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We derive the relativistically exact eikonal equation for ring interferometers undergoing deformation. For ring
interferometers that undergo slow deformation we describe the two leading terms in the adiabatic expansion
of the phase shift. The leading term is independent of the refraction index n and is given by a line integral
generalizing results going back to Sagnac for nondeforming interferometers to all orders in β = |v|/c. In the
nonrelativistic limit this term is O(β). The next term in the adiabaticity has the form of a double integral, it is
of order β0 and depends on the refractive index n. It accounts for nonreciprocity due to changing circumstances
in the fiber. The adiabatic correction is often comparable to the Sagnac term. In particular, this is the case in
Fizeau’s interferometer. Besides providing a mathematical framework that puts all ring interferometers under a
single umbrella, our results strengthen earlier results and generalize them to fibers with chromatic dispersion.
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I. INTRODUCTION AND SUMMARY OF RESULTS

A ring interferometer has a light source with prescribed
frequency which produces two counterpropagating waves
which interfere after completing a full cycle. An example is
the Sagnac interferometer [1] originally devised to measure
the velocity of light relative to the ether but today is
perhaps best known because of its close relative, the ring
laser gyroscope [5], which literally impacted everyday life.
Modern fiber-optics ring interferometers have multiple uses
as gyroscopes [6], strain sensors [7], temperatures sensor [8],
filters, etc. They have been fertile ground for addressing basic
physics and technological issues [2,3,9–15] and have been
reviewed in, e.g., [16–18].

The study of the wave equation in moving dielectrics is
fraught with both conceptual and technical difficulties [19,20].
A simplification occurs in the the short-wavelength, high-
frequency limit, which is described by the eikonal equa-
tion [21]. The main drawback of the eikonal is that it
disregards backscattering. This is sometimes important [22],
but more often the eikonal gives an adequate description of
the interference in ring interferometers. As far as relativity is
concerned, the eikonal equation is, in principle, exact.

We construct the eikonal equation for deformable fiber
interferometers of arbitrary shape, Fig. 1, moving at velocities
that may be relativistic (β = |v|/c ≈ 1) while bending and
stretching. We then proceed to describe an expansion of the
phase shift for adiabatically deforming fibers.

To describe our results we need to introduce some notation.
A thin ring fiber is naturally modeled by a one-dimensional
closed curve x(t,θ ) ∈ R3 where the points θ = ±π are
identified. It is convenient to choose a parametrization where
θ labels the material points of the fiber.1 The comoving light
source and detector are located at θ = ±π . t is the laboratory
time coordinates.

The differential

dx = v dt + e dθ (1)

*avron@physics.technion.ac.il
1For a general parametrization see the Appendix.

gives v(t,θ ), the velocity of the point θ in the laboratory, and
e(t,θ ) the tangent to the curve. The length of the segment dθ

in the laboratory is

d� = |e| dθ . (2)

The eikonal is a nonlinear first-order partial differential
equation (PDE) that governs the evolution of the phase of the
wave φ(t,θ ):

±∂φ

∂θ
= K±(t,θ,ω), ω = −∂φ

∂t
. (3)

The ± sign distinguishes the two counterpropagating waves:
The (+) wave propagates with θ increasing from −π to π and
the (−) wave propagates with θ decreasing from π to −π . The
explicit form of K±, given in Eq. (29) below, need not concern
us at this point.

The phases dφ±, accumulated by the counterpropagating
waves as they traverse the interval dθ are, in general, different.
The phase difference δφ = dφ+ − dφ− �= 0 is known as
“nonreciprocity.” It has two origins: First, K+ �= K− due to the
dependence on the wave propagation direction and moreover,
since the two waves visit the interval dθ at different times
t+(θ ) �= t−(θ ), the value of physical parameters making up
K±(t,θ ) may have changed.

The amplitude of the wave is governed by suitable transport
equations [23] and is slowly varying when the frequency is
high. We shall not study it here. Assuming that the amplitudes
of the (±) waves are the same, the detector output at the time
of detection t is proportional to

|eiφ+(t,π) + eiφ−(t,−π)|2 = 2{1 + cos[
φ(t)]},

φ(t) = φ+(t,π ) − φ−(t,−π ). (4)

Our goal is to derive an expansion for the phase shift 
φ(t)
for fibers that deform adiabatically

Before describing the adiabatic expansion we need to
describe the notion of adiabaticity. The ± waves visit the
interval dθ at different times, t±(θ ). Consequently, the phase
difference δφ = dφ+ − dφ− may depend on the time lapse
δt = t+(θ ) − t−(θ ). For example, the interval dθ may stretch
so that the length d� = |e| dθ seen by the two waves is
different. Similarly the refraction index n(θ,t,ω) or β may
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FIG. 1. Ring interferometer represented by a parametrized curve
x(θ,t) which is a closed loop in space. θ designates a fixed material
point on the fiber. e(θ,t) is the tangent at a point θ . The two
counterpropagating beams are marked with the red arrows and the
± signs. The black dot represents the comoving light source and
detector both located at θ = ±π .

change between the two visits. We say that the motion of the
fiber is adiabatic if all such changes, for all values θ , are small.
This is the case if K± changes little in the time τ it takes
light to complete a cycle. A natural dimensionless measure of
adiabaticity is then

ε = τ∂t ln(K±). (5)

If n is time independent and β � 1 then τ∂t ln(K±) ≈ nσ |e|
where σ is the rate of stretching of the fiber, see Eq. (14). The
adiabatic regime is |ε| � 1. For large interferometers and for
interferometers with a large number of coils, τ need not be
small compared with the time scale of the deformation, and
the assumption of adiabaticity may fail.

