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LETTER TO THE EDITOR 

Quantised Hall conductance in a perfect crystal 

Itzhack Dana, Yosi Avron and J Zak 
Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel 

Received 7 February 1985 

Abstract. Using magnetic translation symmetry, the Hall conductance of an isolated mag- 
netic band in units of e2/h is shown to satisfy the Diophantine equation p a  + qm = 1, where 
p and q are relatively prime integers giving the number of flux quanta per unit cell area, 47 = 
p / q ,  and m is an integer. This equation holds for a general periodic Schrodinger Hamiltonian 
with an arbitrary magnetic field and is a direct consequence of the q-fold degeneracy of 
magnetic bands. Extension to general real q gives the equation pa, - p = integer with U, 

the Hall conductance and p the number of electrons per unit cell, from which U ,  is uniquely 
determined once p ,  QI and the gap structure are given. 

Since the experimental discovery of the quantum Hall effect by von Klitzing et a1 (1980) , 
there has been much theoretical interest in explaining this effect either by general 
dynamical arguments (Laughlin 1981, Prange 1981, Thouless 1981, Halperin 1982) or 
by exploiting the symmetry of the problem (Thouless et a1 1982, Streda 1982a, b, 
MacDonald 1983,1984). The symmetry approach has led to a very interesting Diophan- 
tine equation for the integer Hall conductance in two limiting cases of strong and weak 
magnetic fields (Thouless et a1 1982, Streda 1982a, b, MacDonald 1983, 1984). This 
equation was derived by combining symmetry arguments with perturbation theory, and 
it shows explicitly how the Hall conductance of a solid can be written as an algebraic sum 
of well defined conductances of the split sub-bands (Thouless et a1 1982, MacDonald 
1983). 

In this Letter we prove that a Diophantine equation for the Hall conductance is a 
general result following just from magnetic translational symmetry. Namely, it does not 
involve specific models, and it is not limited to strong or weak magnetic fields. We show 
that an isolated magnetic band (or sub-band) carries an integer Hall conductance U, in 
units of e2/h,  satisfying the equation 

p a + q m = l .  (1) 
Here p and q are relatively prime integers with p / q  = (eBab)/(hc) = c p ,  where cp is the 
number of flux quanta per unit cell area ab of the crystal ( a  and b are the lattice constants), 
and m is an integer. If there are N filled magnetic bands, then, by introducing p,  the 
number of electrons per unit cell p = N / q ,  equation (1) gives 

QIUH - p = integer (2) 
where U, is the measurable integer Hall conductance for N magnetic bands. 
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In the limit of strong magnetic field equation (1) is equivalent to the Diophantine 
equation of Thouless et af (1982) for the rth gap in a Landau level 

r = s,q + t,p (3) 
where s, and t, are integers. Equation (1) is obtained by subtracting from equation (3) 
the same equation for r - 1 and by using the result that U = rr - tr- 1. Although equation 
(1) is derivable from equation (3) (or from analogous equations in other models (Mac- 
Donald 1983)), it turns out to be a general result of symmetry, as is shown below. The 
Diophantine equation in the form (2) was first written by Wannier (1978) in the context 
of locating the energy gaps when a Bloch band ‘splits’ into magnetic bands. It was then 
used by Streda (Streda 1982a, b) in the discussion of the quantum Hall effect in the tight- 
binding limit (weak magnetic fields). Similar equations were shown to yield a labelling 
of the gaps in the energy spectrum of the Schrodinger equation with an almost periodic 
potential (Johnson and Moser 1982) and the quantisation of particle transport (Thouless 
1983). We prove that equations (1) and (2) are exact results for a perfect two-dimensional 
crystal in a uniform rational magnetic field. Thus we show for the first time that these 
equations are a consequence of the q-fold degeneracy of magnetic bands, and that they 
have an identical form over the whole range of magnetic field. In particular, we show 
that the existing claims in literature (Thouless et a1 1982, MacDonald 1983) of the need 
to exchangep and q in the weak and strong limits do not apply to equations (1) and (2). 
This is so in spite of the fact that in Harper’s equation p and q are exchanged for weak 
and strong magnetic fields. 

We have two derivations of equation (1). The first is differential geometric in charac- 
ter and will not be given here. The second, which we shall present, is based entirely on 
the magnetic translational symmetry of the problem (Zak 1964a, b). More precisely, it 
becomes evident from this derivation that equation (1) is a consequence of the q-fold 
degeneracy in a magnetic band (or sub-band) (Zak 1964a, b). For an isolated magnetic 
band the magnetic Bloch functions q k l k z  can be chosen as eigenfunctions of the com- 
muting magnetic translations T(qa) and T(b)  (Dana and Zak 1983, Dana 1983). Fol- 
lowing arguments similar to those given in Weinreich’s book (Weinreich 1965), the 
phase of vklk. can be chosen to satisfy the following periodicity conditions: 

v k 1 + 2 n / q a 3 k 2  = v k i k 2  (4a) 

V k 1 . k ~  +2,7/b = exp(iakl qa) v k i k z  (4b) 

where U is an integer which, according to Thouless et af (1982), is precisely the Hall 
conductance of the magnetic band. Since the operator T(a)  commutes with the Ham- 
iltonian and does not belong in general (for q > 1) to the commuting set, the function 
T ( a ) v k l k 2  is degenerate with V k l k Z  and, for an isolated magnetic band, it belongs to the 
same band. In addition, it is associated with the quasi-momentum (kl ,  k2 + 2rrp/qb) 
(Zak 1964a, b). We therefore have 

