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Abstract
The Chern numbers for Hofstadter models with rational flux 2π p/q are partially
determined by a Diophantine equation. A mod q ambiguity remains. The
resolution of this ambiguity is only known for the rectangular lattice with
nearest neighbors hopping where it has the form of a ‘window condition’. We
study a Hofstadter butterfly on the triangular lattice for which the resolution of
ambiguity is open. In the model many pairs (p, q) satisfy a window condition
which is shifted relative to the window of the square model. However, we also
find pairs (p, q) where the Chern numbers do not belong to any contiguous
window. This shows that the rectangular model and the one we study on the
triangular lattice are not adiabatically connected: many gaps must close. Our
results suggest the conjecture that the mod q ambiguity in the Diophantine
equation generically reduces to a sign ambiguity.

Keywords: Hofstadter model, quantum Hall phase diagrams, Diophantine
equations, window conditions
PACS number: 73.43.−f

(Some figures may appear in color only in the online journal)

1. Motivation and results

Hofstadter models give rise to topological phase diagrams3 with fractal structure [1, 3]. The
phases are labeled by the (integer) Hall conductances (Chern numbers). A high resolution
diagram, such as figure 1, requires efficient algorithms for approximating the fractal spectrum
of the Hofstadter models as well as an efficient algorithm to compute the Chern numbers that
color the wings of the butterfly.

3 The phase diagrams we consider should be distinguished from phase diagrams which describe the localization
properties and the Liapunov exponent described e.g. in [12].
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Figure 1. A phase diagram for the Hofstadter model on a triangular lattice where the
flux through the down triangle is �d = π/2. The vertical axis is the total flux �. The
horizontal axis is the chemical potential. The colors represent the Chern numbers. The
picture was made with the window condition equation (1.6) for q = 512 and p ranging
in [1, 512]. The picture is apparently free from major coloring errors.

A numerical computation of the spectrum can be made efficiently for Hofstadter models
that admit a ‘Chambers relation’ [6]: a relation that determines the points in the (magnetic)
Brillouin zone where gap edges occur. To color figure 1, which has q = O(550), one needs
O(105) Chern numbers. It is impractical to compute this many integers from their definition
as integrals, equation (C.3). One needs a shortcut.

In the case of rational flux through the unit cell

� = 2π p/q, p, q ∈ N, gcd(p, q) = 1 (1.1)

the Chern number of the jth gap, σ j ∈ Z, satisfies the Diophantine equation:

σ j = s j mod q, (1.2)

s is the modular inverse of p, i.e. sp = 1 mod q. The gap indexes j and s take values in Zq

assuming that all the gaps are open. The equation was first derived by a perturbation argument
for the rectangular model in [18]. It was later shown to be a general result that holds for any
periodic Schrödinger equation [9]. In appendix D we give a proof for tight-binding models.

The Diophantine equation forces distinct gaps to have different Chern numbers but leaves
a mod q ambiguity in σ j for j �= 0. For j = 0 and j = q, corresponding to the semi-infinite
gaps below and above the spectrum, there is, of course, no ambiguity: σ0 = σq = 0: a trivial
insulator [4].

The mod q ambiguity was resolved for the Hofstadter model on the rectangular lattice
with nearest neighbors hopping in [18]. They showed, subject to the assumption that no gap

2



J. Phys. A: Math. Theor. 47 (2014) 185202 J E Avron et al

opens or closes as the ratio of the horizontal to vertical hopping amplitudes changes away
from zero, that σ lies in a window:

σ ∈

⎧⎪⎨
⎪⎩

[
1 − q

2
,

q

2
− 1

]
q even;[

−q − 1

2
,

q − 1

2

]
q odd.

(1.3)

When q is odd the window assigns q values to the Chern numbers but when q is even it
only assigns q − 1 values. This is still ok since the middle gap at q/2 (zero energy) is
permanently closed in the rectangular model. The assumption that no gap closes upon the
special deformation of the rectangular model used in [18] was subsequently proved in [7, 16].
This may be phrased as the statement that the Hofstadter models on the square and rectangular
lattices are adiabatically connected.