Our main result is an expansion of the phase shift in powers
of ε


φ = (
φ)(0) + (
φ)(1) + · · · , (6)

where (
φ)(j ) = O(εj ). The leading term, (
φ)(0)(t), is given
by a line integral at the time of detection t :

(
φ)(0) = −2ω0

c2

∫ π

−π

γ 2(θ ) v(θ ) · e(θ ) dθ

= −2ω0

c2

∫ L

0
γ 2(�) v(�) · d�, (7)

where for the sake of typographical simplicity, we have omitted
the common argument t everywhere. The length variable � is
related to θ by � = ∫ θ

−π
|e(θ ′)| dθ ′. γ = (1 − β2)−1/2 and L is

the total length of the fiber (at time t). Remarkably, (
φ)(0)

is independent of the (constitutive) dispersion relation n to all
orders in β. ω0 is the frequency of the source measured by the
laboratory clocks.

In the approximation γ ≈ 1, which is always the case
in practice, one recovers the result of [3]. If, in addition,
the interferometer moves as a rigid body, the application
of the Stokes formula recovers the standard Sagnac area
law [2,16,17].

The first-order correction in adiabaticity, (
φ)(1)(t), has the
form of a double integral along the fiber evaluated at the time

FIG. 2. Schematic of Fizeau interferometer. The three mirrors and
beam splitter are at rest in the laboratory. The two counterpropagating
beams are denoted by the red arrows. Fluid, say water, is flowing in
one arm of the interferometer so one beam is moving with the flow
and the other against it.

of detection t . In the nonrelativistic limit we find for (
φ)(1)(t)

(
φ)(1) = ω

c2

∫ π

−π

∫ π

−π

|e(θ )|dθ |e(θ ′)|dθ ′ ∂ω[ωn(θ ′)] [∂tn(θ )

+ n(θ )σ (θ )] sgn(θ ′ − θ ). (8)

We suppressed the common argument t on both sides. σ =
∂t ln |e(θ,t)| is the (nonrelativistic) stretch rate of the fiber, see
Eq. (14) below. Note that while Eq. (7) is independent of n,
Eq. (8) depends quadratically on n.

Note that (
φ)(0) = O(βε0), while (
φ)(1) = O(εβ0). In
principle, ε and β are independent parameters.2 When ε � β,
(
φ)(1) is a small correction to (
φ)(0) and in the opposite case
ε � β, (
φ)(0) is a small correction to (
φ)(1). When ε ∼ β

the two terms are comparable. This is the case in Fizeau’s
interferometer [24], shown schematically in Fig. 2. Although
this is not a fiber interferometer, the theory still applies and as
we shall show in Sec. VI B von Laue’s classical formula [25]
for the phase shift in Fizeau is simply the sum of the two terms

2ω

c2
V L [n∂ω(ωn) − 1] = (
φ)(0) + (
φ)(1), (9)

where V is the velocity of the flow and L the length of the
pipe [3,10].

II. SPACE-TIME GEOMETRY OF A MOVING RING

A moving curve in Minkowski space-time can be described
by a vector valued function of two variables: x(t,θ ) ∈ R3.
There is freedom in choosing parametrization for the curve. A
convenient parametrization is to choose t to be the laboratory
time coordinate and θ labeling the material points of the fiber.
The velocity and tangent to the curve are given in Eq. (1). It
follows that

∂te = ∂θv. (10)

2If the length scale of the deformations is comparable to the length
of the fiber and the velocities associated with them are comparable to
the rigid body part of the velocity, then ε ∼ β.
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The (laboratory frame) line element is d� = e dθ . Since v is
a velocity of a material point on the fiber, v · v < 1 in units
where c = 1 which we henceforth use.

If e is parallel to v, the proper length3 of the segment d�′
is related to the length d� by Lorentz contraction, γ d� = d�′.
If, however, e · v = 0 there is no contraction and d� = d�′. In
general, d� and d�′ are related by

d�

γ⊥
= d�′

γ
, γ = 1√

1 − v2
, γ⊥ = 1√

1 − (v × ê)2
. (11)

This can be seen from

(d�′)2 = (d�′
⊥)2 + (d�′

‖)2 = (d�⊥)2 + (d�‖)2

1 − v2

= γ 2[(d�)2 − v2(d�⊥)2]

= γ 2(d�)2
(
1 − v2

⊥
) =

(
γ d�

γ⊥

)2

. (12)

The fibers are allowed to stretch. The stretch rate σ is natu-
rally defined as the rate of change of proper length, measured
in proper time (as measured by an observer comoving with the
point θ of the fiber):

σ = γ ∂t ln
d�′

dθ
,

d�′

dθ
= γ

γ⊥
|e|. (13)

To leading order in β

σ ≈ ∂t ln |e| = e · ė
e · e

= e · ∂θv
e · e

. (14)

No stretching means σ = 0.
The world line of a fixed material point θ is

X(t,θ ) = (t,x(t,θ )) ∈ R4, −∞ < t < ∞ , (15)

The union of the world lines for all θ gives a two-dimensional
tube shown in Fig. 3.

