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Abstract 
The field of Low-Reynolds-number hydrodynamics describes the realm where viscous forces 

are dominant over inertial forces, relevant to small objects or objects moving through liquids of 

high viscosity.  This work presents mathematical modeling of two problems from fields 

governed by low Reynolds hydrodynamics, which are the motion of macromolecules inside 

biological cells and the swimming of microorganisms. 

Inspired by the experimental problem of microtubules arrangement arising from molecular 

motors connections, we solved the problem of flow-driven re-orientation of connected sticks 

moving in low Reynolds number medium. The molecular motors were modeled by moving 

connection points and two connection possibilities were considered. Contrary to former works, 

we showed that in our modeling, the interaction of a motor which advances on two sticks is 

highly symmetrical and does not lead to sticks arrangement.  However, we found that the 

alignment of sticks can arise from an interaction which was not considered before, of one motor 

advancing on one stick and carrying the other. In order to induce alignment, the required 

properties of the motor are random detachment and a velocity which depends on the angle 

between the sticks or the sign of the angle change. Going to more complex assemblages, we 

show that in a non-isosceles triangle of sticks, the angle change diverges when the triangle is 

closing, causing the system to fall apart. Lastly, the problem of regular polygons made of 

connected sticks was solved, showing formation of a star assemblage typically observed in the 

self-organization of microtubules.  

The second part of this thesis is devoted to swimming of short undulating filaments, 

motivated by the propulsion of C. elegans. We calculated the distance per stroke and efficiency 

for a sinusoidal swimmer with wide range of wave numbers and amplitudes, employing particle-

based algorithm and resistive force theory (RFT). The comparison between the approaches 

revealed the limit of the RFT applicability, above which inter-filament hydrodynamic 

interactions become important and the RFT overestimates the advancement of the swimmer and 

its swimming efficiency. It was found that for the finite sinusoidal swimmer, there are global 

maxima of distance per stroke and swimming efficiency. Contrary to the infinite swimmer, the 

efficiency maximum is located at relatively low values of wave number. The parameters of 
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biological swimmers were compared with the best sine wave gaits, and most of the swimmers 

proved to be in the range of parameters appropriate for maximizing the efficiency of swimming, 

but also showing relatively high distance covered per stroke. Concentrating on C. elegans, we 

calculated its propulsion from the experimental deformation function using the particle-based 

algorithm, and reached a good agreement with the experimental results. Using this calculation, 

we were able to compute the propulsion efficiency of the nematode. Compared to the sine wave, 

both the distance per stroke and the swimming efficiency of C. elegans proved to be much 

higher, demonstrating the importance of geometric optimization of the spatial beating stroke. 
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1 Outline 
This work discusses two different phenomena from the field of low Reynolds 

hydrodynamics, which describes the realm where viscous forces are dominant over inertial 

forces, and is relevant to small objects or objects moving through liquids of high viscosity.  The 

first subject, discussed in chapter  2, is the flow-driven re-orientation of sticks connected by 

molecular motors, which is relevant to the self-organization of microtubules inside the cell. The 

second part, presented chapter  3, is devoted to swimming of short undulating filaments, 

motivated by the propulsion of C. elegans. In the next section we briefly present the definition of 

Reynolds number and Stokes equations. The more specific mathematical and biological 

background for each subject is presented in the relevant chapter, as well as the summary.  

1.1 Stokes equations 
Navier-Stokes equations for incompressible Newtonian fluid with density � and viscosity �  

are presented in equation (1.1). u  is the flow field  and p  the pressure in the surrounding fluid. 

The left part includes the inertia contributions, and the right part includes the viscous and 

pressure forces.   

(1.1) 

inertia

2

convective viscouspressureacceleration resistanceunsteady gradient
acceleration

  ,  0p
t

� �

� �
� ��� �� �� � 	� � � �� �
� ��
� �
� �

u u u u

inertia

� �

 

Transforming to non-dimensional variables according to (1.2), where U is a typical velocity 

around a body of size L  we obtain: 

(1.2) 

'
'
'
'

U
L

t Ut L
p pL U�

�
�
�
�

u u
x x

 

 2' ' ' 'Re p
t
��� �� � �� � �� � 	� ��� ��� �

u u u u  

where Re stands for the non-dimensional Reynolds number measuring the relative 

importance of the inertial to viscous forces:     
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(1.3)   
2

2

inertial force unit vol.
viscous force unit vol.

U L ULRe
U L

� �
� �

� � �  
 

We encounter Low Reynolds hydrodynamics when dealing, for example, with the swimming 

of microorganisms. Typical Re are 510	 for the swimming of E. coli, and ~1 for the swimming of 

the nematode C. elegans (both in water). This work discusses the motion of macromolecules and 

the swimming of small filaments, and thus, is in the realm of both low velocities and small scale. 

The typical Re we will be dealing with is in the range between 210	  for the first part 

corresponding to the motion of sticks connected by molecular motor, and Re~1 for the second 

part dealing with swimming of microorganisms such as nematodes1.   

Small values of Re allow us to neglect the left part of the Navier-Stokes equation (1.2), leading 

to Stokes equations (1.4) 

(1.4) 21    ,   0p� � �� �� �u u  

Stokes equations are linear and time independent, properties with important consequences to 

the swimming in such medium, as discussed in section  3.1.1. Several solution methods have been 

developed for cases which are too complicated to solve analytically. Among them the Resistance 

Force Theory (RFT) method for slender filaments, and the more accurate slender body theory. 

To calculate the swimming of short filaments we’ll be using the RFT method relevant to locally 

slender bodies (sections  0,  3.2.3), and numerical algorithm of the solution of flow around chains 

of spheres (sections  3.1.3,  0 3.2.2). The problem of connected sticks is more simple, since the 

sticks has very high aspect ratio, thus can be solved using the slender body approximation 

detailed in section  2.1.5. 

  

                                                 

1 The question whether indeed low Re is applicable to the nematode swimming is addressed specifically in  0. 
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2 Sticks in Honey: Motion of sticks connected by molecular motors 
In this chapter we discuss the flow-driven re-orientation of sticks connected by molecular 

motors, moving in low Reynolds number medium. The problem was motivated by the 

phenomenon of self-organization of microtubules inside the cell, called cytoplasmic streaming. 

Section  2.1 describes this phenomenon and the biological components which take part in it. We 

detail the properties of the biological components, which dictate the properties of our simulated 

sticks and motors. Afterwards, we survey former theoretical works which dealt with similar 

problems. Section  2.2 presents our derivations and simulations, which employed a different 

modeling of the motors' connections than considered before, allowing significant influence of the 

hydrodynamic force on the motion of the sticks. This section also presents the main results of the 

chapter, namely, the analysis of the interactions between two connected sticks, with two possible 

connection types considered. Next, we continue to larger assemblages providing nice examples 

of combined influence of geometry and hydrodynamic forces on sticks organization. These 

include three connected sticks which form a dynamic triangle, and then N sticks connected to 

form regular polygon transforming into a star shape. Section  2.3 summarizes this part of the 

work. 

2.1 Background 

2.1.1 Self-organization of MT in drosophila egg 
During the development of Drosophila oocyte, a dramatic self-organization phenomenon 

occurs, which is called "cytoplasmic streaming"2. In this process, the array of microtubules in the 

cell transforms from a random network into an aligned formation of spirals, followed by 

vigorous mixing of the cell content by organized vortices which span the whole cell cytoplasm, 

as shown in Figure 1. A similar self-organization process has been produced in in-vitro systems 

much simpler than the oocyte, comprising of microtubules (MTs) and artificially created 

complexes of molecular motors. In both systems, there are open questions concerning the nature 

                                                 

2The term “cytoplasmic streaming” is used also for normal inner cell transport, and for streaming inside plant cells 
which has different characteristics. 
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of the molecular interactions which create the forces aligning the MTs. Most importantly, the 

role of the hydrodynamic interactions between the MTs and their surrounding medium has not 

been fully investigated. 

The hydrodynamic drag force acting on bodies inside the cell ( 15~10 N	 ) is much smaller 

than the measured stall force of molecular motors ( 12~10 N	 ), and therefore it is usually 

neglected when problems of molecular motors dynamics are considered. However, in crowded 

solutions where the effective viscosity can reach 1000 times that of water [1], the hydrodynamic 

interaction becomes comparable to the force exerted by molecular motors. Also, the 

hydrodynamic interactions were found to change the motion of motors in ordered arrays of bio-

filaments [2], and are therefore an important force in the organization of the system. We’ll show 

that for sticks connected by simple moving connection points which represent the motors, the 

hydrodynamic drag is a sufficient force which causes organization of the system is several cases.  

 

Figure 1: Slow verses fast cytoplasmic streaming in drosophila oocyte. the visualization was done by merging ten 

successive images taken at 7 seconds intervals. The green channel visualizes autofluorescent yolk granules and GFP, and 

the red particles represent unidentified organelles that reflect 568 nm light. (I) In a wild-type oocyte at stage 9, slow 

seething is observed. (J) stage 9 oocyte that was treated to display premature fast streaming. The streaming causes the 

particles to appear as lines in the merged image, showing the created vortex. The picture was taken from [3]. 
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2.1.2 Biological components 
In this section we describe shortly the basic components included in the experiments and 

systems which were simulated. Most of the material in this section was summarized from [4]. 

Microtubules 

Microtubules (MTs) are long protein polymers. Their function in the cell is mainly as tracks 

for the advancement of molecular motors (see below). They have the structure of a hollow 

cylinder with an outer diameter of 25 nanometer, and their typical length inside the cell is in the 

order of microns, making their aspect ratio very high ( ~ 100). Moreover, they have high rigidity 

- their persistence length3 is 6 millimeters, meaning that they can be regarded as rigid rods for 

many purposes. MTs are polar structures; their two edges are marked as "the plus end" where 

fast polymerization and depolymerization occurs and "the minus end" which changes much 

slower. Molecular motors advance on MTs in one direction (either from + to -, or vice versa), 

which depends upon the motor kind. 

MTs display dynamic instability: individual MT switch randomly from growth to fast 

depolymerization (called a "catastrophe"). The switching time between states is in the order of 

minutes, and the polymerization/depolymerization rates are 1 µm/min. and 10 µm/min, 

respectively. 

The dynamic instability was described empirically [5] by a model with four parameters: the 

growth rate, the shrinkage rate, and the frequencies of transitions between the states. These 

frequencies vary between 0.01sec 1	  for a catastrophe (growth to shrinkage), and 0.02sec 1	  for 

rescue (shrinkage to growth). Since the probability of a transition from growth to shrinkage is 

about half the probability of the change from shrinkage to growth, in a steady population the 

distribution of the MTs is that 2/3 of them are growing and 1/3 shrinking. 

                                                 

3The persistence length of a polymer can be defined as the decay length of the tangent-tangent correlation 

function. 
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For the purpose of this work, the MTs were modeled as rigid rods with high aspect ratio. The 

MTs’  length change during the motors advancement can be calculated as follows: for a typical  

motor advancing at 1 µm/s on an average MT of length 5 µm, the probability of a transition from 

growth to shrinkage would be4 10%, and from shrinkage to growth 5%. The maximum length 

change during motor advancement would be 16% shortening or 1.6% growth. 

The influence of the length change on the interaction between sticks is presented at the end of 

section   2.2.2.1, and shown to be negligible. Therefore, in the calculation of the motion of pairs 

and assemblages of connected sticks, we will ignore the length change of the MTs during the 

motors advancement and regard them as constant length sticks.       

Kinesin 

Molecular motors are complex proteins which convert chemical energy in the form of ATP 

into mechanical work. We focus on conventional kinesin (kinesin 1), a motor that advances on 

microtubules. Kinesin mediates inner cell transport by binding to vesicles and organelles and 

carrying them, using the MTs as a track. Kinesin has two heads which bind interchangeably to 

the microtubule, and a tail which binds to the designated cargo, e.g., a vesicle in the cell or a 

bead in the in-vitro experiments. The dimensions of kinesin are 7x4.5x4.5 nm, and its step size is 

8 nm. It is a processive motor, meaning that a single motor moves continuously on the surface of 

a MT for a few µm corresponding to hundreds of steps, with a constant probability of 

detachment of 1% per step [6]. The velocity ranges from 0.5 to 2 µm/s depending on conditions, 

and the stall force is ~ 6 pN, as measured by optical tweezers [4]. 

Kinesin is considered to be a non-cooperative motor, meaning that it binds alone to a vesicle. 

Interaction between two MTs can occur also by the binding of one kinesin to two MTs, a 

possibility indicated by a few observations ([7] and references therein). 

The rotational freedom of kinesin attached to a cargo was examined in relatively few 

experimental works, with contradicting conclusions. In [8], the torsional flexibility of kinesin 

was found to be very low, allowing the binding of cargo in any direction. However, in [9], no 
                                                 

4 Assuming a Markov process with constant probability of 0.02 per second, and 5 tries, the probability of at 
least one direction change would be 1- (0.98)^5 =10% 
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rotations of MTs connected to kinesin motors were found. Since the advancement mechanism of 

kinesin deduced from [9] was later shown to be wrong, we will base our model on the most 

recent work we found [10]. The work examined the rotational diffusion of beads connected to 

kinesin and concluded that the stem of the kinesin motor acts as a swivel and that rotational 

freedom during cargo transport can be significant. 

In the next section ( 0 2.2), we will model the interaction arising from the binding of one and 

two motors to two MTs. The motors will be modeled by moving connection points, acting as free 

swivels for MTs rotation. 

  

Figure 2: Engineered kinesin complexes advancing 

on microtubules. This schematic representation shows 

four kinesin motors joined together by streptavidin. This 

complex advances on the MTs in the plus end direction 

and creates force that will pull the plus ends to each 

other. The picture was taken from [12]. 
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2.1.3 In vitro experiments 
The formation of patterns by systems of MTs and molecular motors has been demonstrated in 

in-vitro experiments containing very few ingredients. In a system containing only kinesin, ATP, 

and fixed length MTs, rapid formation of asters5 of MTs were observed [11]. 

Nedelec et al. [12] made use of engineered kinesin complexes, in which two motors or more 

were connected by a biotin - streptavidin link (see Figure 2). With fixed length MTs, they 

repeated the asters formation found in [11]. In addition, they observed the formation of a stable 

MTs vortex in a system of polymerizing and depolymerizing MTs and motor complexes. At first, 

the MTs organized into an aster, which transformed to a vortex when the MTs continued to grow 

(see Figure 3). The formation of the vortex took ~3 minutes from the initiation of the MTs 

polymerization, and its diameter was ~90 µm. In larger containers, a variety of patterns were 

observed, depending on the concentration of motors (see Figure 4). 

 

Figure 3: The formation of a vortex in a system of microtubules and kinesin. Left - after ~0.5min from the 

polymerization start, uniform solution of microtubules. Middle - after ~1.5min, formation of an aster in the center of the 

chamber. Right - after ~3min, a steady state vortex is formed. Adapted from [12]. 