For models, on other lattices, such as the Hofstadter model on the triangular lattice [2],
or on the hexagonal lattice [8, 14], and models with hopping beyond nearest neighbors, the
Diophantine equation still holds, but the issue of the mod q ambiguity is open. In all these
models the mod q ambiguity is a finite ambiguity since the Chern numbers can be bounded in
terms of the gap, see equation (C.6) in appendix C. However, the bound is not good enough
to determine σ uniquely. A colored Hofstadter butterfly for the hexagonal model has been
made in [11] where the Chern numbers were numerically computed using edge currents. This
approach is numerically intensive.

The triangular and hexagonal lattices can be viewed as deformations of the square lattice
by tuning the hopping amplitudes. For example, tuning the next nearest neighbor hopping
amplitude along the north-west south-east bonds away from zero turns the square lattice to the
triangular lattice. Two models are adiabatically connected if one can be deformed to the other
without closing any gap implying that the resolution of the mod q ambiguity in the two models
is the same. However, there is normally no way of telling a priori if all gaps remain open.
In fact, by the Wigner–von Neumann crossing rule, [10], one would expect that generic
deformations would open and close some gaps4.

The Hofstadter model on the square lattice is not generic since its middle gap is closed
for all even q. A generic Hofstadter model, though we cannot put our hands on one, should
have all its gaps open.

One might think that one should be able to determine the Chern number easily from the
Streda formula [17]

2πδρ = σδ�, ρ = j

q
. (1.4)

The Streda formula, however, comes with a catch: it requires that one knows a priori that two
neighboring points (ρ1,�1) and (ρ2,�2) belong to the same wing of the butterfly. Although
humans can usually correctly guess when two points belong to the same wing, it is an intuition
that is difficult to translate to an algorithm that would allow a computer to make this guess.
Once the resolution reduces to the level of a single pixel, even humans cannot guess.

In this work we outline a graphic method to identify topological obstructions to adiabatic
deformations which builds on the ability of humans to solve CAPTCHA (an acronym for
completely automated public Turing test to tell computers and humans apart), which in this
case translates to recognizing a coloring error.

We illustrate the method for the Hofstadter models on the triangular lattice [13]. In a
triangular lattice there is a freedom to tune the fluxes in the up and down triangles, (�u,�d ).

4 A generic deformation of Hofstadter models is associated with a three-parameter family: two parameters for the
Bloch momenta and one for the deformation.
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Figure 2. The figure shows a coloring mistake for the pair (p = 2, q = 5): a blue streak
at the center of the figure, representing σ = −2, cuts the wing σ = 3. The mistake
reflects a wrong resolution of the mod q ambiguity of the solutions to the Diophantine
equation.

This freedom allows for making various plots of infinitely many different butterflies. We have
chosen to consider the case where the vertical axis in figure 1 is the total flux �u + �d and
�d = π/2 is fixed. We picked this particular value for �d because it gives the butterfly
inversion symmetry. It lacks the reflection symmetry of the rectangular and hexagonal lattices.

The Diophantine equation can be read as an assignment of a gap index j to a given Chern
number. The resolution of the ambiguity for a gap index is obvious, since j ∈ 1, . . . , q. The
ambiguity problem for σ is now hidden in the fact that we do not know if a given σ , (rather
than σmod q) actually occurs. We know that σ = 0 occurs. This suggests the heuristics that
small Chern numbers |σ | � q occur. This is equivalent to saying that equation (1.3) holds for
|σ | � q and fails for |σ | = O(q). An argument in favor of this heuristics can be made if one
thinks of the Chern number as edge modes [4]. Generically, one expects edge modes to gap
out so that their number is small.

Assuming this heuristics, the Diophantine equation can be written graphically as

σ0 = 0 → σp = 1 → · · · ← . . . σq−p = −1 ← σq = 0 (1.5)

which resolves the ambiguity for small Chern numbers |σ | � q. When the Chern numbers
are O(q), the assignment from the left and right in equation (1.5) disagrees reflecting the mod
q ambiguity.

Figure 1, for the triangular lattice with �d = ±π/2, was plotted assuming the shifted
window condition

σ ∈
[
−q

2
+ 1,

q

2

]
, q even. (1.6)

The window appears to be free from major coloring errors. On the scale of few pixels,
it becomes difficult to tell if the coloring is indeed right. The points (q ± 1)/(2, q) were
excluded because they lead to coloring errors illustrated in figure 2.