M = {
X = (t,x(t,θ ))

∣∣, θ ∈ [0,2π ], t ∈ R
}
. (16)

The tangent vectors to M are spanned by T ′ = ∂tX = (1,v)
and E = ∂θX = (0,e). The scalar product is induced from the
embedding four-dimensional Minkowski space:

T ′ · T ′ = ∂tX · ∂tX = 1 − v · v,

E · E = ∂θX · ∂θX = −e · e,

T ′ · E = ∂θX · ∂tX = −e · v, (17)

The metric on M, in the coordinates (θ,t), is given by

dX · dX = (1 − v2)(dt)2 − 2 e · v dt dθ − e2 (dθ )2. (18)

Note that the coordinates are not Lorentz orthogonal.
E = ∂θX is the direction of simultaneity in the laboratory.

We shall denote by Ê the normalized version of E. The
time direction in a comoving frame is given by T ′ = ∂tX. Its
normalized version T̂ ′ = γ T ′ corresponds to the four-velocity
of the material point with fixed θ . Explicitly

T̂ ′ = γ ∂tX = γ (1,v) , Ê = ∂θX

|e| = (0,ê), (19)

3As measured by an observer comoving with the material point of
the fiber labeled as θ .

T̂ ′

Ê ′

Ê

T̂

t

FIG. 3. Two-dimensional world tube M associated with a mov-
ing closed curve in Minkowski space-time. The red curve is the world
line of a fixed material point of the fiber labeled by θ in the text. The
Lorentz orthonormal frame (T̂ ,Ê) distinguishes the time and space
axis in the laboratory. Similarly, (T̂ ′,Ê′) distinguishes the time and
space axis in the comoving frame attached to θ .

The spatial direction of the comoving Lorentz frame is the
tangent vector E′ which is Minkowski orthogonal to T ′:

E′ = E − (E · T̂ ′)T̂ ′ = ∂θX + γ 2v · e ∂tX. (20)

The Minkowski length of E′ is

E′ · E′ = E · E − (E · T̂ ′)2 = −e2 − γ 2(e · v)2

= −γ 2[e2 − (v × e)2] = −γ 2

γ 2
⊥

e2 = −
(

d�′

dθ

)2

. (21)

For the sake of completeness we note that the tangent vector
to M associated with the laboratory time is

T = T ′ − (Ê · T ′)Ê = (1,0). (22)

(T̂ ,Ê) and (T̂ ′,Ê′) are Lorentz orthogonal frames related by
standard Lorentz transformation. In contrast, the frame (T̂ ′,Ê)
associated with the coordinates (t,θ ) is not Lorentz orthogonal
and so is not related to (T̂ ′,Ê′) by the standard Lorentz
transformation.

III. EIKONAL

In a local comoving frame the wave vector k′ and frequency
ω′ are related by the dispersion relation4

k′ = ±n(t,θ,ω′)ω′. (23)

These local inertial frames do not provide a global frame
on M because clocks associated with different local frames
at different θ cannot be synchronized. We need to translate
Eq. (23) to a relation between ∂tφ and ∂θφ.

By definition,

ω′ = −∇T̂ ′φ, k′ = ∇Ê′φ. (24)

Using Eq. (19) we thus have

ω′ = −γ ∂tφ = γω, (25)

4Allowing t dependence of n implicitly also allows it to depend on
the curvature of the fiber.
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and using Eqs. (20) and (21)

k′ = dθ

d�′ (∂θ + γ 2v · e∂t )φ. (26)

Remark. Because the time derivative ∂t = (∂t )θ is taken at
constant value of the comoving coordinate θ , it has the physical
meaning of a derivative taken with the flow. Had we used the
laboratory coordinate (x,t) it would have taken the Eulerian
form ∂t + v · ∇ and Eq. (25) would have taken the standard
form of a Doppler shift. The comoving coordinates (θ,t) are,
however, not inertial and hence the transformation takes a
different form.

Substituting ω′ and k′ from Eqs. (25) and (26) in Eq. (23)
we find

dθ

d�′ (∂θ + γ 2v · e ∂t )φ = ∓γ n ∂tφ, n = n(t,θ,γω) (27)

Rearranging gives the eikonal equation

±∂φ

∂θ
= K±(t,θ,ω), ω = −∂φ

∂t
, (28)

where

K±(t,θ,ω,) = K1(t,θ,ω,) ± K2(t,θ,ω,)

= γ 2 ω

c

(
n(t,θ,γω)

γ⊥
± v · ê

c

)
|e|. (29)

We have now reintroduced c. K± is a dimensionless version
of the wave number encoding all the relevant information on
the fiber and its motion. (See the Appendix, Sec. 3.)