                                                 

5An aster is a structure of MTs in the form of a star, with the MTs radiating from the center outward 
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Figure 4: The system of microtubules and motors complexes organizes to different large scale patterns depending on 

the motors concentration. d. In a low concentration of motors 15 /g ml�� , a lattice of vortices is formed. a. At a 

slightly higher concentration ~ 25 /g ml�  a lattice of asters and vortices is formed. b. An irregular lattice of asters is 

obtained when raising the concentration more ~ 37.5 /g ml�  . c. Bundles of microtubules created at high motor 

concentration ~ 50 /g ml�  . The picture was taken from [12]. 

In low concentration of motors, the MTs organized into a lattice of vortices (Figure 4d). In 

higher concentrations, the pattern shifted gradually to a lattice of asters (Figure 4a,b), and finally 

became an irregular MTs bundle (Figure 4c), in a very high concentration of motors. The 

systems were quasi two dimensional, as the experiments were done in chambers 5 m�  deep, 

forcing the MTs to be nearly parallel to the plane of the sample. 

In a following work, the same group [13] studied systems with two kinds of motor 

complexes, kinesin and NCD (motors which advance on MTs in the opposite direction, 

compared to kinesin). They observed combinations of asters and vortices, depending on the 

relative concentration of the two kinds of motors. 
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2.1.4 Theoretical models 
Various theoretical approaches were proposed to reproduce the macroscopic pattern observed 

in the in-vitro experiments described above  [12-21]. 

In [12] and [13] numerical simulations were done, which succeeded in reproducing the 

experimental patterns. This approach was later extended to the creation of a detailed computer 

program ("cytosim") [22] for the calculation of cytoskeleton dynamics. Lee and Kardar [17] 

arrived to two coupled nonlinear PDEs for the local motor number and the local MTs orientation 

field. The motors action was modeled by coupling of neighboring tubule orientation.  In [16] 

differential equations for general active polar gels were written. The equations were based on 

conservation laws and derived using the approach of non-equilibrium thermodynamics. The 

interaction between filaments, induced by the motors, was modeled as an addition to the 

viscoelastic properties of the medium. Liverpool and Marchetti [18] derived equations for the 

filament probability distribution function and introduced the local velocity created by the 

microscopic motors interaction. They included the fluid resistance by using anisotropic friction 

coefficients for the filaments. Aranson and Tsimring [21] obtained equations for the probability 

distribution of the orientation angles of the filaments. The motors interaction was simulated as a 

collision between two filaments which changes their relative angle. The angle change was 

calculated from balance of torques and forces due to the motor motion, but the anisotropy of the 

translation friction was neglected. 

The microscopic alignment of stiff rods connected by motors was explored in [23]. The 

motors were represented by springs, and the fluid resistance was taken into account by a 

rotational friction coefficient. The following motors characteristics were considered: a linear 

force-velocity relation, the attachment-detachment kinetics and random fluctuations in the 

motor's force. In a following work [24], the case of semi-dilute mixture of motors and rods was 

considered, by inclusion of the interaction of multiple connected rods in a Brownian dynamic 

type simulation. The effect of noise on the pattern formation robustness was investigated. The 

emergence of bundles and vortices was shown in both the dilute and semi-dilute cases. The semi-

dilute case showed more robustness of the organization pattern to additive thermal noise. 

Surprisingly, the introduction of multiplicative noise originating from the motors’ fluctuations 
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increased the organization process and contributed to faster formation and coalescence of 

vortices.   

Similarly to [23], we investigated the alignment of pairs of sticks due to the action of 

molecular motors. In our model, the motors are represented by rigid constraints instead of 

springs. A significant difference is that we take into consideration the possibility of free rotation 

of the sticks around the interaction point. This is a more suitable modeling of the connection 

point (see discussion on section  2.1.2) than the assumption of springs used before. The free 

rotation changes the nature of the main interaction contributing to the sticks arrangement in 

[23,24], which is the interaction of two sticks connected by two motors. We show that in our 

model, this interaction does not contribute to the sticks alignment. We consider a different 

interaction, which is the connection of a single motor with two sticks, and show that it can 

decrease the angle between the sticks and thus lead to alignment. We also investigate the case of 

three connected sticks and the interaction of N sticks in a regular polygon. 

2.1.5 Resistance matrix for a slender body 

For a rigid particle we will use the non-slip condition - ,o o� �  u U ω r  where O is any point 

on the particle, oU  is the velocity of the point and ω  is the angular velocity of the particle. 

Due to the linearity of the Stokes equations (1.4), the relations between the forces and 

velocities are linear, hence the force and torque can be written as [25]: 

T· ·o o� �� 	 	F K U C ω  

· ·o o o� �� 	 	T C U Ω ω  

where K , oΩ  and oC , are second rank tensors which are intrinsic geometrical properties of 

the body. T
oC  is oC  transposed .  K is the translation tensor, it is symmetric and does not depend 

on the origin point. oΩ is the rotation tensor, it is also symmetric but depends on the location of 

the origin O. oC  is the coupling tensor, it depends on the location of O and represents the 
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coupling between the translational and rotational motions. It is not generally symmetric. When 

transforming from a point O on the body to another point P, the following transformations apply: 

p o op� 	  U U r ω  

p o op� 	  C C r K  

†
p o op op o op op o� 	   �  	  Ω Ω r K r C r r C  

Where opr  is the vector connecting point O to point P on the body. 

For two dimensional (plane) motion we can define a resistance matrix M, which defines the 

relations between the force and torque to the linear and angular velocities: 

(2.1) 
11 12 31

12 22 32

31 32 33

v
v

F
F ,  
T ω

x x

y y

K K C
K K C
C C

!

!

� �� � � �
� �� � � �� � � �� � � �

� � � � � ��� � � � � �

M M  

When * signifies the complex conjugate. A slender body is defined as a body that its 

characteristic diameter 2a , a  being the characteristic radius, is much smaller than its length l , 

so that 2 1.a
l

� ��
2a
l

� ��  is called the slenderness parameter. It is possible to solve the Stokes' 

equations for a flow around such a body as an asymptotic approximation in ..  This was done by 

Batchelor [26] for bodies of revolution, and by Cox [27] for a straight or slightly curved slender 

body with circular cross section. For such bodies, it was found that the resistance to motion in 

the direction perpendicular to their axis is twice the resistance to motion in the direction parallel 

to their axis: 

8
2log

lF U"�
� ��

# $
% &' (&(&&  

4
2log

lF U"�
�

# $
% &' (

F U4
# $2

&(&&
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The problem of sticks connected by molecular motors is motivated by the flow around 

microtubules, which are very slender ( 0.0 1 ,2 0 )a
l
�  have a circular cross section and very low 

curvature. These properties justify the use of the slender body approximation for the solution of 

the problem. 
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2.2 Results: Sticks in viscous fluid 

2.2.1 Motion of a single stick pulled in constant speed 
First we present the solution for the simplest case of a stick carried by a molecular motor, 

assuming that the motor is a moving connection point carrying the stick in the direction of the X 

axis, as presented in Figure 5. A stick with length l is pulled in constant speed V in a fluid having 

viscosity� . As explained in section  2.1.5, we apply the slender body approximation to write the 

resistance matrix for the stick’s plane motion. In the stick’s body-frame the relations are: 

(2.2) 
3

6

0 0
0 2 0
0

4
2log 0

x x

y y
l

F l V
F l V
T

"�

�

� �� � � �
� �� � � �� � �� � # $

% &' (

� �
� � � �� �� � � �� �(&(&&& �

0 0��0 00 0
 

Using the following notation: 
3

6

4
0 0

,  , 0  2 0 ,   ,
0

2log 0

x x

y y
l

body

F l V
F k l V
T

"�

�
�
� �� � � �
� �� � � �� � �� �� � � �

� � � �� �# $
% &� � �( �' ��

F VM

&(&&

 

  we can write the relations in the lab frame as : 

(2.3) -1
lab

lab body

k�

�

F M V
M RM R

 

Where R is the rotation matrix at angle �  around the Z axis, �  being the angle of the stick 

from the X axis. bodyM is the mobility matrix of the stick in its body frame, and labM is its 

mobility matrix in the lab frame.  
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We define χ  as a vector from the geometrical center of the stick to the point q of the velocity 

activation, � � 2 2cos ,sin ,    l l� � � �	� ) )χ . Then, the velocity of the point q of the stick is  

(2.4) q GC� �  V V ω χ  

GCV is the velocity of the geometrical center of the stick, and ω  its angular velocity. The 

torque on the stick is:  

(2.5) �  T χ F  

If a stick is pulled at point q at a velocity qV , then from equations (2.4),(2.5),  

 

 

  

Figure 5: A single stick pulled in the x direction by a molecular motor. is the location of the geometrical center, 

is the connection point of the molecular motor, pulling the stick at velocity  in the x direction. is the vector from 

the geometrical center to the motor connection point. 
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(2.6) 

� �

sin

cos

sin cos

GCx qx

GCy qy

z x y

V V
V V

T F F

�� �

�� �

� � �

� �

� 	

� 	 	

 

Where ( )z� � ω  . Inserting these into equation (2.3) we arrive to equations for the forces as a 

function of �  and the angular velocity as a function of � , � �f� �� . From the latter we solve 

for ( )t� and calculate the forces. 

For example we present the results for a stick of length l=1, starting aligned with the y axis 

and pulled from its end point in velocity V=1 at the x direction. The stick advances in the x 

direction while rotating, until it aligns with the velocity direction.  In this case 

� �3 /2( ) 2arccot tt e� � , which is shown in Figure 6a. Figure 6b displays the velocity of the 

geometric center of the stick, and Figure 6c depicts the forces as a function of time. 

 

 

 

 

 

  

Figure 6: (a) The angle as a function of time, for one 

stick pulled at the x direction,    

(b) The x and y velocities of the geometric center of the stick 

as a function of time. (c) The forces on the stick’s GC as a 

function of time. 
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2.2.2 Two sticks 
Now we turn to the more complicated problem of the motion of two connected sticks. We 

considered two connection types which dictate the relative velocity of the sticks. Apart from the 

different kinematic constraints, the equations in both cases are similar. The first possibility 

considered, displayed in the following section, is one motor which advances on one of the sticks 

and carries the other. We show the function _ _( )difference final difference initial� �  originating from this 

interaction and demonstrate how it changes with different possible motor properties. Afterwards, 

(section  0 2.2.2.2) we present the interaction emerging from two connected motors advancing on 

two sticks, showing that in this case, the interaction is highly symmetrical and does not 

contribute to the sticks’ alignment.  

2.2.2.1 Motor advancing on one stick and carrying the other 

A motor connected to point P on stick 1 with length 1l  , advances in velocity u on stick 2 

with length 2l . The parameters are: 

(2.7) 
1

2

 - the distance of the motor from the center of stick 1.
 - the distance of the motor from the center of stick 2.
 - the angle of stick1 from the x axis in the lab frame.
 - the angle of stick 2 fr

P
�
�
� om the x axis in the lab frame.  

 

The geometry is shown in Figure 7. We use the notation: 

(2.8) 
� � � �
� � � �

1 1

2 2

[cos ,sin ]

[cos ,sin ]

P � �

� � �

�

�

P

χ
 

Notice that P does not vary in time, 1 1
1 12 2l P l	 ) ) . �  varies in time as the motor advances, 

according to 0( )t ut� �� � . 1 1
2 22 2( )l t l�	 ) )  and this gives the time of the motor detachment at 

the end of stick 2.  
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Figure 7: A motor connected to stick 1 advances on stick2. The motor point is marked in red. P is the distance of the 

motor from the geometrical center of stick 1, � is the distance of the motor from the geometrical center of stick 2.  

Equations of motion: 
We write equations (2.3) for each stick requiring force- and torque-free motion: 

(2.9) 
0

0zT

�

�
*
*

F
 

The forces and torques can be written explicitly as 1x xF F�  , 1y yF F� , 2x xF F� 	 , 1y yF F� 	 ,

1 �  T P F , 2 � 	  T χ F . The motor enforces the kinematic constraint for the point of motor 

connection, which moves on both sticks with the same velocity:  

(2.10) � �1 1 2 2 2 2cos ,singc gc u � ��  � �  �V ω P V ω χ  

  We solve the system of equations (2.3), (2.9),(2.10), to obtain 1( )t� , 2 ( )t� , with the 

parameters P , � and the initial angles. 
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Sticks of different lengths: When 1 2l l� , the drag on stick 2 will be higher than the drag on 

stick 1, and stick 2 will function as an “anchor”. The interaction will be similar to the case of one 

stick pulled by a motor, (section  2.2.2.1), and will result in the anti-aligning of stick 1 with stick 

2 (corresponding to an angle of " ).  When 2 1l l� , the interaction time t will be very short, so the 

final angle tends to the initial angle. Figure 8 depicts the final angle of stick 1 as a function of the 

length ratio between the sticks, 1 2l l , for two sticks connected at their starting point 

1 2( 1/ 2 , 1/ 2 )P l l�� 	 � 	 , and starting angles of 1 2/ 6,  0i i� " �� � .   

 

Sticks with the same length 1 2 1l l� � : Figure 9 shows the final angle between the sticks  

as a function of the initial angle for the parameters 1/ 2 , 1/ 2P �� 
 � 	 . The function df�  can 

be fitted to an analytical function H Shown in fine lines in Figure 9. 

(2.11) 

� � � � � �

� � � �� � � �2 4

2

, , tanh 4 sin

2.5 7 sin 2

0.52 0.91 0.35

di di di

di

H P P f

P f P f

f

�

� �

�

� � � �

�

� �

� � 	 �

� � 	 �

� 	 �

 

Figure 8: The final angle between the sticks 

as a function of the length ratio, , for two

sticks connected at their starting point 

,  and 

starting angles of .   
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Figure 9: The final angle between the sticks as a function of the initial angle, for equal length sticks with the 

parameters 1/ 2 , 1/ 2P �� 
 � 	 . The analytical function H fitted to the results is shown in fine lines. 

Solving ( )diff t�  for many initial parameters we can map the function � �, ,df di P� � � . (From 

here we mark the final angle between sticks as df� and the initial angle between the sticks as di� ). 

In Figure 10a and Figure 10b the function is plotted for different values of P and χ. It can be seen 

that for a fixed value of χ, different P values control the curvature of the function, and 

� �, 0,df di diP� � � �� �  . In addition the functions have the symmetry property of  

� � � �1, , , , .df di df diP P� � � � � �	 	�    

From Figure 10b we see that for a fixed value of P, different � values also control the function 

curvature, similar to the effect of P, but here the non-interaction case is when � =1/2. This is the 

case of a motor which starts at the end of stick 2 and falls off immediately.  
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Figure 10: (a) The function � �, ,df di P� � � for 1/ 2� � 	 and different values of P . 0P �  is the case of a 

motor which starts at the middle of stick 1 so the angle does not change during the motor advancement. (b) The function 

� �, ,df di P� � � for 1/ 2P � 	 and different values of � . 1/ 2� �  is the case of a motor which starts at the end of 

stick 2 and immediately falls off. 
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Final angle between the sticks for different motor properties 

Looking for possible processes driving arrangement of the sticks, we calculated the final 

angle between sticks for different motor properties. The experimental data on molecular motors 

properties when rotated and distorted is scarce, thus we checked various assumptions and 

searched for properties which will give rise to asymmetry of the functions. Figure 11 displays the 

final angle of stick 1  as a function of the initial angle for 1/ 2, 1/ 2P �� 
 � 	 , which means that 

the motor is advancing on stick 2 from its start, and connected either to the beginning of stick 1

( 1/ 2)P � 	 or the end of stick 1 ( 1/ 2)P � � . A function for which  

� � � �1, , , ,df di df diP P� � � � � �	+ 	  will give rise to drift of the angle in recurring interactions and a 

possible arrangement of the sticks.  

