the biexciton intensity is around half that of the exciton. A 50/50 beam
splitter divided the emission into two spectrometers, set to transmit at the XX
and X photon energies respectively, with,0.5meV bandwidth. Polarizing beam
splitters were placed after the spectrometers, and three single photon detectors

Figure 3 | Density matrices for the biexciton–exciton two-photon cascade
from conventional and degenerate quantum dots. a–e, Real parts of
measured density matrices corresponding to reference dot A with
polarization splitting, S ¼ 50 meV (a), dot B with S < 0 meV at 0 T (b), and
dot C, with S tuned by the magnetic field to be 28meV (c), 0meV (d) and
19 meV (e). The imaginary components are not shown, and were zero within
experimental error. Density matrices b and d feature strong outer off
diagonal elements associated with entangled photon pair states, which are
not present in the reference case (a). f, g, Density matrices representing the
predicted state for ideal classically correlated (f) and entangled (g)
photon pairs, including 50% contribution from uncorrelated background
light.
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Applications Measures of entanglement

Measure and entanglement distillation

Entanglement measure (concurrence) : Distance from octahedron;
Equi-entangelment line

diagonalizing map =Optimal entanglement distillation
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Applications Measures of entanglement

Concluding remarks

The Hilbert space of Alice and Bob (i.e. tensor product structure) has
beautiful geometry

What is the physical significance of the entanglement singular values?

Vizaulising the CHSH Bell inequalities (Bisker)
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