In the nonrelativistic limit where γ,γ⊥ ≈ 1,

K± ≈ ω

c

(
n ± v · ê

c

)
|e|. (30)

The eikonal, Eq. (28), is a nonlinear, first-order PDE. In the
case that n is nondispersive, it simplifies to a linear PDE.
In either case, the PDE can be solved by the method of
characteristics, which reduces the problem of solving a PDE
to solving a set of coupled ordinary differential equations
(ODEs) [26]. We describe this reduction in the next section.

A. Hamiltonian system

The eikonal equation (28) has the form of a Hamilton-
Jacobi equation of mechanics. Table I gives the dictionary
that translates wave properties to mechanical properties. This
allows us to easily write the characteristic equations and

TABLE I. Correspondence between Hamilton-Jacobi equations
in mechanics and the eikonal equation.

Mechanics Eikonal

Phase space (x,p) Time-frequency plane (t,ω)
Position x Time t

Momentum p Frequency ω

Time t Fiber coordinate ±θ

Action S(x,t) (minus) Phase −φ(t,θ )
Hamiltonian H (x,p,t) Dimensionless wave number K±(t,θ,ω)
Lagrangian L(t,x,v) L ω∂ωK − K

reduces solving the PDE for the phase φ±(θ,t) to a problem in
mechanics.

The phase φ±(t,θ ) is the analog of the action S(x,t) which
can be determined by solving the Hamilton equations for (x,p)
and then integrating

dS = pdx − Hdt = (pẋ − H )dt = Ldt (31)

along the classical path. We shall do precisely the same thing
for φ±.

The analog of phase space in the context of the eikonal
is the time-frequency plane (t,ω) and the analog of time in
mechanics is the coordinate θ of the fiber. Hence, the analog
of Hamilton equations are

±dt±
dθ

= ∂ωK± , ±dω±
dθ

= −∂tK±. (32)

The equation for ω± may be interpreted as Doppler shifts along
the fiber.

The evolution of the phase φ along the fiber is now

dφ± = ∓L± dθ, (33)

where L± is the Legendre transform of K±:

L± = ±ω
dt±
dθ

− K± = ω∂ωK± − K±

= ω∂ωK1 − K1 = ω2

c
γ (∂ωn)

d�′

dθ
. (34)

In the third identity we used the fact that K2 is linear in ω so
its Legendre transform vanishes identically. This shows that
L+ = L− = L. In the absence of dispersion,5L = 0. To first
order in β

L ≈ ω2

c
(∂ωn) |e|. (35)

Once we find the solutions [t±(θ ),ω±(θ )] for the Hamiltonian
system, the phase φ± can be obtained by integrating Eq. (33)
along the trajectory.

B. Boundary conditions

We now turn to the boundary conditions for the Hamiltonian
system, Eqs. (32), governing the flow of the phase-space points
(t±,ω±) and φ±, Eqs. (33) and (34). Consider Fig. 4. We are
interested in solutions t±(θ ) that terminate simultaneously at
the detector at td . This imposes final conditions on t±(θ ):

t+(π ) = t−(−π ) = td . (36)

Note that the emission times are not specified and the ± waves
may have different emission times:

te+ = t+(−π ), te− = t−(π ). (37)

The second boundary condition fixes ω±(θ ) to be the frequency
of the source ω0(te) at the time of emission:

ω±(∓π ) = ω0(te±) = ω′
0

γπ

∣∣∣∣
t=te±

, γπ (t) = γ (t,π ), (38)

5This reflects the fact that in the absence of dispersion, t±(θ ) equals
the time schedule of a constant phase along the fiber.
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θ = −π

t

θ = π

t+
t−

t−(−π) = td

t+(−π)

t−(π)

t+(π) = td

θ

FIG. 4. Characteristics for the + wave (red arrow) and the − wave
(blue arrow) in the fiber. Both terminate at the detector simultaneously
at laboratory time td . The characteristics are parametrized by θ . The
interfering waves have different times of emission. This difference is
one source for the phase shift. The other source is the evolution of
the phase along the characteristics.

where we assumed that the source has a constant frequency ω′
0

in its own rest frame. The phase of the source is

� = −ω′
0t

′ = −ω′
0

∫ t ds

γπ (s)
, (39)

and one may therefore write the boundary condition on ω± as

ω±(∓π ) = −
(

d�

dt

)(
te±

)
. (40)

The boundary conditions for the Hamiltonian system (t,ω)
are nonstandard: Final boundary conditions are imposed on
t±(θ ) while initial boundary conditions are imposed on ω±(θ ).
The mixture of initial and final boundary conditions is unusual
from the perspective of mechanics and ODE in general6. It is
illustrated pictorially in Fig. 5.

Finally, we turn to the boundary conditions for the phase
in the interferometer.7 The phase φ± of the ± waves are set at
their emission times by the phase of the source. The boundary
values for φ± are then the initial values at the time of emission
and are given by

φ±(∓π ) = �(te±). (41)

It follows by Eq. (33) that the phase at the detector is then
given by

φ±(±π ) = �(t±(∓π )) −
∫ π

−π

L(t±(θ ),ω±(θ ),θ ) dθ. (42)

6Mixed boundary conditions also show up in the semiclassical limit
of quantum mechanics [27].

7In the case of a ring laser gyroscope, the boundary conditions are
replaced by resonance conditions on the phase φ±.