(a) Motor detachment in a constant angle s�  : one possible assumption is that for a certain 

angle between the sticks the conformation of the motor becomes too distorted and it has to 

detach from one of the sticks. The function ( )df di� � for detachment at a constant angle / 2"  is 

shown in Figure 11a.  It can be seen that the function is symmetric as was the original function 

� �, , .df di P� � �  

(b) Motor with a detachment probability constant in time: A known property of the motors is 

that they detach from the microtubules with a constant probability [6]. Statistic detachment of the 

motor from the stick was simulated using a numerical algorithm. Each time step the motor had a 

probability to detach which is proportional to the time step length. We used 100 time steps to 

simulate the advancement of a motor with velocity 1 on a stick with length 1. The initial angle as 

a function of the final angle, for an average of 50 calculations is shown in Figure 11b. As 

expected, the function is symmetric as was the original function � �, ,df di P� � � . 

(c) Detachment probability constant in time, combined with advancement velocity dependent 

on the angle: A viable assumption is that the velocity of the motor depends on its conformation. 

Using that assumption we changed the velocity of the motor as a function of the angle between 

the sticks. The function chosen was � � � �2

20.9 0.1d du
"

� � "� 	 � , shown in the inset of Figure 11c. 

For aligned or anti-aligned sticks the velocity is high, and decreases as the angle between the 

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



- 25 - 
 

sticks rises. In this case, the line fit to the function at small angles has the property that  

� � � �1, , , ,df di df diP P� � � � � �	� 	 . The initial slope of � �1/ 2, , 1/ 2df di� � 	 is ~ 0.52 , while the initial 

slope of  � �1, , 1/ 2/ 2df di� � 		  is ~1.72 1/ 0.58, . This asymmetry can give rise to slow 

arrangement of the sticks in multiple interactions. 

(d) Detachment probability constant in time, combined with advancement velocity dependent 

on the angle change: along the lines of the former property, it can be assumed that the important 

parameter affecting the motor velocity is not the value of the angle between the sticks, but rather 

its change – whether it is closing – thus the motor deforms to a more favorable conformation, 

allowing faster advancement, or opening and increasing the stress of the motor, thus reducing the 

motor velocity. Figure 11d shows the results for a motor with such property. When the angle 

closes, 0t
��
� � 0� �  , and 1closeu � , and when the angle opens , 0t

��
� - 0� -  , 1

2openu � , for 

min( ,2 )d d� � " �� 	( d� min(min(  . Here also, as in property (c), � � � �1, , , ,df di df diP P� � � � � �	� 	 . The initial 

slope of  � �1/ 2, , 1/ 2df di� � 	 is ~ 0.54 , while the initial slope of  � �1, , 1/ 2/ 2df di� � 		  is 

~1.5 1/ 0.66, . This asymmetry makes this property a viable candidate to create alignment of the 

sticks. 
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Figure 11: The final angle between sticks as a function of the initial angle for 1/ 2, 1/ 2P �� 
 � 	 , for different 

motor properties. (a) Motor detachment in a constant angle  / 2s� "� . (b) Motor with a detachment probability 

constant in time. (c) Detachment probability constant in time, combined with advancement velocity dependent on the 

angle difference. The inset shows the velocity of the motor as a function of the angle. (d) Detachment probability constant 

in time, combined with advancement velocity dependent on the angle change. The line of f i� ��  is shown in b,c,d, for 

more clarity. 
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Arrangement due to multiple interactions 

Recent works [21,28] showed that multiple non-elastic collisions between sticks lead to 

nematic order. To show that, they used fully stochastic simulations which kept track of the 

location of each stick geometrical center and its motion due to interactions between the other 

sticks, thermal noise and noise from motors steps. 

The interactions suggested above are more accurate than the simplistic collisions used in 

[21,28], and can be used in a similar simulation to confirm their capability in creating order. A 

“Zero order” of such a simulation is calculating the angle between two sticks due to multiple 

interactions between them. To demonstrate how the property of “advancement velocity 

dependent on the angle change”, (option d above) leads to nematic order, we calculated the angle 

between two sticks after multiple interactions, each interaction starting with the final angle of the 

last encounter, but with random P value (contact point of stick 1 on stick 2). The � value was 

taken as 1/ 2� � 	 , to allow the motor to walk along the full length of stick 2 or until it detaches 

randomly. Since the P value determines if the final angle is higher (for P<0) or lower (for P>0) 

than the initial angle, the emerging behavior resembles one dimensional biased random walk, as 

can be seen in Figure 12a. Figure 12 demonstrates how this interaction leads to a complete 

alignment of the sticks. Figure 12a shows a single instance of the multiple interaction alignment, 

while Figure 12b displays an average of 50 sequences of multiple encounters, each sequence is 

different due to the random detachment of the motor and the random P value in each encounter. 

This figure displays how the change in the reduced velocity in opening vs. closing leads to 

alignment while equal velocities show no arrangement on average.  
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Figure 12: Multiple interactions between a pair of sticks, with a motor which advances in half the velocity when the 

angle closes (property d in the text), 1/ 2� � 	 and random P in each interaction. (a) A single instance of the multiple 

interactions alignment. (b) Average over 50 repetitions of multiple encounters, for open closeu u� - in blue, vs. 

0.5open closeu u� - in green. 

Effect of stick’s length change 

In order to check the influence of the MTs length change (see section  2.1.2), we recalculated 

the basic interaction for a motor advancing on one stick and carrying the other, while including a 

shortening of 16% of the carried stick during the motor advancement. Here the motor is simple 

and do not include any of the properties (a-d) discussed before. We didn’t include length change 

of the stick the motor advances on, since this stick’s motion is negligible during the interaction, 

meaning that its length change can mostly influence the motion of the geometrical center of the 

system and not the angle between sticks.  

Figure 13 displays the function � �, , 1/ 2df di P� � 	 for different values of P. The solid lines 

represent the original function without the stick’s shortening, as shown in Figure 10a, while the 

dashed lines represent the function for a stick with 16% shortening. For clarity, the values of 

0P -  are displayed separately. 
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Figure 13: The function � �, ,df di P� � � for 1/ 2� � 	 and different values of P . The solid lines represent the 

original function without the stick’s shortening, while the dashed lines represent the function for a stick with 16% 

shortening during the motor’s advancement. (a) For values of 0P ) ; (b) For values of  0.P -  (the full line of 

1/ 2P �  is below the full line of 0.4P � ).  

It can be seen that the length change affects the function in two different ways. One influence 

is for 0P , , for which the stick’s shortening transforms the interaction from weak anti-aligning 

or symmetric interaction to weak aligning interaction (compare dashed and full green lines in 

Figure 13a). The symmetric interaction in this case will occur for 0.045P � 	 (not shown). A 

more dominant effect is for 1/ 3P - . In these interactions, the sticks’ disintegration includes the 

location of the motor, thus ending the interaction in a shorter time than in the constant length 

case. Thus, for 1/ 2P � , the stick’s shortening prevent the interaction altogether, as can be seen 

from the purple dashed line in Figure 13b.  

From this calculation we can conclude the influence of the length change on the entire sticks 

population. As discussed before (section  2.1.2), 2/3 of the sticks are growing slowly (growth of 

1.6% of the stick’s length growth during the motor’s advancement). The influence of the growth 

of the interaction would be a slight change in the symmetry of the function at 0P , values. For 

the 1/3 of the sticks which are shortening, the main influence would be on 1/ 3P -  values, 
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where part of the aligning interactions would end in a shorter time. In order to change the time of 

the interaction, the shortening of stick 1 (the carried stick) needs to outrun the motor’s 

advancement to the end of stick 2. This criterion translates to   1 21 1
2 2( ) ( ),

s

l l
u u P�	 � 	  where su  is 

the shortening velocity of the carried stick (stick 1). For typical values of 1
61 ,  ,s ssu u� �� �  (see 

section  2.1.2), and equal length sticks, a shorter interaction time will occur for ½ of the 

shortening sticks interaction with 1/ 3P - .  

Overall, the length change will reduce the interaction time of 2.5% of the aligning 

interactions, and will transform 1.5% of the weak anti-aligning interactions into weak aligning 

interactions. Therefore, the length change of the MTs is expected to have a negligible effect on 

the global alignment of sticks in multiple interactions. 
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2.2.2.2 Two motors advancing on two sticks 

A second possible interaction between sticks and molecular motors is the case where two 

connected motors are advancing on two sticks. Each motor is advancing on one of the sticks, and 

the motors are connected to each other thus enforcing a kinematic constraint between the sticks. 

The equations of motion are similar to the former case of one motor advancing on one stick and 

carrying the other, except for the kinematic constraint (2.10) which is different. Here, the point 

of motors connection moves on both sticks. Since the variations between kinesin motors are not 

large, we will assume that both motors advance on the stick with the velocity u :   

(2.12) � � � �1 1 1 1 1 2 2 2 2 2cos ,sin cos ,singc gcu u� � � ��  � � �  �V ω χ V ω χ  

with the same notation as in (2.7) and (2.8).  

Solving the equations shows that this interaction is highly symmetrical. As can be seen in 

Figure 14, the sticks are opening and closing again, and the final angle is identical to the initial 

angle. Figure 15 depicts the angle between the sticks as a function of time for the case of 

1 2 1l l� �  , 1 i2 1 2/ 3 , 0 , 1/ 2 , 1/ 2.i� " � � �� � � 	 � 	    

In this interaction, considering different motor properties similar to the suggestions in the 

previous section will not brake the symmetry, since the free rotation between the sticks emerges 

from the connection between the two motors, which in the experimental works was a simple 

biotin-streptavidin connection (a simple string that is able to rotate freely). 

 The symmetry of this interaction makes it irrelevant to the formation of arrangement of the 

sticks.  This result is in contrast to former works [23], in which the two motors - two sticks 

interaction induced alignment of the sticks. The difference arises from the different modeling of 

the connection point between the motors and sticks. While in [23] the connected motors were 

simulated as an elastic spring, our model assumes a moving connection point allowing free-axis 

rotation, which enabled large influence of the hydrodynamic drag on the sticks angles.  
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Figure 15: the angle between the sticks as a function of time for the case of 

1 i2 1 2/ 3 , 0 , 1/ 2 , 1/ 2i� " � � �� � � 	 � 	  
 

Figure 14: Interaction of two sticks connected by two connected motors, position in different times. The red point marks the interaction 

point. 
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2.2.3 3 sticks – closing triangle 
Interactions between more than two sticks connected by motors can lead to forces that will 

cause the motors to detach from the sticks or stop advancing. We calculated the case of a triangle 

made of three connected sticks, with two of its edges with constant length and one of them 

shortening. Such case would be the result of a motor advancing on stick number 3 and carrying 

stick number 2 shown in Figure 16.  

 

Figure 16: Structure of the triangle in different times, as stick 2 advances on stick 3 in the direction of axes zero. 

The construction is 1 2 3 0,  ,  l const l const l l ut� � � 	 . Stick 1 starts at the origin of the axes, 

and stick 3 is on the x axis. From the geometric construction we can derive the function for the 

angle change in time. Starting from the cosine rule 2 2 2
3 1 2 1 22 cosl l l l l .� � 	 and differentiating by 

time, we obtain:  

(2.13) 
� �

3 1 2

cos
l u l l

t
.�

�
�

 

For small angles
2

2cos 1 .. � 	 , 
� �cos

t
.

..
�

	
�

..	 . , therefore: 

(2.14) 3 3

1 2 1 2

  .ul ul
l l l l

.. .
.

� 	 / � 	 3 .ul3

l l
. .

.
� 	. .   

For 0. � , 2 2 2 2 2
3 1 2 1 2 3 1 22 ( )l l l l l l l l� � 	 / � 	 . If 1 2l l� , then u. 0 	u. 0 	 and . approaches zero 

linearly, as shown in Figure 17a. If 1 2l l+ , then the denominator of (2.14) approaches zero while 
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the nominator does not, resulting in a very fast change of the angles when the motor approaches 

the end of stick 3, as shown in Figure 17b. Such fast movement will result in very strong torque 

on the motor, thus forcing it to detach from the stick and causing the triangle to fall apart.

 

Figure 17: Angles change as a function of time. Red -11 (below blue), Green - .. , Blue - 22 .(a) for 1 2l l�  (b) 

1 2.l l-  

For triangles with l3=1, and height 1, the x location of the vertex between sticks 1 and 2 

determines the triangle form. For x=0.5 the triangle is an isosceles triangle, as shown in Figure 

18. 

 

Figure 18: Triangles with l3=1 and height 1, for different locations of the vertex between sticks 1 and 2 (purple dot). 

Solid line -  x=0.5, dashed - x=2, dot-dashed – x= -0.5. 

Figure 19 displays the angle change .. as a function of the x location of the vertex between sticks 

1 and 2, at times close to the arrival of the motor to the end of stick 3. As expected, when the 

edges are in different lengths, the angle change diverges when the sticks are close to closing. 
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Figure 19: Change of β as a function of the x location of the vertex between sticks 1 and 2, for 0.9tm , 0.99 tm, and 

0.999 tm, when tm  is  the arrival of the motor to the end of stick 3. 
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2.2.4 Regular polygons composed of N sticks, each pulled by one motor 
Moving to assemblages with large number of sticks, the general case of N sticks in a regular 

polygon was solved, each stick pulled by one motor which advances on the next stick. We show 

how this interaction leads to the formation of a star shape of sticks, and that the hydrodynamic 

forces dictate a specific trajectory of the sticks motion contrary to the case without any drag. 