T(a)v k i k 2  = exdimk1 qa) v k i ,  k z + Z n p / q b  ( 5 )  
where m is an integer and the phase in ( 5 )  is chosen consistent (Weinreich 1965) with 
equation (4b). Applying T(a)  q times to equation ( 5 )  and using equation (4b), we find 
the relation 

exp(iklqa)vkik2 = exdi (pU + q m ) k l q a l v k i k 2  

from which equation (1) follows. 
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It is easily verified that equation (1) determines U modulo q.  Thus, for p / q  = A, 
a case considered by Thouless er a1 (1982), equation (1) is solved by U = -3 + nq, 
n = 0, t l ,  . . . . In the work by Thouless er a1 (1982) perturbation theory was used to 
limit m, namely Im( s p .  With this restriction the only admissible values of U are 
u1 = -3, o2 = 8, which are associated with the sub-bands of a split Landau level 
for a square lattice. In MacDonald’s work (1983) a hexagonal lattice is considered, 
where again perturbation theory poses restrictions on m and U .  It should be noted 
that equation (1) is symmetric with respect to the integers m and 0. While 0 has the 
meaning of a Hall conductance, the meaning of m eludes us. Equation (1) determines 
m modulo p .  

Unlike equation ( l ) ,  which describes a physically unmeasurable quantity and deter- 
mines it only modulo q ,  equation (2) describes the physically measurable Hall con- 
ductance U,. We argue that equation (2) determines U ,  uniquely, given Q,, pin  the gaps 
and the gap structure of the Hamiltonian. First, we argue that energy gaps in the spectrum 
are stable under small perturbations and therefore persist under slight variations of Q,. 

Although we do not have a rigorous proof of this stability, we believe that this is a 
technical question which should be provable by standard methods of perturbation theory 
(Kato 1976). There is also ample numerical evidence that such stability is indeed true 
(Thouless et a1 1982, Wannier 1978, Hofstadter 1976). Since this Letter was first written 
at the end of 1983, this has been proven by Avron and Simon (1985). Given this, the 
Fermi energy can be assumed to stay in a gap under small variations of Q,. It can be 
shown (Avron er a1 1985) that p ,  U,  and the integer on the RHS of equation (2) are all 
continuous functions of p, provided the Fermi energy stays in a gap. It then follows that 
equation (2) extends to all Q, (irrationals included). It is easy to see that for irrational p, 
equation (2) has at most one solution. Since in general the Q, can be approximated by 
irrationals and there is a unique way of varying the Fermi energy in a gap at the rational 
Q, to the gap at neighbouring irrational fluxes, the uniqueness of U ,  follows. 

Equation (2) is thus an exact result which determines oH uniquely once Q, and p and 
the gap structure are given under the condition that the Fermi energy stays in a given 
gap. It is therefore of interest to discuss its physical consequences. 

( a )  Suppose ( p ,  U,) solves equation (2). Then ( p  t 1, U,) is also a solution (provided 
p t 1 corresponds to EF in a gap). This expresses the fact that a full valence band does 
not contribute to the Hall conductance. 

(b )  Suppose ( p ,  U,) solves equation (2). Then (1 - p ,  -0,) is also a solution (pro- 
vided 1 - p corresponds to EF in a gap). This expresses the celebrated electron-hole 
duality. 

( c )  U ,  = 0 implies that p is an integer. 
( d )  For free electrons, i.e. when the periodic potential is zero, the integer on the RHS 

(e) It is instructive to compare equation (2) with the thermodynamic formula (Streda 
of equation (2) is zero. 

1982a, b) 

where N ( E )  = p/(ab) in our case. In a plateau of the Hall conductance it integrates to 
90, - p = const. The constant on the RHS is generally different for different plateaus. 
This is similar to equation (2) except that in the former the constants and U ,  are not 
constrained to be integers. 
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cf) Equation (2) can be read as an equation for p given U, and q. It says that in a 
plateau p increases linearly in Q, with slope oH, and when 0, jumps so does p.  In a slightly 
different context, Baraff and Tsui (1981) discussed these variations in p as a function 

(g) For irrational fluxes it is a trivial exercise to show that equation (2) has at most 
one solution. If for a given flux and density EF is in a gap, it will be so for neighbouring 
fluxes (Avron and Simon 1985). This determines the conductivity also for rationals. For 
rational fluxes equation (2) has infinitely many solutions. In particular, for a given fixed 
rational Q,, U, cannot be determined without additional information. 

(h)  Even though the ‘Diophantine’ equation is generally valid, this does not mean 
that different crystals will have identical conductivities. This is because for the same 
irrational flux, they may have different densities that correspond to EF in a gap. 

(i) Even if two crystals can be deformed continuously to each other, this does not 
mean that they have identical conductivities. The reason is that for finite deformations 
the non-degeneracy condition (EF lying in a gap) may, and will, be violated in general. 
In fact, this is precisely what one expects from the Wigner-von Neuman no-crossing 
theorem: varying the crystal gives energy bands that depend on three parameters, 2k 
vectors and one shape variable. With three parameters Wigner and von Neuman tell us 
that there will be points of crossing. At crossings, U, jumps. 

In conclusion, we derive in this Letter an exact equation (1) for the integer Hall 
conductance of a perfect crystal. This equation holds for any periodic Schrodinger 
Hamiltonian over the whole range of magnetic field. Equation (1) is a consequence of 
the q-fold degeneracy of magnetic bands and remains identical in the weak and strong 
magnetic field limits, despite the fact that in Harper’s equation p and q are exchanged 
in these limits. 

of q. 
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