ω

t ω0

td

ω

t ω0

td

FIG. 5. Hamiltonian vector fields on the time-frequency plane
shown as red arrows. td is the detection time and ω0 the frequency
of the source at emission time. The boundary conditions at θ = ±π

select the orbit that starts on the vertical line ω0 and terminates on
the horizontal line td . This is the orbit that connects the blue dots.
The figure on the right shows the situation in the stationary case: ω is
conserved as can be seen from the fact that the vector field in phase
space is vertical.

The phase difference of the ± waves at the detector is given
by


φ = δ� −
∫ π

−π

(δL)dθ, (43)

where

δ� = �(te+) − �(te−) = −ω′
0

∫ te+

te−

ds

γπ (s)
, (44)

and

δL = L(t+,θ,ω+) − L(t−,θ,ω−). (45)

In the framework of geometric optics φ± are large quantities
and 
φ, being the difference of two large quantities, should
be handled with care. As we see, when the fiber motion is
adiabatic and β � 1, the first term in Eq. (43) is an integral
over a short time interval and the second has an almost self-
canceling integrand.

IV. STATIONARY INTERFEROMETERS

We say that an interferometer is stationary in the comoving
coordinates (t,θ ) if8

ω0 = const., ∂tK± = 0. (46)

This setting corresponds to having only the term of O(ε0)
in the adiabatic expansion, i.e., to 
(0). The condition
ω0 = const. expresses the stationarity of the light source. The
fiber is stationary in the (t,θ ) coordinates if n,|e|,γ,γ⊥, and
e · v are time independent. This gives ∂tK = 0. This holds for a
Sagnac interferometer (of arbitrary shape) rotating like a rigid
body with constant angular velocity and also for nonstretching
treadmill fiber interferometers9 moving at constant speed, such

8A more general notion of stationarity may be defined by demanding
the existence of a time like Killing vector field on the world tube. Since
our analysis is tied to the comoving coordinates we only consider
translation under (∂/∂t )θ . For a formulation in terms of arbitrary
coordinates, see the Appendix.

9For planar fibers one may show that these are the only two
possibilities of stationary motions.
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FIG. 6. Example of stationarity. The optical fiber moves like a
treadmill in the direction marked by the blue arrow. The black dot
represents the comoving beam splitter and the two vertical arrows the
light source and detector. The counterpropagating light beams share
a common path and are marked by red arrows. If the fiber moves at
constant speed without stretching, ∂tK± = 0, and the interferometer
is stationary in the sense of Eq. (46).

as the one shown in Fig. 6. Stationarity is a strong condition and
few examples satisfy it exactly. However, it is often satisfied
approximately. In such cases the stationarity assumption is
useful as a basis for the adiabatic approximation described in
the next section.

The statement ∂tK± = 0 implies by Eq. (32) that ω±(θ )
is constant on each trajectory. The boundary conditions on
ω± then say that

ω+ = ω− = ω′
0

γπ

= ω0. (47)

Since the source has constant frequency in the laboratory,
ω± are also constant.

It also follows from ∂tK± = 0 that L is time independent.
Consequently [see Eq. (45)], δL vanishes identically and we
are left with


φ = −ω′
0

∫ te+

te−

ds

γπ (s)
= ω′

0

γπ

(te− − te+)

= −ω0(te+ − te−) = −ω0
te, (48)

where 
te is the difference in times of emission and we made
use of the fact that the source is in stationary motion. The
elapsed times between emission and detection is given by

(td − te)± = t±(±π ) − t±(∓π ) =
∫ π

−π

∂ωK±dθ. (49)

Since K± does not depend on t or φ and since ω is a constant,
the integrand is a known function of θ . Using the fact that the
detection times for the (±) waves are the same, t+(π ) = td =
t−(−π ), the difference in the emission times is given by


te = t+(−π ) − t−(π ) = −
∫ π

−π

(∂ωK+ − ∂ωK−)dθ

= −2
∫ π

−π

∂ωK2 dθ

= −2
∫ π

−π

γ 2v · e dθ = −2
∮

γ 2v · d�. (50)

This completes the proof of Eq. (7).
Geometric optics is concerned with the regime ω0τ � 1.

Since

(
φ)(0) = O[βγ 2 (ω0τ )], (51)

the phase shift depends sensitively on the velocity via βγ 2.
This is both a bug and a feature. It is a feature in the sense
that phase shifts of O(1) allow us to measure the velocity with
great accuracy. It can be a bug because small fluctuations of
the velocity can make the interference pattern unstable. Ring
interferometers become increasingly sensitive and eventually
unstable at relativistic velocities. The optimal regime for the
ring interferometers is when the velocity is adjusted to the
frequency ω0 so that the phase shift is O(1).

V. ADIABATIC CORRECTION

We say that the interferometer is adiabatic if the Hamilto-
nian K± and the source frequency ω′

0/γπ change little during
a cycle time τ ∼ L/c of a light pulse through the fiber10

[τ∂t ln(K±), τ∂t ln(γπ )] ∼ ε � 1. (52)

We shall now consider the leading adiabatic corrections 
(1)

which we will find to be of order O[ε (ω0τ )] = O[εβ0 (ω0τ )].
Comparison with Eq. (51) shows that 
(1) may be as large
as 
(0) even for ε � 1 provided that β � 1. For this reason
and for simplicity we shall assume in the following β � 1. In
particular it allows neglecting K2 = O(βωτ ) in comparison
with K1 = O(ωτ ) in Eq. (29).