Stick number n  has the following sizes assigned to it: 

(2.15) 

- location of the center point of the stick in the lab frame
- velocity of the point of geometric center (GC) of the stick
ˆ- angular velocity around the point GC
- Force employed on the stick b

n

n

n

n

�

R
V

z
F y the fluid

ˆ- torque employed on the stick at its GC nT z

 

We will leave the forces and torques as unknown and solve for them using constraints on the 

velocities. The equations for each stick are: 

(2.16) 
� �
� �
� �

� �� �
� �
� �
� �

, ,
, , ,
, ,

x x

y y

F n t v n t
F n t M n t v n t
T n t n t

�
�

� � � �
� � � ��� � � �
� � � �
� � � �

 

Since there is no external force, the sum of forces and torques is zero: 

(2.17) 

� �

� �

� � � � � �� �

1

1

1

, 0

, 0

, , , 0

N

x
n
N

y
n
N

z
n

F n t

F n t

T n t n t n t

�

�

�

�

�

# $�  �' (

*

*

* R F

 

Using the sum of forces we can develop the sum of torques: 
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� � � � � � � � � �� � � �

� � � � � � � �� � � �

� � � � � � � � � � � �

� � � � � � � � � � � � � � � �

1 1

1 1

1 2

2 2 2 2

, , 1, , 1, ,

1, , , 1, ,

1, , 1, 1, 1, ,

1, , 1, , 1, , 1, , 0

N N

n n
N N

n n
N N

n n

N N N N

n n n n

n t n t t n t t n t

t n t n t t n t

t n t t t t n t

t n t t n t t n t t n t

� �

� �

� �

� � � �

# $ � � 	  �# $' ( ' (

 � 	  

 �  �  �

� � 	 �  �	  �  �� �
� �

* *

* *

* *

* * * *

R F R R R F

R F R R F

R F R F R F

R F R F R F R F

 

So that  

(2.18) � � � � � �� � � �� �
1 1

, , 1, , 0
N N

n n z

T n t n t t n t
� �

� 	  �* * R R F  

3N equations originate from the resistance matrix, and 3 equations from the sum of forces. 

However, there are 6N variables which are , , , , , ,x y x yF F T V V �  for each stick. Therefore, 

equations for the velocities of the sticks as a function of the velocities of stick number 1 are 

needed: � � � � � � � �� �, , , 1, , 1, , 1,x yv v n t function t t t� � �# $ �' ( v . 

 To find this function, the velocity constraints the motors employ on the stick are used. We 

discuss the case where on stick n there is one moving motor, which advances on the stick at a 

constant velocity u, and carries stick number n+1. The connection point of stick n+1 to the 

motor is fixed.  

Each stick has 3 “interesting” points:   

O – its center point.   

P – the point where stick n is connected to the motor carrying it on n+1. This point is fixed in 

time.  

( )t�  - the point where a motor which advances on stick n is located. This motor carries stick 

n-1. The location of this point of the stick is changing in time according to: 

(2.19) 

� �

0

2 2

1
02

( ) ,
l l

l
end u

t ut

t

� �
�

�

� �

	 ) )

� 	
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for a stick with length l. 

The velocity of point P of stick n is combined from the velocity at which it is carried on stick 

n+1, and the velocity of the point of the stick n+1 where it is connected:  

(2.20) � � � � � � � �1 1cos ,sin 1p n nn u n�� �� �� � �# $' (v v  

From equation (2.4), the velocities of the points O and � are: 

(2.21) 

� � � �
� � � �

� �
� �

ˆ

ˆ

cos ,sin

cos ,sin

o n n

o p n n

n n n

n n n

n n

n n

P

� �

�

� � �

� �

� �  

� 	  

�

�

v v z χ

v v z P

χ

P

 

  In a regular form, the relations between the angles of the sticks are fixed according to the 

number of sticks N. The angular velocity of all the sticks is equal, and the locations of the center 

of each stick are known relative to stick 1, thus allowing the solution of the system of equations. 

(2.22) 

� � � � � �
� � � �

2

1

, 1, 1

, 1,
( , ) ( 1, )

N

n n

n t t N n

n t t
n t n t

"� �

� �

	

� � 	 �

�

� 	 � 	R R P χ  

Figure 20 and Figure 21 display the dynamics of four connected stick obtained using the 

derivation above. Figure 20 shows the location of the sticks in time as they rotate and close. 

Figure 21a shows the path of the ends of the sticks and Figure 21b the direction of the forces on 

their geometric centers.  
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Figure 20: Locations of four closing connected sticks at different times. 

 

Figure 21: (a) Path of the ends of 4 connected sticks in the XY plane. (b) Direction of the forces on the geometric 

center of the sticks in the XY plane. The force on stick 1 in t=0-0.1 is marked in black. 

A problem with similar kinematic constraints as the problem of connected sticks, but much 

easier to solve, is the problem of cyclic pursuit of points in the plane (e.g. [29]). Here, N points 

are moving with velocity u, where the velocity of point n is in the direction of point n+1. This 

problem can be regarded as the motion of N connected sticks moving without any drag, where 

stick N is the line connecting the points n and n+1. In order to work with the same geometric 

constraints as the problem regarded above, the initial locations of the points were at the vertices 

of regular polygons.   

Figure 22 displays the path of the ends of the connected sticks with hydrodynamic drag (full 

lines), compared with the path of points in cyclic pursuit. It can be seen that the basic formation, 
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as well as the final star shape structure, is controlled by the geometry of the sticks connections. 

However, the hydrodynamic forces dictate the specific trajectory of the sticks' motion.  

 

 

  

Figure 22:  Path of the ends of the sticks in 

the XY plane. Full lines - the trajectories of the 

sticks' ends rotating in a low Re medium. Dashed 

lines – trajectories of points in cyclic pursuit, 

which can be regarded as the ends of sticks 

rotating without drag. 
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2.3 Summary 
This chapter investigated the flow-driven re-orientation of sticks moving in low Reynolds 

number medium driven by molecular motors, with the aim of finding alignment and order 

mechanisms. In our model, the motors are represented by rigid constraints, allowing free 

(frictionless) rotation of the sticks around the interaction point. This modeling introduces more 

influence of the viscous forces on the dynamics of the sticks compared to previous works. The 

key result of this part is the analysis of the interaction between two connected sticks, with two 

possible connection types considered. Contrary to former works, we showed that in our model, 

the interaction of a motor which advances on two sticks is highly symmetrical and does not lead 

to sticks alignment. However, such alignment is possible due to an interaction which was not 

considered before, in which a motor is advancing on one stick and carrying the second 

(immobile) stick. We investigated different possible motor properties, and concluded that in 

order to induce alignment the propulsion velocity of the motor on stick should vary with the 

angle or the angle change, while motors should possess random attachment/detachment kinetics. 

We continued with the consideration of larger assemblages of sticks, which provided nice 

examples of combined influence of geometry and hydrodynamic forces on sticks organization. 

The problem of a triangle of sticks with a motor advancing on one of the triangle’s sides and 

carrying another was analyzed. We concluded that in non – isosceles triangles, as the motor 

approaches the end of the triangle’s side, the pulling force on the motor will be very strong, 

leading to its detachment and causing the triangle to fall apart. Lastly, the dynamics of regular 

polygons composed of N interconnected sticks was considered, showing the formation of a star 

shape, and demonstrating now the hydrodynamic drag changes the connected sticks motion 

relative to the case without drag.  

We conclude that the mechanism of a single motor connected to two sticks is a non-

symmetric interaction, which can create alignment and order in an originally isotropic layout of 

rods. Although it is not a very efficient mechanism, it is a possible process participating in the 

microtubules alignment phenomena observed experimentally.  
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3 Swimming of finite filaments 
This chapter details the work on the subject of undulatory swimming of finite-length filaments6. 

The work detailed here was published in [30]. First we bring the background relevant to this 

problem, including basic properties of swimming in low Re medium, discussing previous works 

on the subject and metrics used to rate different swimmers. Also, the mathematical methods 

which we used to solve the swimming problem are described, followed by the biological 

background concerning the nematode C. elegans. In the second part of this chapter, the 

derivations and algorithms developed in this work are described. These include the adaptation of 

the particle-based numerical algorithm to the problem of swimming filaments,  the numerical 

algorithm for the solution of a finite swimming filament in plane motion in the Resistance Force 

Theory (RFT) method, and the mathematical derivation of the swimming of an infinite filament 

in RFT. Lastly ( 3.3), the results concerning the swimming of short filaments are presented, 

including unidirectional and plain motion, comparison between the results of particle-based 

computations and the predictions of the RFT method, and comparison to biological swimmers. 

Specifically, the swimming of C. elegans is calculated using the particle-based algorithm. 

Section  3.4 summarizes the subject of filament swimming.  

3.1 Swimming problem background 

3.1.1 Swimming in low Re 
An important field in low Reynolds hydrodynamics deals with the problem of self-propulsion 

[31]. It is relevant mostly to small organisms swimming in water, since the dimensions of 

microorganisms (of the micron scale) causes their advancement in water to be a low Re problem. 

This problem have been studied since the 1950’s with important works by Lighthill [32], 

Hancock [33] and others, which led to the development of solution methods such as the RFT 

discussed later on (section  3.1.4 0) and more advanced slender body theories. The problem gained 

publicity with Purcell’s speech and paper “Life at Low Reynolds Number” [34] where he 

described clearly the swimming problem and the corresponding “scallop” theorem as follows: 

swimming is the deformation of the swimmer’s surface in time, leading to net advancement of 

                                                 

6 This part was done in collaboration with Dr. Oded Keneth. 
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the body. Since Stokes equations governing the motion are linear and time independent, there is 

no significance to time and the swimming problem becomes a purely geometrical one. In such a 

media, a sequence of deformations which is reciprocal does not generate net translation7. A 

swimmer which has only one degree of freedom, such as a scallop which can only close and 

open its shell, can only do reciprocal motion and therefore cannot swim in low Re media. A 

swimmer with two degrees of freedom, such as the 3-link swimmer suggested by Purcell, is 

capable of doing a non-reciprocal motion and therefore will advance. Both the scallop and the 3-

link swimmer are depicted in Figure 23. Although introduced by Purcell in 1976, the direction of 

motion of the 3-link swimmer was calculated only at 2003 [1, 2], concluding that the direction is 

dependent on the angular amplitude of the swimming strokes as well as on the relative length of 

the links. This demonstrates the non-intuitive nature of low Re swimming.  

 

There are many swimming strategies employed in nature and suggested theoretically. Among 

those are the cilia, the filament swimming, and the ameboid. A cilia is the beating of two to 

many small arms, and an ameboid is a non – filament body which deforms in order to advance 

[36-38]. In nature, long filaments advance through helical rotation such as E. coli or spirochete 

[39], or by two dimensional undulations such as sperm cells and nematodes. Both options are 

presented in Figure 24.  

                                                 

7 Reciprocal sequence means that it transforms from form A to B, and then transforms back by time reversed 
deformations. 

Figure 23: (a) a scallop which has only one degree of freedom cannot swim in low Re 

medium [34];  (b) Purcell’s three link swimmer. 
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Figure 24: (a) filament swimming by traveling wave; (b) helix swimming through helical rotations. 

In this work we focus on swimming due to two dimensional undulations of a finite filament. 

The problem of infinite filament swimming has been researched by Lighthill [32] which 

characterized the velocity and swimming efficiency of the filament swimming due to the passage 

of periodic waves. The swimming efficiency is defined accurately later on, see  3.2.2.1, and for 

now can be regarded as the total energy expense effectively used in moving forward. For an 

infinite filament, the shape giving maximum swimming efficiency is one for which the angle 

between the local tangent to the filament and the swimming direction is constant. In two 

dimensions, this forces the filament to a non-smooth sawtooth shape. This result extends to finite 

filaments occupying many undulations of the bending wave, for which the pitching is negligible. 

For a sinusoidal swimmer, the optimal swimming also employs many small waves. We discuss 

the comparison of swimmers in the next section where we’ll also bring in more details the result 

of Hancock [33] for the infinite swimmer. 

Finite filament swimming has been studied numerically in [40-43] by Resistive Force Theory 

(RFT), which is a method used for very slender filaments. It assumes that the force distribution 

along the filament is dependent only on the local velocity, and proportional to the parallel and 

perpendicular components of the velocity with constant proportionality factors (section  0 3.1.4). 

RFT is one of the methods we will use for the solution of finite filaments propulsion. Slender 

body theory, which is a more accurate method, assumes that the force exerted on the fluid at the 

surface of the body may be approximated by a distribution of stokeslets along the axis. It has also 

been used for the investigation of finite filament swimming [40,44,45]. 

(a) (b) 
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More recent works include the study of finite and infinite filament swimming using RFT, e.g. 

by Spagnolie and Lauga [46]. They proposed a different optimization function and found the 

appropriate form of optimal waves (more on that in the next section).  

Tam and Hosoi [47] used RFT to find the most efficient stroke for a sperm cell. They started 

from several seed strokes and found the optimal stroke. They found that the optimal stroke for a 

sperm cell is a series of symmetrical undulatory bending waves with localized regions of high 

curvature, which form at the base of the head and propagate towards the end of the flagellum.  

Koehler at al. [48] explored toy models of undulating finite-length filaments. They used RFT 

to calculate the swimming of short filament undulating by sine waves, curvature sine waves 

(where the curvature of the filament is changing according to a sine wave), sawtooth waves and 

square waves. The performance of the swimmer was measured according to three metrics, the 

swimming efficiency, the speed, and the speed at constant power, as explained in the next 

section. Parametric plots of the performance were presented for each of the wave functions. For 

all the undulations strategies except the square wave, it was found that the best parameters in all 

the performance matrices are at the limit of many short waves per filament, similar to the infinite 

filament. They describe “swimming resonances” which are local maxima in the performance, 

and find that they occur for specific values of half integer waves (1/2, 3/2,…) and close to 

minima of the pitching angle. We found similar local optima using RFT (Figure 31). However, 

the more accurate algorithm we employed (particle-based calculation) shows only one global 

maximum, implying that these local optima might occur only in very slender filaments. 

3.1.2 Comparison between different swimmers 
There have been several suggestions in the literature on the comparison method of different 

swimmers [32,49-51] . Since Stokes equations are time independent, we need to consider a time 

independent measurement, compensating for the possibility of a swimmer to make faster 

undulations. One possibility is the normalized velocity, U c , averaged over a stroke, where 

c k��  is the wave speed, �  being the angular frequency of the wave.  

A different metric used extensively to compare different swimmers is the swimming 

efficiency, which is the work expended in dragging a passive filament divided by the work 
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invested in swimming, 

�

�
F U
P

, where P  is the rate of dissipation.  Maximizing the efficiency 

leads to maximum swimming speed per mechanical energy, hence allows the maximum 

advancement if the energy budget is limited. This measurement is important for artificial 

swimmers, which presumably have limited energy resources. For biological swimmers, however, 

it is debated whether the power invested in swimming is of importance. Experiments and 

supporting predictions for flagellated bacteria, such as E. coli, show that viscous dissipation 

accounts for only a few percent of their metabolic costs [34,49,52].  

We can assume that body structure and muscle power limit the possibility of organisms to 

increase their undulation frequency. For example, increasing the solvent viscosity by 10,000 fold 

decreases the undulation frequency of C. elegans, and limits it from approximately 2 Hz down to 

less than 0.3 Hz [53,54]. In such terms, the only way to swim far is to optimize the waveform, 

thus making D, the distance per stroke, an appropriate metric to consider.  

In the recent works discussed before, there have been a few suggestions of different metrics. 

Spagnolie et al [46] expanded the definition of efficiency by taking into account the cost of 

bending, sliding of internal microtubules and internal viscous resistance. According to this 

definition, the shape of the optimal waves for finite and infinite swimmers changes from 

sawtooth to sinusoidal waves depending on the cost of bending considered. 