We have also numerically computed the Chern numbers, equation (C.3), for a few pairs
(p, q) with small q and found:

σ ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ , 0, 1], gap closes q = 3, p ∈ {1, 2}
[ ,−1, . . . , 3] q = 5, p ∈ {2, 3}
{−4, ,−2, . . . , 2, 3/, 4} q = 7, p ∈ {3, 4}
{−4, ,−2, . . . 4, 5/, 6} q = 9, p ∈ {4, 5}
{−8, ,−6, ,−4, . . . , 4, 5/, 6, 7/, 8} q = 13, p ∈ {5, 6}.

(1.7)

This shows that there are pairs (p, q) for which the Chern numbers do not lie in any contiguous
window.
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There are topological obstructions for deforming the Hofstadter models on the triangular
lattice with �d = ±π/2 to the square lattice: the two models are not adiabatically connected.
This is true even if one restricts oneself to odd q where all the gaps in the square model are
open: the windows in equation (1.3) are incompatible with equations (1.6) and (1.7). Most
(p, q) have gaps that must close. For example, the fragmented window q = 7, results from a
deformation of the contiguous window [−3, 3] upon gap closure taking ±3 �→ ∓4.

Our findings, equations (1.6), (1.7), are consistent with the following conjecture:

Conjecture 1.1. The mod q ambiguity in the solution of equation (1.2) is, for generic Hofstadter
models, a sign ambiguity: the Chern number is either the smallest positive or the smallest
negative solution of the Diophantine equation. Equivalently: −q � σ � q.

The conjecture is related to an interesting separate problem namely, how to determine
the sign of Chern numbers. Determining the sign of an integral is, of course, a much easier
problem than evaluating it and can be estimated, with high probability using Monte Carlo
methods. In fact, for small gaps, the sign of the Chern number is likely to be the sign of the
curvature at the gap edged. If the conjecture was true, it would allow for efficient algorithms
for plotting high resolution Hofstadter butterflies when the resolution of the mod q ambiguity
is not known.

In the appendices we collect the tools we have used in the analysis.
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Appendix A. Hofstadter models on the triangular lattice

Define magnetic hopping T1,2,3 on the triangular lattice,

(T1ψ)(n, m) = �(n, m − 1), (T2�)(n, m) = ωm�(n − 1, m), T3 = ωuT1T2. (A.1)

See figure A1 for the meaning of ω,ωd , and the coordinates (n, m). The unitary accumulated
by going (clockwise) around the up/down triangles is ωu/d and around the unit cell ω = ωuωd :

T ∗
3 T2T1 = ωd, T3T ∗

2 T ∗
1 = ωu, T2T1 = ωT1T2.

A (tight-binding) Hofstadter model with isotropic hopping amplitudes is

H(ω, ωd ) = T1 + T2 + T3 + h.c. (A.2)

A.1. �d = π/2: inversion symmetry

Hofstadter models on the triangular lattice give the freedom to choose independently the fluxes
in the up and down triangles. We have used this freedom to pick a model which is nice and
symmetric.

The anti-unitary

C�(n, m) = (−)m+n�̄(n, m)

acts on H(ω, ωd ) by

CH(ω, ωd ) = −H(ω̄,−ω̄d )C. (A.3)

In a Hofstadter butterfly one looks at the spectrum as a function of the total flux �. It follows
that ωd = ±i corresponds to a butterfly with inversion symmetry of the two axes of the
diagram: (�, E ) ↔ (−�,−E ), a symmetry evident in figure 1.
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Figure A1. Triangular lattice. The flux through the down triangle is ei�d = ωd , and
the total flux through both up and down triangles is ω = ei�. The coordinate n grows
towards the right and the coordinate m grows towards the north-west. (n, m) is as in
equation (A.1).

A.2. Reduction to one dimension

The operators Tj of equation (A.1) are independent of the coordinate n. The symmetry allows
reducing the problem from two dimensions, Z

2, to one dimension, Z. Let T and S act on the
one-dimensional lattice by

(Tψ)(m) = ψ(m − 1), (Sψ)(m) = ωmψ(m), ST = ωT S. (A.4)

Take �(n, m) = e−ik1nψ(m) labeled by the conserved (quasi) momentum −π � k1 � π . One
readily verifies that the action of Tj on such functions takes the form

T1 �→ T, T2 �→ eik1 S, T3 �→ ωu eik1 T S.