The adiabatic expansion of (t,ω) can be organized as

t±(θ ) = td + t
(0)
± (θ ) + t

(1)
± (θ ) + · · · ,

ω±(θ ) = ω0 + ω
(1)
± (θ ) + · · · , (53)

where

t
(0)
± = O(τ ), t

(1)
± = O(ετ ), ω

(1)
± = O(εω0). (54)

From Eq. (43)

(
φ)(1) = (δ�)(1) −
∫ π

−π

(δL)(1)dθ. (55)

We have already seen in the previous section [see Eq. (50)]
that


t (0)
e = t

(0)
+ (−π ) − t

(0)
− (π ) = O(β). (56)

It follows that at leading order in β we may neglect all powers
of 
t (0)

e and write

(δ�)(1) ≈ −ω0
t (1)
e = −ω0[t (1)

+ (−π ) − t
(1)
− (π )]. (57)

Since τ∂tL/L = O(ε) while ω0∂ωL/L = O(1) we have

δL(1) ≈ (∂tL) δt (0) + (∂ωL) δω(1), (58)

where ∂L = (∂L)(td ,θ,ω0) are evaluated at the detection time
and

δt (0)(θ ) = t
(0)
+ (θ ) − t

(0)
− (θ ),

δω(1)(θ ) = ω
(1)
+ (θ ) − ω

(1)
− (θ ). (59)

10More systematically, the adiabatic limit is represented by writing
K± and γπ as functions of scaled dimensionless time s = εt/τ rather
than of t .
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To compute (
φ)(1) we therefore need t
(1)
± at the emission point

and (δt (0),δω(1)) along the fiber. Interestingly, as we will see
below, we will not need ω(1).

The dominant piece of t
(0)
± is of O(τ ) and comes from K1.

A piece of O(τβ) comes from K2. It is the smaller piece that
gives the Sagnac effect at order ε0. For evaluating Eq. (58)
to leading order in β we only need the dominant part of t

(0)
± ,

which is the solution of

±dt (0)

dθ
≈ ∂ωK1(td ,θ,ω0). (60)

Hence

t
(0)
± (θ ) ≈ ∓

∫ ±π

θ

∂ωK1(td ,θ
′,ω0) dθ ′. (61)

This gives

δt (0)(θ ) ≈
∫ π

−π

sgn(θ − θ ′)∂ωK1(td ,θ
′,ω0) dθ ′. (62)

We need t
(0)
± to find t

(1)
± , which is the solution of

±dt (1)

dθ
≈ (t (0)∂t + ω(1)∂ω)∂ωK1(td ,θ,ω0). (63)

Integrating Eq. (63) we find

(δ�)(1) = −ω0[t (1)
+ (−π )−t

(1)
− (π )]

= ω0

∫ π

−π

dθ [δt (0)(θ )∂t +δω(1)(θ )∂ω]∂ωK1(td ,θ,ω0).

(64)

(
φ)(1) has four terms: two that come from the integral in
Eq. (64) and two from integrating Eq. (58). Summing these
four terms gives

(
φ)(1) =
∫

dθ
[
δω(1)(θ )

(
ω∂2

ωK − ∂ωL
)

+ δt (0)(θ )(ω∂ω∂tK − ∂tL)]. (65)

The first bracketed subtraction vanishes since

ω∂2
ωK − ∂ωL = ω∂2

ωK − ∂ω(ω∂ωK) + ∂ωK = 0. (66)

The second subtraction is

ω∂ω∂tK − ∂tL = ω∂ω∂tK − ∂t (ω∂ωK − K) = ∂tK. (67)

The term proportional to δω(1) drops and the term proportional
to δt (0) survives. Substituting Eq. (62) and using Eq. (67) gives

(
φ)(1) =
∫ π

−π

∫ π

−π

dθ dθ ′ sgn(θ − θ ′)∂tK1(θ )∂ωK1(θ ′) ≈ ω

c2

∫ π

−π

∫ π

−π

dθ dθ ′ sgn(θ − θ ′)∂t (n|e|)(θ )∂ω(ωn|e|)(θ ′)

≈ ω

c2

∫ π

−π

∫ π

−π

|e(θ )|dθ |e(θ ′)| dθ ′ sgn(θ − θ ′)[∂tn(θ ) + n(θ )σ (θ )] ∂ω[ωn(θ ′)]

= ω

c2

∫ L

0

∫ L

0
d� d�′ sgn(� − �′)[∂tn(�) + ∂t� ∂�n(�) + n(�)σ (�)]∂ω[ωn(�′)]. (68)

For typographical simplicity we have omitted the arguments
t and ω throughout. In the first line we used the β � 1
approximation K1 ≈ ω

c
n|e|. In the second line we used the

nonrelativistic approximation for the stretch rate σ , Eq. (14).
In the last line we changed variables from θ to � so that n(θ,t)
is replaced by n(�,t). L is the length of the fiber at the time of
detection t and ∂t� = ∫ �

0 σ (�′)d�′. This proves Eq. (8).