Koehler at al. [48] suggested a different speed metric – speed at constant power – which is 

the ratio of the net speed of the filament operating at constant power to the speed of the same 

filament when it is pulled at the same power in a straight position. This definition overcomes the 

problem of inefficiency of undulations with a constant wave speed, which for short filaments 

leads to large fluctuations in the speed and power of the swimming. Also, Yang at al [55] used a 

criterion called the “fuel mileage” in their study of Spiroplasma swimming, which is the distance 

traveled per energy consumed. They considered both internal and external energy in the 

calculation. 

It is instructive to see the predictions of RFT for an optimal infinite swimmer for the 

swimming efficiency compared with the metric of distance per stroke. From [33] the 
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approximate expression for the velocity of an infinite filament propagating a plain sinusoidal 

wave is shown in equation (3.1), 

(3.1) 2
2

1 1( )
2 1 ( ) / 2

U kb
c kb

�
�

	
, 	

�
  

where c k�� is the wave speed, �  is the angular frequency of the wave, f� and ||f  are the 

normal and longitudinal viscous drag coefficients, respectively, and ||/f f� �� .  According to 

this solution, the maximum scaled velocity is achieved at 1/2(2 / ) 1kb �� , , with the value of 

2

1 1 1/ ( )
2 1 ( ) / 2 4

U b kb
kb
�
�

	
� � 	 , 	

�
for 2� �  appropriate to an infinite swimmer. The minus 

sign indicates that the swimmer advances in the direction opposite to the traveling wave. 

According to this, increasing the amplitude of the wave while keeping the frequency constant 

will result in faster propulsion, as long as kb is maintained at its optimal value. For a finite 

filament, increasing b  while maintaining kb results in fewer waves on the filament, thus making 

the infinite results less applicable and increasing the pitching which can reduce the forward 

advancement of the swimmer. From this we expect that for a finite swimmer there will be a 

global maximum with b and k  values optimizing the advancement. 

For the swimming efficiency the situation is a bit different. Here, RFT predicts that there is a 

value of 1.208kb , which gives the efficiency optimum with the value of 8.2%
 8.2% , however 

there is no preference for high amplitude. On the contrary, in order to resemble an infinite 

filament and keep the pitching at minimum, the best waves for a finite filament are short small 

amplitude waves. Therefore, the maximum is expected to be at the highest k value available.   

In our work, the performance of a finite swimmer is measured in both metrics; the swimming 

efficiency, which is the energy dissipated in swimming a fixed distance at a fixed speed, and the 

distance per stroke. We find the optimal parameters for a sine wave undulation for each metric, 

and display the differences between simulations in the RFT method and the more accurate 

particle-based algorithm. We find that while the most efficient swimmer’s parameters are on the 

line of the optimal kb  for an infinite swimmer, the parameters for the sine wave advancing the 

maximum distance per stroke are quite different from the infinite swimmer’s optimal swimming 
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gait. The particle-based algorithm and RFT method employed for these calculations are 

described in the following sections.  

3.1.3 Particle-based algorithm 
Calculation of the flow around arbitrary clusters of spheres suspended in viscous fluid is 

useful for many areas, and was done in different methods over the years [56-58]. Filippov [59] 

has demonstrated a numerical algorithm allowing the solution of the hydrodynamic resistance 

and the flow field around clusters of spheres. In this algorithm, Lamb's fundamental solution of 

the Stokes' flow outside a single sphere is generalized to the case of pN   non-overlapping 

spheres of arbitrary size with no-slip boundary conditions. The velocity is expanded in a series of 

solid spherical harmonics centered at an individual sphere. The equations for the boundary 

conditions are also expanded in a series of spherical harmonics truncated at some level �. Then, 

the direct origin to origin transformation of spherical coordinates is used, along with the 

transformation of spherical coordinates. This yields a system of 3 ( 2)pN   �( 2)((  linear 

equations for the expansion coefficients, which are solved numerically. The method was tested 

by comparison with theoretical and experimental data. 

The original algorithm was developed with the question of hydrodynamic properties of 

fractal clusters in mind. It has been later adjusted for the solution of various swimming problems, 

such as Purcell’s torodial swimmer, with cargo [36] and without cargo [60], and the swimming 

of helical filament in heterogeneous viscous media [39].  A similar approach was used in [61] for 

the calculation of a large variety of different swimmers.  

Here, we shall use this algorithm to solve the motion of a swimmer made of beads. This 

necklace undulates in a sinusoidal wave (section  3.2.2). In this method, the hydrodynamic 

interactions between different parts of the filament are described accurately, which leads to 

different results than predicted by the RFT method. However, this method demands a longer 

computer time thus allowing fewer computations. The algorithm is brought in the appendix in 

section  4.1 as developed in [59] and corrected by A. Leshansky. 
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3.1.4 RFT method 
RFT method has been first suggested by Gray and Hancock [33] for the solution of the 

swimming of infinite-length undulating filaments. It has been used intensively since in the 

investigation of various swimmers propulsion, including finite undulating swimmers [46] and 

other forms such as Purcell’s swimmer [35]. The basic assumption of RFT is that the moving 

body is locally slender enough as to neglect the hydrodynamic interactions with other portions of 

the body. Thus the force distribution along the filament is dependent only on the local velocity, 

and proportional to the two components of the velocity, 

(3.2)   f f� �� �f v vǁ ǁ  

where  ,  f f� ǁ  are the corresponding constant drag coefficients and /  .f f� �� ǁ  The slender 

body approximation is the limiting case of the RFT, for a body which is infinitely slender, for 

which  2 .� �  For less slender filaments, we have found the appropriate force ratio by comparing 

between numerical and analytical solutions as shown in section  3.2.4. Detailed derivation of RFT 

for finite swimmers is presented in section  3.2.2. 

3.1.5 Swimming of the nematode C elegans 
Caenorhabditis elegans is a 1 mm long nematode (round worm) which dwells in soil. It has 

been chosen to be a model organism for the research of animal development, genetics and neural 

system development. It is easy to grow, mechanically and genetically manipulate, yet being a 

multicellular eukaryotic organism, its research can give insights to similar mechanisms in 

mammals. Since the 1970’s C. elegans has been researched intensively, and a large database of 

knowledge has been gathered on it, including cell fate map, neurosystem analysis and generation 

of various mutants with different characteristics. 

Despite naturally living in soil, C. elegans is able to swim. Due to its size, the Reynolds 

number of its motion in water is ~1, making it possible to investigate its swimming using low 

Reynolds number approximation. The swimming of C. elegans is characterized by fast 

undulations (~1.5Hz) , contrary to its crawling which is by slower body motions (~0.2Hz), and 

these motions has been considered as separate advancement mechanisms (“two gaits 

hypothesis”). Research in recent years [53,54,62,63], proved that the swimming and crawling 
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originate from the same propulsion motion, and that the change in frequency, wavelength, and 

amplitude of the wave with the change in the advancement media is slow and limited (i.e. "a 

single gait"). This raises the question whether this gait is the optimal solution to swimming in 

low Reynolds number media. 

In [62], the motility of C. elegans was investigated experimentally and theoretically in order 

to estimate the nematode's material properties. The swimming of C. elegans was recorded using 

high speed camera, and its centerline body motion was extracted by image analysis. This 

experimental deformation function was used in our research as input to a simulated swimmer 

made of spheres, as described in section  3.3.5. The advancement of the geometrical center of this 

swimmer was compared with the experimental nematode, and also used to estimate the 

efficiency of the C. elegans swimming.  
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3.2 Algorithms and Mathematical derivations 

3.2.1 Constraints of a finite swimmer 

A finite swimmer of length l  undulating according to the function ( )y x obeys the equation: 

(3.3) � �
1 1

2

0

21 '( )
s

s

l y x dx� �3  

Where 0 1,s s  are the limits of the swimmer. For a swimmer propagating a traveling sine 

wave, ( ) sin( )y x b kx t�� � , one of the realizations is to choose 0 1s s p k"� 	 � 	  , when p  is 

the number of waves occupying the filament and kl the wave number. Thus, there are three 

mutually dependent parameters characterizing the wave form; kl , b l  and p , and setting the 

values of two of them dictates the third. Figure 25a shows the relations between the parameters. 

As the amplitude grows, the number of waves on the filament has to decrease in order for the 

constraints of the finite length to hold. The relations between kl , b l  and p changes as a 

function of time. We chose to work with a wave with constant b l and kl , and let p  change 

during the cycle. We characterized the p  value for each stroke by the value of p  time-averaged 

over one period of undulation. At low values of p , the variation can be significant, up to 30% of 

the mean value at 0.2p �  (Figure 25b). However in the range more relevant to most of our 

results, at 0.5p - , the standard deviation of p  is below 10%.  
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Figure 25: (a) Contour plots for average p as a function of kl and b l . The dashed line is 1.2kb , , the optimal 

kb for efficiency of an infinite sine wave.  The dotted line is 1kb , , the optimal kb for the velocity of an infinite sine 

wave; (b) Contour plots of the standard deviation of p during a stroke, in percentage, as a function of kl and b l . 

3.2.2 Particle-based calculations 
We solved the problem of the swimming of an undulating filament using particle-based 

calculations based on the algorithm displayed in  3.1.3. In this approach the hydrodynamic 

interactions between different parts of the filaments are calculated accurately, thus enabling the 

simulation of bodies which are not extremely slender. The particle-based algorithm allows the 

calculation of the flow around an arbitrary array of spheres, and enables the solution of the 

velocities of the spheres given the forces, or vice versa.  

(a) (b) 

Figure 26: Snapshot of the filament built from 

 spheres of radii  and distance

between centers propagating a 

plane sine wave. 
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For the swimming problem, we constructed a swimmer made of pN   nearly touching spheres 

of radii a , as shown in Figure 26. This necklace undergoes a deformation of traveling sine waves, 

and the linear and angular velocities of its geometrical center are calculated using the particle-

based algorithm. Afterwards, the velocities are interpolated and integrated to obtain the angle of 

rotation and the motion of the swimmer geometrical center (GC) in the lab frame. The method of 

calculation is detailed in the following, with a few fine details of the implementation discussed in 

the next section. 

One undulation period of the traveling sine wave is divided to time steps, in each time step 

the spheres are distributed along the centerline which obeys the function

4 50 ( , ) , sin( ) ( ),0s t s b ks t Y t� 	� �r . Here s  is a Cartesian coordinate in the body frame of 

reference. ( )Y t includes additions to the deformation function, required to satisfy the 

incompressibility condition and keep the geometrical center of the filament at y=0. These 

additions are discussed more thoroughly in section  3.2.2.2. The distance between the spheres 

centers is 2.02d a� , and the overall length of the filament is ( 1) 2pl N d a� 	 � .The vector of 

locations of the spheres in each time step is checked to avoid spheres collisions, and used to 

calculate the linear velocities of the spheres using a second order backwards difference scheme.  

The velocity of the ith sphere contains the contributions according to the equations in (3.4). 

U and ω are the rigid body translation and rotation velocities for which we wish to solve.  iu is 

the deformation velocity found numerically, consisting of transverse undulations and a tangential 

velocity as the spheres are redistributed along the filament due to the incompressibility 

constraint. iω is the rotation rate of the ith sphere with respect to the center sphere. It is composed 

of the rotation due to local bending of the filament and rigid rotation of the whole filament.  

(3.4) 0

1
0

( / )

(  

ˆ

/ )

i i i i i

i i

i

i

i

t

s s2

1
� � �  

�

�  

� � �

�  � � �

ω ω r

ω ω

U U u R
u r s

v0 /� 0 / � / � 0 /s  
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iR  is the radius vector connecting the GC of the swimmer to the center of ith sphere, ir  is the 

radius vector with origin at the center of ith sphere, and ŝ is the local unit tangent to the filament 

centerline at the position of ith sphere. s2 � � �0r , and ds2  is a length element of the filament 

centerline. The unknown rigid body translation and rotation are found using the constraints of 

force and torque free motion: 

(3.5) 
0

0

i
i

i i i
i

�

�

�

� �  

*

*

F F

T T R F
 

Where { , }x yF F�F  and zT�T zz . Here ·
i

i S
dS

�
� 3F nσ  is the hydrodynamic force and 

( · )
i

i S
dS

�
�  3 iT nr σ  is the hydrodynamic torque exerted on the ith sphere composing the filament.  

After we calculate the translation and rotation velocities, ( ),xU t ( )yU t  and ( )t� , respectively, 

over a period 2 /" � , we integrate the interpolated velocities over time to compute the trajectory 

of the filament in the XY-plane ( )tX and the pitching angle ( )t�  : 

(3.6) 
0 0

( ) , ( )· , ( ) ( )    
t t

d  t dt t� � � 6 6� � �3 3V U X V( ) ,( )( ) ,( ) ,( ) ,( )·( )·
 

Where ( )�( )( )  is the rotation matrix associated with ( )t� . 

From the path in the XY-plane - ( )tX , the distance per stroke was calculated according to 

D (T) (0)� 	X X , T  being the cycle time. Thus, the initial choice of the x direction does not 

change the distance per stroke. Moreover, the sideways and rotational movements during the 

cycle are considered in the calculation of the distance covered per stroke.  

3.2.2.1 Power and hydrodynamic efficiency 

The power required for our swimmer to maintain its movement is just the dissipation rate 

· P ds2� 3 vf . The total work in a single stroke is 
0

T
W Pdt� 3 . This work depends on the 

specific time parameterization of the stroke. It is well known that the optimal (power-wise) time 
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parameterization is the one which makes ( )P t  time independent [35]. Using the optimal 

parameterization (specifically 0

0

( )

t

T

Pdt
t T

Pdt
6

�
�

�

3
3

) one finds the optimal work to be8 

  � �2

0 0

1T T
d Pdt

T
6� �3 30

T 1
� 3 30 0

1T 1d 1d
T

6ddd  

It is instructive to look at the swimming efficiency
  that measures the energy dissipated in 

swimming a fixed distance at a fixed speed as 

(3.7) 
2

||f lD
TW


 �  

For the steady propulsion it reduces to the standard Lighthill efficiency [32] comparing the 

power invested in swimming and in dragging the passive filament. For the finite length filament 

the efficiency in (3.7) can be written as
2 2

2

( ) ,
(2 )

kl D

"

�
2DD , where /D D l� /D D l/  is the distance covered 

per period and 2
||/W f c lT� ||f c||W f/�  is the dimensionless work per period (corresponding to the 

optimal time parameterization).  

The rate-of-work expanded in propulsion of an undulating filament can be found (using the 

requirement of force- and torque-free propulsion) as 
1

( · · ) 
N

i i i i
i

P
�

� 	 	* U ωF T . 

Figure 27a shows the deformation function (in blue) along with the actual advancement in 

the lab frame (in red) of a sine wave with parameters 9.25kl � , 0.12b l � , 0.8p , in different 

times. Figure 27b depicts the trajectory at the XY plane, and Figure 27c the pitching angle as a 

function of the time. Figure 27d displays the rate of work during the cycle, normalized according 

                                                 

8The fact that W)W)  may easily be deduced from applying Cauchy-Schwartz inequality. Since the original t
-parameterization was arbitrary, this proves that ( )t6 -parameterization is indeed superior to any other. 
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to 2

PP
f lc

�
f lc2

PP
f l

� . From the rate of work we find the dissipation according to the optimal time 

parameterization. 