The Hofstadter Hamiltonian on Z
2 has been reduced to a periodic family of Hamiltonians,

labeled by k1, acting on Z:

H(k1) = T (1 + eik1ωuS) + eik1 S + h.c., |k1| � π. (A.5)

A.3. Reduction to q × q matrices

T generates translations and since it commutes with itself it is translation invariant. S is not.
However, when ω = e2π ip/q, a rational root of unity, Sq = 1. H(k1) is then periodic with
period q. This allows the reduction of the operator H(k1) acting on 
2(Z) to a q × q matrix
H(k1, k2) parametrized by two quasi-momenta k = (k1, k2).

Let S and T be the mod q version of equation (A.4)

S =

⎛
⎜⎜⎜⎜⎝

ω 0 . . . 0 0
0 ω2 0 . . . 0
. . . . . . . . .

0 0 0 ωq−1 0
0 0 0 0 ωq

⎞
⎟⎟⎟⎟⎠ , T =

⎛
⎜⎜⎜⎜⎝

0 0 0 . . . 1
1 0 0 . . . 0
. . . . . . . . . . . . . . .

0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ . (A.6)
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The q × q matrix obtained from equation (A.5) is

H(k) = eik2 T (1 + ωu eik1 S) + eik1 S + h.c. (A.7)

The Bloch momenta k values takes in the (magnetic) Brillouin zone [19]

BZ = {k||k1| � π, |qk2| � π}. (A.8)

The matrices S and T satisfy the algebra

ST = ω T S Sq = T q = 1. (A.9)

A.4. Magnetic symmetry

The matrix H(k1, k2) is not a periodic function on the (magnetic) BZ. However, it is periodic up
to a unitary transformation. In fact, there is a larger symmetry, known as ‘magnetic symmetry’
[19].

The commutation of S and T , equation (A.9), implies

H(k1, k2) = T ∗H

(
k1 − 2π p

q
, k2

)
T = S∗H

(
k1, k2 + 2π p

q

)
S. (A.10)

Since gcd(p, q) = 1, p has a modular inverse which we denote by s. Iterating equation (A.10)
s times gives

H(k1, k2) = T s∗H

(
k1 − 2π

q
, k2

)
T s = Ss∗H

(
k1, k2 + 2π p

q

)
Ss. (A.11)

It follows that the spectral properties are fully determined by a small square in the BZ, �H ,
whose size is 2π/q × 2π/q.

Appendix B. The Chambers relation and band edges

An efficient computation of the spectrum of Hofstadter models can be made provided there is
a priori knowledge where in the BZ band edges occur. There is no known method to do that
for general Hofstadter models, but Hofstadter models associated with tri-diagonal matrices
are special. They admit the Chambers relation [2, 6, 12] which facilitates this. The Chambers
formula says that characteristic polynomial takes the form

det(H(k) − λ) = P(λ) + det H(k) (B.1)

P(λ) is a polynomial in λ of degree q which is independent of k. This says that for all p and
q, band edges occur at the extremal points of det H(k).

For the triangular lattice with different fluxes in the up/down triangles [2] determined
det H(k):

det H(k) = h(ω, ωd ) + (−)q+1(eiqk1 + eiqk2 + (−)q−1ω̄
q
d eiq(k1+k2 ) + c.c.). (B.2)

B.1. Band edges for �d = π/2

For ωd = i the extremal points of equation (B.2) are determined by:

(1) q odd: the maximum and minimum of

2(cos x + cos y ± sin(x + y)), (x, y) = qk. (B.3)

The band edges occur at

± qk ∈ (π/6, π/6), (5π/6, 5π/6). (B.4)
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(2) q even: the maximum and minimum of

2(cos x + cos y ± cos(x + y)), (x, y) = qk. (B.5)

The band edges occur at

± qk = (0, 0), (2π/3, 2π/3). (B.6)

Appendix C. Chern numbers

The adiabatic curvature of the nth band is defined as [5]

�n(k) = 2 Im 〈∂1ψn|∂2ψn〉 = 2 Im
∑
m�=n

〈ψm|∂1H|ψn〉〈ψn|∂2H|ψm〉
(En − Em)2

. (C.1)

The Chern number σ̃n associated with the nth band is defined by [18]

σ̃ j = 1

2π

∫
BZ

�n(k) d2k ∈ Z. (C.2)

The integration is over the (magnetic) Brillouin zone. It is known to be an integer [18]. Using
the magnetic symmetry, section A.4, it can be written as [18]

σ̃ j = q

2π

∫
BZ/q

�n(k) d2k = q

2π i

∮
∂(BZ/q)

〈ψ j|∇kψ j〉 · dk (C.3)

by the Stokes formula.