VI. APPLICATIONS

A. Thermal nonreciprocity

Consider a static homogeneous fiber with a temperature
profile T (θ,t) whose variation δT is small. The index of
refraction is assumed to be a function of the temperature,
n(T ,ω), and similarly the length d� is a function of T , i.e.
d� = |e(T )|dθ . The coefficient of thermal expansion is then
α = ∂T ln |e(T )|. We are interested in computing 
φ(1) to first
order in δT . This problem has been considered in [4].

Evidently

∂t (n|e|) = ∂T (n|e|) ∂t (δT ). (69)

This implies that the first bracketed factors in Eq. (68), all three
lines, is O(δT ) and we may ignore the δT dependence of the
other factors. For a homogeneous fiber the second bracketed
factor in line 1 are a constant which can be pulled out of the

integral.

(
φ)(1) ≈ ω

c2

∫ π

−π

∫ π

−π

dθ dθ ′ sgn(θ − θ ′)∂t (n|e|)(θ )

× ∂ω(ωn|e|)(θ ′)

≈ ω

c2
∂T (n|e|)∂ω(ωn|e|)

×
∫ π

−π

∫ π

−π

dθ dθ ′ sgn(θ − θ ′)∂t (δT )

≈ 2
ω

c2
|e|(∂T n + nα)∂ω(ωn|e|)

∫ π

−π

dθ θ ∂t (δT ).

(70)

Changing variables from θ to length � = |e|(θ + π ) we can
write

(
φ)(1) ≈ ω

c2
(∂T n + nα)∂ω(ωn)

∫ L

0
d� (2� − L)[∂t (δT )

+ ∂t� ∂�(δT )]. (71)

However, for static fibers ∂t� vanishes apart from a ∼αδT

correction which is negligible to leading order in δT . Hence
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FIG. 7. Velocity in the right arm of the Fizeau interferometer.
Shown on the left is the velocity of the fluid as a function of
the laboratory coordinates (t,x). The orange strip represents zero
velocity and the cyan velocity V . In the laboratory frame the velocity
is independent of t and the setting is stationary. The diagram on
the right illustrates the velocity field in the (t,θ ) coordinates. The
velocity is nonzero in the (cyan) parallelogram. We assume that a fluid
particle starting at the entrance boundary discontinuously changes its
velocity from zero to V , and then stops abruptly at the exit boundary.
The velocity is time dependent, reflecting nonstationarity in the (t,θ )
coordinates.

to first order in δT

(
φ)(1) ≈ ω

c2
(∂T n + nα)∂ω(ωn)

∫ L

0
d� (2� − L)[∂t (δT )].

(72)

This is a slight generalization of the Shupe formula [4] in that
it accounts also for the case that n is dispersive.

Note that if the spatial distribution of ∂t (δT ) has short-range
correlations (idealized by white noise) then the expectation of
[(
φ)(1)]

2
is

E([(
φ)(1)]2) = O(L3), (73)

which, for large L, dominates the Sagnac O(L) term.

B. Fizeau

The Fizeau experiment is shown schematically in Fig. 2.
The interferometer is at rest in the laboratory, but one arm
of the interferometer has a flowing liquid, say, water. From
the perspective of the laboratory the setting is stationary,
because the velocity at each point in the laboratory frame
is time independent.11 However, from the point of view of the
comoving coordinate θ , the interferometer is not stationary:
Elements of the fluid accelerate and decelerate as they enter
and leave the pipe. Figure 7 compares the laboratory (x,t) and
(θ,t) coordinates.

In the laboratory coordinates the velocity is approximately
given by

v(x) = V χ(xin,xout)(x), (74)

11Analysis of the Fizeau interferometer from this point of view is
given in the Appendix, Sec. A 5.

where χ(xin,xout) is the characteristic function of the interval.
The stretching is then

σ = ∂t ln |e| = ∂θv

|e| = ∂xv = V [δ(x − xin) − δ(x − xout)].

(75)

Substituting Eq. (74) into Eq. (7) (and using |e|dθ = dx) gives
for the Sagnac term

(
φ)(0) = −2ωV L. (76)

Substituting Eq. (75) into Eq. (8) gives the correction due to
stretching:

(
φ)(1) = nω∂ω(ωn)
∫

σ (x) sgn(x ′ − x) dx dx ′

= nω∂ω(ωn)2V L. (77)

Summing we obtain the von Laue result, Eq. (9).
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APPENDIX: MOVING FIBERS IN ARBITRARY
COORDINATES

1. World sheet in general coordinates

A closed optical fiber deforming in time traces out a two-
dimensional surface in space-time which, in analogy to string-
theorist terminology, may be referred as a “world sheet.” One
may describe it parametrically as X = Xμ(t,s), where t is a
timelike coordinate and s is a spacelike periodic coordinate
(i.e., Ẋμ = ∂tX

μ and X′μ = ∂sX
μ are timelike and spacelike,

respectively). The refraction index of the fiber is n(t,s,ω).
To fully describe the fiber one must also be given its local

four-velocity. This is given by a tangent vector field12v on the
world sheet. We write it using two components v = (v0,v1).
The (unit) four-vector corresponding to it is

vi∂iX
μ = v0Ẋμ + v1X′μ. (A1)

The three functions Xμ(t,s), vμ(t,s), and n(t,s,ω) suffice to
fully describe our system.