The particle-based algorithm described was used to calculate a few different swimming 

possibilities. First, we calculated one dimensional motion without pitching, where swimmers 

composed of 30 and 50 spheres were compared. This calculation required 32 time steps per cycle 

(section  3.3.1). Next, the full two dimensional motion for a swimmer made of 30 spheres was 

calculated, with the exemption of high kl results for which a swimmer of 50 spheres was used. 

The 2D motion was more numerically sensitive hence 100 time steps per cycle were used ( 3.3.2). 

Lastly, the motion of the nematode C. elegans was simulated by a 12 spheres swimmer, using the 

experimental deformation function of the nematode. This calculation used 55 time steps per 

cycle, according to the experimental frame rate (section  3.3.5).   
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3.2.2.2 Fine details of the particle-based swimming calculations 

Distance between spheres: The distance 2.02d a� was determined by balancing the demand 

to resemble a unified smooth filament (like a worm), dictating that the spheres should be as close 

as possible, and the rising accuracy demands arising from very close spheres. The accuracy of 

the calculation depends on the level of truncation � of the spherical harmonics functions. For the 

used d , truncation level of �=2 is sufficient for most calculations, as the difference between 

�=2 and �=3 is less than 5% even for large undulations. Changing d requires recalculation of the 

force ratio ||/f f� ��  used to compare between the RFT and the particle-based calculations, and 

affects the advancement of the swimmer and it’s dissipation as discussed in section  3.3.3.   

GC correction: A correction to the y-position is required to keep the geometrical center of 

the filament at y=0. This correction is not important when calculating the overall distance 

Figure 27: (a) In blue, the deformation function of a sine wave with the parameters , , below the motion 

of the swimmer in the lab frame (in red). (b) The advancement of the geometrical center of the swimmer in the lab frame. (c) The 

pitching angle as a function of time. (d) The normalized rate of dissipation as a function of time. 
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traveled in a period, since it is averaged over a stroke cycle, but it is important if the velocities 

and the path in the XY plane are required. The calculation of the location of the filament 

geometrical center in each time step jt can be done particle wise, according to 1

1
( , )

N

i jN
i

r t
�
* ( , )i j,,,,, , or 

by integrating over the theoretical function and satisfying 1

0

0 
s

s
sd2 �3 0r . The differences between 

these approaches are small and completely disappear as pN  increases. The hydrodynamic 

interaction is not affected by the local structure of the filament, hence it is controlled by the 

location of the continuous function. Therefore, the more accurate method is the theoretical 

calculation of GC location, which is indeed what was used in our calculations. 

Compressibility condition: The third contribution to the deformation function arises from the 

compressibility properties of the filament. We chose to simulate an incompressible filament, 

thereby redistributing the spheres each time step to be in a linear distance d between centers. 

More accurate implementation of this incompressibility condition would be to calculate the 

distance d between the spheres according to the length on the filament (i.e. the line integral of the 

undulation function between centers). However, this approach leads to collisions between 

spheres in undulations with high curvature. The location of the filament edge is determined in a 

similar manner. Each time step, the first sphere of the swimmer is located in a distance of half 

the filament length from the zero on the x axis. From this point, the spheres are distributed 

according to the deformation function and the incompressibility condition. 

3.2.3 Resistance Force Theory for finite and infinite filaments 
The results from the particle-based algorithm were compared with analytical and numerical 

results based on RFT, which neglects the hydrodynamic interactions between different parts of 

the filament, but allows analytical derivation and fast numerical calculations of the swimming. 

The following sections display derivations and a numerical algorithm for filament swimming 

employing local RFT. First, a numerical algorithm for finite filament moving in plane motion is 

displayed.  Later on (section  3.2.3.2) analytical derivation for infinite swimmer is brought. This 

derivation can be also applied for finite length filament in unidirectional propulsion.   Lastly, the 

calculation of power and hydrodynamic efficiency for the RFT is brought in section  3.2.3.3.   
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3.2.3.1 RFT for a finite filament 

The shape of the swimmer at the moment t  is given by � �0 0 0( , ) ( , ), , ) ( ,s s t x s t y s t�r0 ( )0( )0

1 2s s s) ) . The actual embedding of it in 22  is given by � �( , ) ( , ), ( , )s r s t x s t y s t�( )r s t( , ),  where 

 
� �0

cos ( ) sin ( )
( , ) ( )· ( , ) ( ) , ( ) .

sin ( ) cos ( )
 

t t
s t t s t t t

t t
� �
� �

	� �
� � � � �

� �
r r R� �0( )· ( , ) ( ) , ( )� �0( )· ( , ) ( ) , ()· ( , ) ( ) , (� �0

�cos ( )( )( ))
)( ) , (� ( )( )

� sin ( ) c�� sin ( ) c
( ) ( )�( ) ( )) (�( )· ( , )� 0

 

The angular velocity of the swimmer is ��ω z�z��z  , where dot stands for time derivative, and 

through some abuse of notation one may write �  ω�  ω . The local swimmer velocity then 

reads9 

 

. . . .

0 00( , ) ·( ) · ( ) .
d
ds t

t
� �� �  � � �  � � �� �
� �

rv  r r R r R r Rω ω)
.
) � ((

�
�� 0( 0)) ((((() ·( 0

.
(((( 0·( 0

 

Here we denote by �
.

00v r  the local deformation velocity and by 

.
1· ( · )d

dt
	� �  �V ωR R R1· ( · )d

dt
	1· ( · ω) �  )  the extra rigid translation experienced by the swimmer both 

expressed in a frame rotating with it. We shall denote 0| |2 � �r  where prime stands for 
s
�
�

. Then 

12 	� �0s r12 	 �0s r12� 0  is the unit tangent to the filament as expressed in a frame rotating with it (In the lab 

frame the unit tangent is �s�s .) The local velocity 
.

�v r  can be written as a sum of parallel and 

transverse velocities, �� �v v vǁ  where 
.

2

· ˆ ˆ( ) .
|

 ·
|

� � �  �
�
�

�

.

0 0s ωr rv r r r sV
r

ˆ.ˆǁ
 

We assume that the local force (per unit length) exerted on the swimmer may be expressed as 

f f f� �� �v vǁ ǁ  for some constant ,f f� ǁ  and denote /f f� �� ǁ . This allows to express the force 

                                                 

9 If we work in a frame rotating with the swimmer instead of the lab frame, then the factor  would drop out 
from all our equations making them slightly simpler. We refrain doing that to avoid the need for extra notations. 
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(per unit length) as 1 (1 )f
f

� �� � 	v vǁ
ǁ

. Using the above expressions for ,v vǁ  we obtain that 

the moving frame force 1
0  ·	� 1·	f f  is given by 

(3.8) 0
1 ˆ ˆ( ) (1 )  ( )
f

� �� �  � � 	 � �  �0 0 0 0V ω v s ω v sr V r
ǁ

f  

The zero net force and zero net torque conditions are then  

 1

0

1

0
0 00,     = 0.

s s

s s
ds ds2 2� �  �3 3 0rF Tf f  

Where ds2  is a length element. At each instant t  this gives a set of three linear equations for 

( , )x yV V�V  and z�ω ωz . Integration over t  then gives dt� �� 3  which defines the matrix ( )t( ) . 

The distance covered by the swimmer is found from  · · td� 3R V· tdtt3 V·R � 3 . 

In order to compute the advancement of the swimmer, we need to determine the location of 

the swimmer ends according to the incompressibility constraint. The employment of the 

incompressibility constraint and the parameterization of the swimmer are discussed in the 

appendix in section  4.2 . 

The numerical calculations were performed as follows: 

i. First we fixed numerical values for ,b k  and �  (we fixed 1�� , 1l �  for all 

calculations). 

ii. We calculated the expressions for the force and torque densities in the rotated frame

0 0,  f f 0r by using Eqs. (3.8), (4.8),(4.9). This has three independent components 

corresponding to the force ,x yf f  and torque zn  densities. We expressed them as 

, 1,2,3ij j iA q B i� �  where ( , , )x yq V V �� . 
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iii. We discretized the time range 0 2 /t T ") ) � �  into 100N � steps it . (Few 

calculations were done with higher N  up to 300.)10 

iv. For each it  we first calculated 1( )is t  by solving numerically Eq. (4.10) which 

determines the location of the swimmer ends. We then calculated numerically the 

integrals 1 1

0 0
,

s s

ij ij i iA A ds B A ds2 2� �3 3  and solved 0ij j iA q B� �  for the values of 

instantaneous velocities ( , , )x yq V V �� . We kept a table containing the values 

( , ( ), ( ), ( )), 0,1,2,..i x i y i it V t V t t i N� �  

v. Interpolating ( )it�  we constructed a continuous ( )t�  which was then integrated to 

define ( )t�  and hence the matrix ( )t( ) . 

vi. Noting the relation · ( ) ·
dt
d

�R V· ( )
dt
d V( ·  we constructed the 'rotated frame center of mass 

velocity' ( ) · ( ) cm i it t�v V· ( )i(((· . We then interpolated it to a continuous ( )cm tv  and 

integrated over t  to obtain the trajectory of the swimmer over a cycle. The distance 

covered per stroke is then 
0

( )
T

cmD t dt� 3 v .11 

3.2.3.2 RFT for an infinite filament  

The analysis based on the local RFT for an infinite undulating filament can be found 

elsewhere (e.g.[32,33]), however we choose to present our short derivation offering a short route 

to the closed-form expressions for the propulsion velocity and the power dissipated in 

swimming. 

For an infinitely long incompressible undulatory swimmer it is more convenient to use a 

slightly different representation of the local velocity 0v  , which takes full advantage of the 

symmetry / homogeneity of the problem. This representation will be slightly different than the 

                                                 

10 Sometimes we used a slightly larger range e.g. 0.01 2 / 0.01t T " �	 ) ) � � . Among other things this 
helps to avoid dealing with removable singularity at 0t � . 

11 Some of the described steps are redundant if one is only interested in the final result. These 'redundant' steps 
however made it easier to inspect for possible errors. 
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one used in the previous subsection12 which was better suited to use in numeric. Consider a 

swimmer powered by traveling wave type undulations, ( , ) { , ( )}s t s ks t7� 	�0r . Incompressibility 

then requires 0v to be a superposition of movement along the filament ( )t1	 ss  and rigid motion 

(in general a 2D translation and rotation). Due to the geometric nature of low Reynolds 

swimming one may assume 1  to be time independent13. In the case of the traveling sine wave 

we take 1  to be the velocity required to travel along a period of ( )s0r  over time 
2T "

�
�

 i.e. 

(3.9) 2

0

2 ( ( ) ),
2

d cs E kb
8

1 2
" "
�

� � 	3  

where
2
k
"8 �  and c

k
�

�  is the phase velocity. Averaging over the trajectory of a material 

point we have c19	 : � 	s x: � 	1 xc: � 	1 , i.e. the phase speed. Thus c1� 	 �0v s x�s xc�1  will describe the local 

velocity due solely to the (incompressible) periodic deformation. For small amplitudes this is just 
3{0, cos( )} ( )b ks t b� 	 � 	� �0v 3( )3( . 

If we want to describe a swimmer of finite length then we should also specify the parameter 

range 0 1[ , ]s s s; . The fact that the longitudinal velocity ( )x0v  is not exactly zero implies that the 

location of the edges will contain (small) time dependence 0 0 1 1( ), ( )s s t s s t� � . Since the 

endpoint are material points, 0 ( )s t  and 1( )s t  must be solutions of ( ·
 

)x
d

t
s c

d
1� � 	 �0v s x c�x· . This 

leads to the rather complicated relation ( ( )
0

it  being the integration constants) 

2
( )
02 2

( )E ( ) , ( ), 0,1
1 ( ) 1 ( )

i
i

kb kks t t t t i
kb kb

1� �
	� � 	 �� �� �� �

 

                                                 

12 The two differ by gauge and by time parametrization but are equivalent. 
13 Making 1  time independent requires a different choice of time parameterization from the one we used in the 

previous subsection. 
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This deviates from the 0 0s �  and Eq. (4.10) for 1( )s t  used in the previous section due to the 

use of different time parameterization and gauge. 

Now consider a very long incompressible swimmer described by ( , ) { , sin( )}s t s b ks t� 	�0r . 

The small oscillations of the endpoints, 
2

4
0,1( ) Const sin(2 ) ( )

8
b ks t t b� 	 � � 4( )4( , are completely 

negligible compared to l . Thus, in the limit of a long swimmer one may take 0 1,s s  as constants 

and even assume 0 1[ , ]s s  to contain exactly a large integer number p  of wavelengths. This 

assumption considerably simplifies the subsequent calculations. 

The local velocity due to deformations is c1� 	 �0v s x�s xc�1  with 1  given in Eq.(3.9). The total 

local velocity would include also a rigid motion which for an infinitely long swimmer can only 

be a longitudinal motion along x-axis, as transverse translation and rotation are zero from 

symmetry. The total local velocity is then � �U c U1� � � 	 � �0v v x s x� �U�� �U�� �c U�cc�  with its longitudinal 

and transverse components being � �( · )v c U1� 	 � �x s � �) c U�) c�)ǁ and � �( ( · ) ) c U� � 	 �v x x s s �) ) c U�) ) c)))) , 

respectively. The corresponding local force on the swimmer is   � �0 �v vǁf . The transverse 

component of the force, yF  as well as the torque zT , vanish by symmetry. The longitudinal force 

may be expressed in terms of 1 2 2( · ) 1 ( ) cos ( )d
ds kb ks t<2 	� � � � 	�s x 1) 1) 1 1· ) 1··  as 

(3.10) 
� � � �

� � � �

1 2

1

(1 )

(1 ) ds

x xF f d c U c U d

c U c U

< � 12 � 2 <

� 2 1 � 2

	 	

	

# $� � � 	 � � 	 �' (

# $� 	 � � 	' (

3 3
3  

Requiring 0xF � determines U . Since the integrand is periodic of period 2 / k8 "�  and 

since the integration range is assumed to be much larger than the wavelength, 1 0s s 8	 8 , one 

may just integrate over one period 
0

( d) s
8
=3 . Using the identities in the appendix (section  4.3),  

the swimming velocity is then found to be 

(3.11) 
( 1)(E K )
K (E K )

U
c

�
�

� �	 	
� 	

� � �� 	
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Here again ||/ , /c k f f� ��� � and 2E E( ( ) )kb� � 	 , 2K K( ( ) )kb� � 	  where 

/2 2 1/2

0
K( ) (1 sin )m m d

"
� �	� 	3  is the complete elliptic integral of the first kind. The minus 

means that the filament is propelled in the direction opposite to that of the wave propagation. 

Note that the expression in (3.11) is a sole function of (E K ) / K� � �	  and using its asymptotic 

expression 2~ ( ) / 2kb  for small-amplitude undulations, 1kb 1 in Eq. (3.11) yields an asymptotic 

result which is identical to the approximate solution (3.1) derived in the seminal paper [33]. We 

note that the expressions (3.1) and (3.11)  also have an identical (finite) limit for kb>?  and 

therefore, the two expressions provide quite close estimates of the propulsion speed for an 

arbitrary value of kb .  