C.1. Chern numbers for gaps

The Chern number σ j for the jth gap is defined as the sum of Chern numbers of the bands
below the gap:

σ j =
∑
n� j

σ̃n. (C.4)

The summand in equation (C.1) is anti-symmetric under m ↔ n. It follows that

∑
n� j

�n(k) = 2 Im
∑

n� j<m

〈ψm|∂1H|ψn〉〈ψn|∂2H|ψm〉
(En − Em)2

. (C.5)

In the Hofstadter model, equation (A.7), ∂ jH is a sum of six unitary operators and so
‖∂ jH‖ � 6. It follows that with g j the gap∣∣∣∣∣∣

∑
n� j

�n(k)

∣∣∣∣∣∣ � 2 × 62

g2
j

∑
n� j<m

1 = 2 × 62 j(q − j)

g2
j

.

The area of BZ is (2π)2/q and hence

|σ j| � 4π × 62 j(q − j)

q g2
j

. (C.6)
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Figure D1. The unitaries that relate |ψ〉 at the corners of the square 2π/q × 2π/q by
parallel transport along the corresponding edges.

Appendix D. Diophantine equation

The nth band is associated with a projection Pn(k) = |ψn〉 〈ψn|. We shall suppress n to simplify
the notation. P is determined by the Hamiltonian and inherits its symmetries. In particular,
P(k) is periodic, with period 2π/q, up to the unitaries T s and Ss as per equation (A.11).

The Chern number of the nth band is, by equation (C.3), q/2π times the holonomy in the
phase of |ψ〉 as one parallel transports the state around the square

(0, 0) → (2π/q, 0) → (2π/q, 2π/q) → (0, 2π/q) → (0, 0).

A parallel transport that keeps Berry’s phase, without accumulating a ‘dynamical phase’ is
given by the solution of the differential equation [15]

|dψ〉 = i[dP, P]|ψ〉. (D.1)

This evolution equation guarantees that |ψ〉 stays in range P, i.e. P |ψ〉 = |ψ〉 all along the
path: it satisfies the adiabatic theorem with no error.

Let |ψ〉(2π/q,0) be the solution of equation (D.1) along the open path (0, 0) → (2π/q, 0).
This defines a phase γ1 by

|ψ〉(2π/q,0) = eiγ1 T s|ψ〉(0,0). (D.2)

Similarly, let |ψ〉(0,2π/q) be the solution of equation (D.1) along the path (0, 0) → (0, 2π/q).
It defines a phase γ2 by

|ψ〉(0,2π/q) = eiγ2 Ss|ψ〉(0,0). (D.3)

Now, we can get two different determinations of |ψ〉(2π/q,2π/q), one along the path
(0, 0) → (2π/q, 0) → (2π/q, 2π/q) and the other along the path (0, 0) → (0, 2π/q) →
(2π/q, 2π/q). The discrepancy in the phases is the holonomy in phase associated with going
around the square. This phase is precisely the value of the integral in equation (C.3), which
we are after.

By the magnetic symmetry, equation (A.11), parallel transport along the path (2π/q) →
(2π/q, 2π/q) assigns the phase (see figure D1)

|ψ〉(2π/q,2π/q) = eiγ1 SsT sS−s|ψ〉(0,2π/q). (D.4)

9
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Similarly, parallel transport along the path (2π/q, 0) → (2π/q, 2π/q) assigns a different
phase to the same state

|ψ̃〉(2π/q,2π/q) = eiγ2 T −sSsT s|ψ〉(2π/q,0). (D.5)

Inserting equations (D.2) and (D.3) in equations (D.4) and (D.5) we find that the disagreement
(holonomy) between these two assignments is

S−sT −sSsT s = (ωs)s = e2π is/q. (D.6)

It follows from this and equation (C.3) that the Chern number of a single non-degenerate band
j satisfies the Diophantine equation:

σ j = s mod q.

This completes the proof of the Diophantine equation.
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