It is convenient to define another tangent vector e = (e0,e1)
by demanding it to be orthogonal to v and normalized. (Its
orientation may be chosen by demanding e1 > 0.) It is possible
to write e explicitly in terms of v, the Levi-Civita tensor ε,
and the metric gij = ημν∂iX

μ∂jX
ν . The pair (v,e) form a

two-dimensional vierbein on the world sheet.

12The world-sheet tangent vectors v,e defined here should not be
confused with the spatial vectors mentioned in the main text.
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2. Eikonal equation

Within the eikonal approximation, a wave moving in the
fiber is described by its phase φ(t,s). The corresponding
frequency and wave vector are than defined to be

ω = −∂tφ, k = ∂sφ. (A2)

The standard relation k′ = ±nω′ is satisfied, however, by the
wave vector k′ and frequency ω′ in the local inertial frame
(v,e) moving with the fiber, that is,

ω′ = −vi∂iφ = v0ω − v1k, k′ = ei∂iφ = −e0ω + e1k.

(A3)

In the absence of chromatic dispersion one easily solves
k′ = ±nω′ obtaining

k = ω
e0 ± nv0

e1 ± nv1
. (A4)

When considering dispersive media one must keep in mind
that the refraction index n appearing here should be evaluated
at the local moving frame, i.e.,

n = n(ω′) = n(v0ω − v1k). (A5)

Thus to really find k(ω) may require solving a nontrivial
equation. This difficulty is avoided if one chooses s to be a
comoving coordinate (such that each value of s corresponds
to a specific fixed material point) since then v1 ≡ 0 and hence
n = n(v0ω) does not depend on k. Also in the nonrelativistic
limit one typically has v1 � v0 (unless the coordinates t,s are
chosen in a very unnatural way). Expanding in powers of β

then allows a perturbative solution for k(ω).
The two solutions of Eq. (A4) define two functions of ω,t,s

which we shall denote by ±K±(t,s,ω). (The extra sign in front
of K is needed for consistency with the rest of our conventions.
Under nonextreme circumstances it corresponds to having both
K+ and K− positive.) Having found the functions K±, the
Hamilton equations for the eikonal wave propagation can be
written in the standard form:

± dt

ds
= ∂ωK±, ±dω

ds
= −∂tK±, (A6)

dφ

ds
= ∓L±, L± = ω∂ωK± − K±. (A7)

3. Consistency with Eq. (29)

Choosing s = θ a comoving coordinate means that the matter
particles move in the direction defined by ∂t and hence v1 ≡ 0.
If we further assume that t is the laboratory time such that
X = (t,x(t,θ )), then we may also solve for v0,e0,e1 obtaining

v0 = γ, e1 = γ⊥
γ |x′| , e0 = γ γ⊥ẋ‖. (A8)

This reproduces K± of Eq. (29):

K± = γ 2

γ⊥
nω|x′| ± γ 2ω(ẋ · x′).

4. Stationarity

The fiber and the associated interferometer may be called
stationary if there exists a timelike vector field ξ defined on
the world sheet under which the system is symmetric. This
means that the ξ -Lie derivative of v,n,gij vanish. Note that
this is equivalent to vanishing of the ξ -Lie derivative of v,e,n.
In Sec. IV we considered only the case of ξ = v (which
made the condition Lξv = 0 trivial). The simplest nontrivial
example of a stationary interferometer with ξ �= v is the Fizeau
experiment.

5. Fizeau yet again

The Fizeau experiment is described most simply in terms
of the laboratory coordinates (t,x) where it is explicitly time
independent. Denoting the fluid velocity by V (which may
depend on x but not on t) we have

v = (γ,γV ), e = (γV,γ ), (A9)

with

K± = ω
n(ω′) ± V

1 ± V n(ω′)
. (A10)

Noting that in the nonrelativistic limit

ω′ = γ (ω − V k) = ω ∓ V ωn(ω) + O(β2),

we obtain

K± = n0ω ± (
1 − n2

0

)
V ω ∓ V ω2n0∂ωn0 + O(β2),

where we denoted n0 = n(ω) in order to distinguish it
from n(ω′).

Since K± does not depend on time, it is easy to solve
Hamilton’s equations

±dω/dx = −∂tK± = 0 ⇒ ω± = ω0,

±dt±/dx = ∂ωK± ⇒ (tf − ti)± =
∫

dx∂ωK±,

±dφ±/dx = −L± ⇒ (φf − φi)± = −
∫

dxL±.

Adding both contributions we find the phase at arrival at the
detector is

(φf )± + ωtf = (φf − φi)± + ω(tf − ti)± =
∫ xf

xi

dxK±.

This result was expected and could have been easily derived
without use of our general formalism. The phase difference at
arrival is then


φ =
∫ xf

xi

dx(K+ − K−)

= 2[ω
(
1 − n2

0

) − ω2n0∂ωn0]
∫

V dx + O(β2)

= 2ω[1 − n0∂ω(ωn0)]
∫

V dx + O(β2). (A11)
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