Note that even though equations (3.1) and (3.11) were derived for infinite filament where 

transverse displacements and pitching cancel out due to symmetry, it can be also applied for 

approximate modeling of finite-length filament unidirectional propulsion where transverse 

displacement and turning are disallowed. 

3.2.3.3 Power and hydrodynamic efficiency in RFT 

Our numerical calculation of the swimmer in plane motion allows simple calculation of  

by integrating 1

00
 ·

T s

s
dt ds23 3 vf  and squaring it. For an infinitely long sine wave we have 

2 2 2 2 2· ( ) (1 ) (( ) / )f v f v f U c f U c2 1 2	
� � �� � � � 	 � 	 �v ǁ ǁ ǁf  

Integrating over S  and using Eqs. (3.9), (3.11), we find: 

(3.12) 2
2

4E 1 E
E (1 )K

P f c l
" � �
�� � �� 	� �� �� 	� �

ǁ  

(Note that 1 0
cs s l
1

	 � .) Since the result does not depend on t  it is clear that P� P�  and the 

total work per stroke is just PT� PT� . At 1kb 1  the expression in the brackets of (3.12)
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asymptotes to 
2

4( ) (( ) )kb kb�
"

� 4(( ) )4 and 2E (( ) )
2

kb"� �
2
" 2) )2(( , leading to  

2 2 21 1( ) ( )
2 2

f c kb l f b l� �, � �
1
2

f c,
1 f cǁ ǁ . 

For infinitely long filament the net work (time parameterization of the stroke does not matter 

here) per period is 2
||0

( , )
T

W Pd f c lTP kb6 �� �3 , )kb �, )P k( , while the distance it covers per period is 

( , )D UT cTU kb �� � ( , )U ( � ) , yielding
2

.U
P


 �
2U .

P
U

 Note that in the framework of RFT for either finite or 

infinite filament both propulsion characteristics, /D l and 
 , do not depend explicitly on ||f , but 

are only functions of the ratio ||/f f� �� . 

3.2.4 Force ratio calculation 
The comparison of the local RFT with the results of particle-based simulations requires the 

knowledge of the ratio /f f� �� ǁ . For slender filaments the corresponding force densities are 

||2 4 (1)f f E"�� � , � (1) , whereas 1(ln 2 / )E 	� 1)	  is a small parameter and 2 / 1a l� 12 //�  is the 

aspect ratio, while l  and 2a  are the length and the typical width of the filament [64]. However, 

the limiting value of 2� � is only achieved for extremely slender (exponentially thin) filaments. 

For finite length-filaments the value of�  was determined numerically from computation of the 

viscous drag exerted on a spheres-built rod composed of pN nearly touching spheres in the 

longitudinal and transverse direction. �  as a function of the rod aspect ratio  is presented in 

Figure 28 together with the best fit of the form 2
1

2

1
1

c Ec
c E

�
� �	

, � ��� �
 (red, solid) suggested by the 

slender body theory solution [65], where 1(ln 2 / )E 	� 1)	 . For a prolate spheroid

21 / 22 ( ln )
1 / 2

E O
E

� 	� �� �� ��� �
2( ln )2 , while for a spheres-built rod with the distance of d 2.02a�  

between spheres we find rather close values of 1 1.96c �  and 2 0.525c �  suggesting that �  is 

rather insensitive to the local variation of the filament shape. The formula for the prolate 

spheroid indicates that �  approaches the limiting value of 2 in a slow logarithmic rate (see 
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Figure 28) and in the wide range of slenderness �  is in the range 1.4 	 1.6. For 30pN �  (

0.0330.033) we find 1.51� 1.51. This calculation is repeated in section  3.3.3 for different distances 

between spheres, showing that the form 2
1

2

1
1

c Ec
c E

�
� �	

, � ��� �
remains valid for large variation in d. 

For the comparison of the work invested in swimming between the RFT and the particle-based 

calculation, the parameter ||f  is required in addition to � . For the filament with aspect ratio 

1/ 30�1/ 30�  we found that || 3.3f @,  yields an excellent agreement between the prediction of the 

RFT and particle-based simulations for all values of p , in the 2D as well as 1D calculations 

detailed in the following. For calculations with 1/ 50�1/ 50�  the corresponding value was || 3f @, . 

 

Figure 28: Force ratio ||/f f�   as a function of the aspect ratio 2 / .a l� 2 / .//� The markers ( ) signify numerical 

calculations for a spheres-built straight rod of length l  made of pN  spheres of radii a . The continuous line stands for 

the best fit, 1 2 2(1 ) / (1 )c c E c E� � 	 � , with 1 1.96c �  and 2 0.525c �  ( 1 2c �  and 2 0.5c �  correspond to the 

slender body theory result for a prolate spheroid [65] ).  
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3.3 Results 
This section brings the results of our research on the swimming of short filaments. We begin 

with one dimensional movement, in which the velocity of the swimmer in only in the X 

direction. For such motion the analytical derivations of the RFT method for an infinite swimmer 

are applicable (section  3.2.3.2), and are used in comparison with results from the particle-based 

algorithm to show the validity of the calculations.  Next, 2D motion is concerned. Undulations of 

sine waves with different parameters are searched to find the best swimmer distance and 

efficiency –wise, and we show the agreement and the difference between the particle-based 

algorithm, the numerical two dimensional RFT calculations, and the analytic RFT calculations 

for the infinite swimmer. Contour plots calculated in the RFT method are used to find the 

parameter space which will give good swimming in both objectives. Turning to more 

biologically relevant questions, the parameters of different biological undulatory swimmers are 

compared with the sine waves parameters. Special attention is given to C. elegans, and its 

experimental deformation function is used to calculate the swimming trajectory and efficiency. 

3.3.1 Unidirectional motion 
The swimming of a filament in one dimensional motion was calculated and compared to the 

RFT predictions. In this motion the constraint is only on the sum of forces in the x direction, 

0x �F , while the force in the y direction and the torque are not balanced. The velocity of the GC 

is only in the x direction, so there is no pitching. The 1D motion allows the comparison of the 

numerical particle-based calculations to the analytic derivation by the RFT, in contrast to the 

plane motion where the RFT solutions also rely on numerical calculations.  

1D calculations were done for swimmers made of 30 and 50 spheres, as presented in Figure 

29a and b. Each point is a different calculation of the advancement of a swimmer doing an 

undulation with prescribed parameters of ( ,kl b l ). The value of kl during a stroke is fixed, but it 

is different between points in order to keep the average p fixed on each curve. The average 

velocity in a stroke is scaled by the wave velocity, while the error bars present the double mean 

standard deviation of the velocity during the stroke. The solid line corresponds to the 

approximate solution by Grey & Hancock discussed before (3.1), and the dashed line is the 

prediction of the 1D RFT in equation (3.11). 
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As seen in the figures, there is a good agreement in low kb values, but considerable deviation 

as kb grows, a deviation which starts sooner in higher p values in which the filament contains 

more waves and there are more interaction inside the filament. Going to slender filaments 

increases the agreement, as expected and shown in the calculation of a swimmer made of 50 

spheres, where the deviation starts in higher values of kb . The 1D dissipation was also 

calculated and shows good agreement between the RFT derivation (3.12) and the particle-based 

calculation, as depicted in Figure 29c, using the same value of  the parameter ff as used for the 

2D calculations (as explained in  3.2.4).  
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Figure 29:  Scaled propulsion speed, 

averaged over time of a period  plotted

vs.  for a filament undergoing 1D locomotion 

opposite to the direction of wave propagation 

(forbidding pitching and transverse motion). 

Different values are displayed in different 

colors, from to

 The bars size is doubled mean standard deviation

of the velocity from its mean during the period of 

undulation. The dashed line corresponds to the 

prediction of the RFT in (3.11), the solid line

corresponds to the approximate solution (3.1). (a)

Filament composed of 30 spheres corresponding 

to  in RFT expressions; (b) filament 

composed of 50 spheres, corresponding to 

 in RFT expressions; (c) optimal work 

per period,  . The solid line

corresponds to the prediction of the RFT in (3.12) 
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3.3.2 Two dimensional motion 
For a two dimensional motion, we compared the numerical calculations using the particle-

based algorithm and the numerical calculations done with the RFT method. This comparison 

indicates when the local interactions are important. We expect the local interactions to be 

negligible when the filament is very slender, 1a� 1, where 2 2| / |s� � � �0r  is the local curvature 

of the filament centerline. For our deformation function 4 50 ( , ) , sin( ) ( ),0s t s b ks t Y t� 	� �r

2 2 2 2 | / |   | sin( ) |  s bk ks t bk/ � � � 	� )0r . Hence, the local RFT should hold while

2 11  ( ) 2l
aabk kb kl 	/ �1  ( ) 2a1  ( ) ( ) ( 1 . Our actual comparisons between the RFT and particle-based 

results, shown in the following figures, found the line of RFT validity to pass at 1 ( ) 0.5kb kl 	, 1	 . 

Figure 30a-c displays the particle-based and RFT results for lines of constant average p . 

Each point is a calculation in which the kl value is constant through the swimming stroke, 

however from point to point kl is different as needed to keep the value of average p constant. 

Figure 30d-f depicts the results in curves of equal kl , while the average p changes from point to 

point. This presentation allows the sampling of higher amplitude waves. Figure 30a and d present 

the scaled distance the swimmer advances in one stroke as a function of the amplitude. For each

p value there is optimal amplitude with maximum distance, and the optimal parameters 

distance-wise are 0.8 , 0.24 ,p b l, , and 8.86kl , , for which 0.1167D l , . The agreement 

between the RFT and the particle-based calculation is very good at low values of kl , as can be 

seen in Figure 30d, but as kl increases, the deviation between the methods starts at lower 

amplitudes. In high kl  and b l  values, the RFT neglect of the inter-filament interactions leads to 

overestimation of the distance per stroke. Figure 30b and e display the maximum pitching angle  

during the stroke vs. the amplitude b l  for the same values of p and kl as in Figure 30a and d 

correspondingly. The maximum pitching angle is twice the angle between the mean direction of 

propulsion and the initial orientation of the swimmer at t=0. It indicates how much the swimmer 

advances “sideways” instead of “forward”, and a reasonable assumption was that substantial 

pitching will reduce the overall advancement of the swimmer. As can be seen in Figure 30b, low

p values lead to high pitching angle, which decreases when the number of waves increases, as 

expected, since for large number of waves there is no turning at all. Contrary to our assumption, 
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the maximal distance is achieved with substantial turning of 53 .m� ,   The agreement between 

the RFT and the particle-based computation is very good for most values of p and kl , except for 

high p values where the curvature is high and reduces the accuracy of the RFT assumptions. 

Overall the agreement between the methods is better for the angle calculations than for the 

distance results. We argue that since the pitching angle is just the maximum of the integral over 

the angular velocity, while the traveled distance combines translation and pitching, the latter is 

expected to be more sensitive to the intra-filament hydrodynamic interaction.  

Figure 30c and f display the net work per period dissipated by viscosity, corresponding to 

optimal time parameterization as discussed earlier (section  3.2.3.3), vs. the scaled amplitude. The 

agreement between the methods is very good, although requiring an additional parameter ff  as 

discussed before (section  3.2.4). It can be seen that for the same value of b l  less energy is 

dissipated by working in low values of p and kl , when there is less relative motion between parts 

of the filament. In high kl values the energy growth is more moderate, in a value of b l

corresponding to undulations with less than half a wave ( 0.5p , ). At large amplitudes the RFT 

underestimates the power, a deviation which increases as kl grows.    

 

 Figure 30 (next page): Comparison of the particle-based simulation results vs. the predictions of the RFT for a finite length 

filament with aspect ratio . 

(a) – (c) For fixed values of the mean number of waves ; the corresponding mean  values are shown. Symbols 

correspond to the results of particle-based simulations:  ( ),  ( ),  ( ),  ( ), 

 ( ),  ( ) and  (  ); the solid lines are the prediction of the RFT with  

(d) – (f) For fixed values of the wave-number :  ( ),  ( ),  ( ), and  ( ). The upper (filled) triangles ( ) 

correspond to  computed for a longer filament with aspect ratio of . The continuous lines stand for the 

prediction of the RFT with  (corresponding to , solid lines) and  (corresponding to 

, dashed line). 

(a) and (d): scaled distance per period of undulation,  vs. the scaled undulation amplitude . 

(b) and (e): maximum pitching angle during a stroke , vs. the scaled amplitude . 

(c) and (f): optimal work per stroke, , vs. the scaled amplitude . 
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3.3.2.1 Efficiency calculations 

Using the displacement per stroke and the power invested in a stroke we can calculate the 

swimming efficiency, defined as 
2

||f lD
TW


 � . The efficiency for an infinite swimmer can be 

found from the analytical RFT results developed in section  3.2.3.3.  

For a swimmer with 1.515� � , which fits a slenderness of 1/ 30�1/ 30� , there is an optimal kb  

value, 1.29kb � , which gives the maximum efficiency. For this value of kb  we calculated the 

efficiency using RFT method for a 2D filament with the same� .  Figure 31 depicts the maximum 

efficiency for these parameters (3.32%) in dashed red line, and the efficiency calculated using 

the RFT method for a finite filament (blue) vs. the wave number kl . Indeed as the wave number 

increases there are many short waves on the filament, similar to an infinite filament and its 

efficiency converges to the efficiency of an infinite filament. However the convergence is not 

monotonic, and there are local maxima at relatively low values of kl .The green line displays the 

pitching angle, and the dashed grid lines demonstrate how the maxima in 
 coincide exactly with 

zeros of m� . Similar local maxima were demonstrated in [46] and [48]. Like them, also in our 

case these maxima occur at values near 1.5 waves on the filaments. The average p values are 

1.42 , 2.46 , and 3.47 , close to the values of 1.5,2.5,3.5 viewed at the former works. Unlike [48], 

there is no effect of the movement of the GC (bobbing), and the efficiency maxima are exactly at 

m�  zeros. However, in results from the particle-based calculations conducted for a swimmer with 

aspect ratio 1/30, ( and in Figure 31), there is only one global maximum of the efficiency. 

Calculations for a swimmer with aspect ratio 1/50 show similar results. This indicates that the 

local maxima observed in the RFT results are relevant only for very slender filaments.  
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Figure 31: In blue, hydrodynamic efficiency in percentage, 
 , vs. kl from the RFT for a finite filament with 

1.51� �  for fixed 1.29kb �  corresponding to the optimal efficiency of infinite filament with the same � , in dashed 

red. The green line displays the maximum pitching angle in the RFT. The black squares ( ) and the green circles ( ) are 

the efficiency and the maximum pitching angle in the particle-based computations, respectively. The values of average p  

at the efficiency maxima are 1.42 , 2.46 , and 3.47 . 

Figure 32 depicts the efficiency calculations of the 30 spheres swimmer vs. the amplitude, for

p and kl as in Figure 30, and two higher kl  values. As can be seen, the efficiency grows with kl  

and p, but reaches a maximum of 2.8%
 , at relatively low values of 9.25kl , and 1.2p , ,

( 0.12,  1.11)b l kb, ,  above which increasing the value of kl  lowers the efficiency 

substantially, in contrast with the RFT results. In the kl  view (Figure 32b) it can be seen that the 

most efficient sine for each kl  value occurs in lower amplitudes as kl  grows. The kb value is 

changing from ~1kb for low kl to ~1.3kb for high kl , as in the infinite filament. The same 

results are plotted together as a function of kb in Figure 33. The solid line is the RFT prediction 

of the efficiency for an infinite swimmer with force ratio of 1.51� � . The filled red triangle 

display the efficiency of the best performing distance–wise sine wave.  There is a good  

agreement between the RFT and the particle-based calculations for high p values and low kb

values. As before, when kb  increases the RFT overestimates the swimming efficiency.  
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The best swimming gait based on distance covered in a period has somewhat low efficiency 

of 1.7% with parameters: 8.86kl , , 0.24b l , and 0.1167D l , . At a very low cost in the 

distance we can find a more efficient sine wave with parameters: 9.25kl , , 0.2b l , and

0.1154D l , , which has efficiency of 2%. On the other hand, the most efficient swimmer 

performs quite well in terms of swimming distance, as / 0.093D l 0.093 . Therefore, keeping the 

undulation amplitude b l  in the range 0.12 0.24b l 0.24b l  at the fixed wavelength ~ 9.2kl  would 

yield good swimming performance both speed-wise and power-wise. 

 

Figure 32: Hydrodynamic efficiency,
  vs. bl , in the particle-based calculation. (a) In lines of equal p ; (b) in lines of 

equal kl .The solid lines connect the markers for better view. 

  

k=2  
k=4 
k=6 
k=9.25 
k=12 
k=15 

p=0.4
p=0.6
p=0.7
p=0.8
p=1.0
p=1.2 
p=1.4   
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Figure 33: Hydrodynamic efficiency, 
 , vs. kb . Comparison of particle-based computation results for several 

values of kl and p as in Figure 32, vs. the RFT prediction (3.11) for an infinite or unidirectional swimmer with 1.51� �
(thick solid line); the filled triangle (��) stands for the efficiency of the best performing distance-wise sinusoidal waveform. 

Further insight of the locations of distance and efficiency maxima in the ,kl b l  landscape 

can be gained using contour plots. The RFT method is less costly in terms of computer-time 

compared to the particle-based calculation, thus enables the calculation of smooth contours as 

displayed in Figure 34. Figure 34a depicts the contour graph of D l  as a function of kl and b l , 

and Figure 34b depicts the efficiency in the same manner. The red dashed lines are equal p lines 

as in Figure 25, and the black dashed line present the limit of RFT validity. As explained before, 

the formal limit is 1,a� 0  where �  is the local curvature of the filament, that can be re-written 

as 1( ) .2klkb 	0 1.2 	
 From the results shown in Figure 24, the more accurate limit was found to be 

1( ) 0.5klkb 	� 1	 . Above this limit the RFT overestimates the distance and the efficiency as seen 

in Figure 30 and Figure 33. The blue diamond marks the maximum distance swimmer in the 

particle-based computation, and the red star marks the most efficient one. It can be seen that the 

maximum of RFT distance per stroke is quite close to the particle-based one. This is different 

when the efficiency is concerned, as the efficiency in RFT gets higher as kl  grows while the 

particle-based global maximum is in relatively low kl .  The black solid lines in Figure 34a and b 

corresponds to 1.15kb ,  and 1.3kb ,  which are the kb  values maximizing the distance and 
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efficiency in the case of an infinite swimmer, based on equations (3.1) and  (3.11) respectively. It 

can be seen that for the efficiency, the curve fitting the infinite swimmer crosses inside the white 

region of maximum efficiency for the final filament, while for the distance this is not the case. 

Figure 34c shows the contours of hydrodynamic efficiency 
  in black on top of contours of 

scaled distance per stroke, /D l  in blue. It shows that there is a large region in which both the 

distance and the efficiency are close to their maxima.  This region, of 8 12kl , 	 and

0.1 0.3b l , 	 , should be a fine compromise for swimmers trying to optimize both parameters. 
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Figure 34: Color contour plots based on 

prediction of local RFT for a filament of 

the aspect ratio  in plane of

parameters . The corresponding 

sections of fixed mean  are shown as

thin dashed lines (red, short dashes). The 

thick dashed line (black, long dashes) 

stands for the boundary of formal validity 

of the RFT, i.e. . The

filled symbols  and  mark the

parameters of the best gaits, distance-wise

and efficiency-wise, respectively,

determined in particle-based

computations; (a) scaled distance per 

period of undulation , the thick

solid line stands for the location of the 

maximum velocity for an infinite filament 

based on Eq. (3.1), i.e. ; (b)

hydrodynamic efficiency ; the thick

solid line stands for the location of the 

optimal  for an infinite filament based 

on Eq. (3.11), i.e. ; (c) Contours

of hydrodynamic efficiency  in black on

top of contours of scaled distance per 

period of undulation,  in blue. 

(a) 

(b) 

(c) 
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Figure 35 depicts the influence of the slenderness of the filament on the RFT prediction for 

the contours of D l and
 . The dependency is expected to be weak, since the only parameter 

affected by it in the RFT calculation is ||/f f� �� , and it is a weak (logarithmic) function of ;;

the value of �  increases from ~1.4  to ~1.7  as  decreases from 1/12  to 1/ 800  -- by nearly 60 

folds. Figure 35a shows the contours for the distance per stroke, dashed red for 1/12�1/12� and 

solid black for 1/ 800�1/ 800� . The contours of the efficiency are presented in Figure 35b in the same 

manner. It can be readily seen that the variance in �  has only a minor effect on the location of 

the optima for both /D l and .
  The long dashed red line marks the limit of validity of the RFT 

results for 1/12,1/12, . The limit of validity for 1/ 800,1/ 800,  has the value of ( ) 400kb kl ,  which is 

beyond the limits of this figure axes range. The maximum distance / 0.101D l ,  is achieved at 

9.75kl ,  and / 0.28b l ,  for 1.4� �  and / 0.159D l ,  at 8.75kl , , 0.32b l ,  for 1.7� � ; the 

peak efficiency achieved at the maximal plotted 12.5kl �  (higher kl will yield slightly higher 

efficiency) is for 0.1b l ,  and has the values of ~ 2.2%
  and ~ 4.9%for 1.4� �  and 1.7� � , 

respectively. 

(a)   (b)   

Figure 35: The effect of the filament slenderness on the swimming performance as predicted by the RFT in plane of 

parameters  and ; dashed (red) curves stand for filament with aspect ratio  ( ), solid (black) 

lines correspond to the filament with  ( ). The long dashed red line marks the limit of validity of the 

RFT results for . The limit for  is beyond the limits of the figure. (a) Contours of the swimming 

distance per stroke, ; (b) Contours of swimming efficiency . 
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3.3.3 Changing the distance between spheres 
To understand the significance of the internal structure of the swimmer on the results of the 

particle-based simulations, swimmers with different distance between the spheres were 

considered. First we calculated the drag coefficients ,f f� f and their ratio �  for rods built from 

spheres with different aspect ratios, with the distance between spheres changing from d=2.02 to 

d=16. The results are displayed in Figure 36. The calculations were done as in section  3.2.4. For 

each calculation a straight rod built from pN   spheres was given a velocity in the perpendicular 

or tangent directions, and the resulting hydrodynamic force on it was calculated. Figure 36a 

shows the results for the calculations of �  as a function of the aspect ratio for different distances 

between the spheres (squares). The results were fitted to the model function suggested before, 

2
1

2

1
1

c Ec
c E

�
� �	

, � ��� �
 (section  3.2.4), where 1(ln 2 / )E 	� 1)	 , and the parameters of the fit are presented 

in Table 1. For all the distances between spheres calculated, the fit of the results to the function 

was very good (>98%). 

Figure 36: (a) calculations of �  as a function of the aspect ratio for different distances between the spheres (squares). 

The solid lines are a fit to the model function  � � � �1 2 21 1c c E c E� , 	 � , with the parameters as presented in Table 

1. (b) The force coefficients as a function of the aspect ratio for rods with different distances between the spheres. 

Figure 36b displays the coefficients calculated for different rods. It can be seen that as the 

distance between the spheres increases, both coefficients has lower value (meaning it is easier to 

move the rod), however the f� coefficient is more affected than ff  .   
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d 2.02 3 5 8 16 
1c   1.985 1.946 1.854 1.710 1.471 
2c   0.523 0.545 0.616 0.648 0.587 

Table 1: Parameters of the fit to the model � � � �1 2 21 1c c E c E� , 	 �  

Figure 37: Calculation results for swimmers undulating in a sine wave with the parameters 6,  0.216kl b l� � , 

length 62l � , and distances between spheres 2.07, 3 and 4. (a) Path in the XY plane. (b) Dissipation rate as a function of 

time. 

The swimming of three swimmers with the same length 62l �  and different distance 

between spheres is compares in Figure 37. The undulation function for the swimmers was a sine 

wave with the parameters 6,  0.216kl b l� � . The distance between spheres was 2.07, 3 and 4, 

and the number of spheres was 30, 21 and 16 respectively. As expected, the swimming distance 

reduces as the distance between spheres increases, since the force asymmetry, which is the 

driving force of the swimming of slender filaments in low Reynolds number, is lower. As can be 

seen in Figure 37b, increasing the distance between spheres also reduces the dissipation rate, 

however, the decrees is not very significant. This mild decrees shows that the dissipation 

component resulting from tight flow between the spheres is small. 
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3.3.4 Biological swimmers 
To address the biological relevance of our results, we have collected from the literature 

values of kl , b l  and /D l for common undulatory biological swimmers such as sperm cells and 

nematodes, and compared them with our sinusoidal swimmer, in Figure 38 and Figure 39. The 

squares ( ) correspond to the data for sperm cells, the circles ( ) stand for various nematodes 

and the upper triangle is a flagellate [66]. Values of efficiency are not commonly calculated / 

measured for biological swimmers, so we could not compare them, except for our calculation of 

the efficiency of C. elegans brought in the following section. Figure 38 shows the parameters of 

the swimmers together with the parameters for the best sine waves efficiency-wise and distance-

wise; on top of the RFT contour plots of the distance (a) and efficiency (b). It is important to 

emphasize that the symbols for the different swimmers are located in Figure 38 according to the 

values of kl  and b l  of their swimming stroke, but their distance per stroke value is typically 

higher than the value of the RFT contours in the same location. However, it can be seen that 

despite the fact that the swimmers employ undulations which are different from a sine wave, the 

swimming parameters of most of them are quite close to the maxima of efficiency and distance 

of the finite swimmer.   

Figure 38: The comparison of parameters of undulating microorganisms (empty symbols) vs. a best-performing distance-wise ( ) and

efficiency-wise ( ) filament with aspect ratio  propelled by a plain sinusoidal waveform determined by particle-based simulations,

on top of the RFT contour plots as in Figure 34. The squares ( ) correspond to the data for sperm cells (P. miliaris [64]; bos, chaetopterus,

ciona, colobopocentotrus, lytechinus, psammechimus [63]; ostrea, ovis [65]), the circles ( ) stand for the data for nematodes (C. elegans [60];

Haemonchus contortus, Turbatrix aceti, Pamagrellus silusia [66]); (a) On contours of  vs. scaled wave number and scaled amplitude

 ; (b) On contours of  efficiency vs. scaled wave number and scaled amplitude . ©
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Figure 39 depicts the scaled distance per stroke for the biological swimmers and the best sine 

waves as a function of the wave number kl . Both sine waves are in the middle of the sperm cells 

group, and below the nematodes group which are performing better distance–wise (and also in 

the efficiency as we shall see in the following).  

 

Figure 39: /D l  vs. scaled wave number kl for undulating microorganisms (empty symbols) vs. a best-performing 

distance-wise (A) and efficiency-wise ( ) filament with aspect ratio 1/ 30�1/ 30�  propelled by a plain sinusoidal waveform 

determined by particle-based simulations. The squares ( ) correspond to the data for sperm cells (P. miliaris [67]; bos, 

chaetopterus, ciona, colobopocentotrus, lytechinus, psammechimus [66]; ostrea, ovis [68]), the circles ( ) stand for the data 

for nematodes (C. elegans [63]; Haemonchus contortus, Turbatrix aceti, Pamagrellus silusia [69]) and the upper triangle (

B ) is an eukaryote flagellate (Ochromonos malhamensis [66]). 

  

(a) (b) 
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3.3.5 Nematode C. elegans 
The particle-based algorithm enables calculation of the swimming for any deformation 

function provided, assuming the locations of the spheres are continuous. It uses a vector of 

locations in times, � �4 5, ,  for 1... , 1...ij ij ij p tx y z i N j N� � �X , where pN is the number of spheres 

and tN the number of time steps. Thus it enables us to calculate the swimming due to the 

experimental deformation function of C. elegans.  

The swimming gait adopted in computation was extracted from videos shot with a high-

speed camera via the use of custom-written image processing algorithm [62]. The snapshots of 

the nematode waveforms (in the co-rotating and co-moving frame) are shown in Figure 40, 

compared with a sine wave with the parameters 9, 0.2, 0.8kl b l p� � � , in the geometrical 

center frame of reference. As can be seen, the deformation function of the nematode is quite 

different from a sine wave, the main difference being significant variation in the amplitude along 

the body. The deformation function can be divided to three parts, the head and tail which 

undulate in a relatively high amplitude, and the middle part which undulates with lower 

amplitude. Between these parts there are two zones with significantly low amplitude. The 

nematode in the figure is propelled to the right, and it is noticeable that despite the relative 

symmetry between the head and tail, the head part moves with higher curvature. 

To simulate the typical aspect ratio of the nematode, of 0.083� 0.083�  (typical length of ~1mm 

and width of ~0.08mm), we used a swimmer made of 12 spheres, and the swimming was 

calculated in the same way as for the sine wave swimmers, as well as the calculation of the 

power and efficiency of the stroke. As depicted in Figure 41, there is a very good agreement 

between the experimentally probed trajectory and the numerically calculated path using the 

tabulated deformation shown in Figure 40. This agreement justifies the use of low Reynolds 

hydrodynamics in C. elegans locomotion study whereas typically ~1Re  in low viscosity 

aqueous medium. The typical parameters for C. elegans propulsion are 0.12b l , , 7.9kl ,  and 

/ 0.17D l ,  as reported in [62]. The calculated efficiency has an unexpectedly high values of ~  

8.8%, which is even higher than the optimal swimming efficiency corresponding to Lighthill’s 

sawtooth traveling wave propagating along infinite filament which is 8.58%
 � [32]. The 
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longitudinal force density value which is needed for the power calculation was determined by 

fitting results of RFT and sine wave particle-based simulations, yielding || 6.25f @,  .  

 

Figure 40: (a) The snapshots of the nematode waveforms in the co-rotated and co-moving frame of reference as 

tracked in the experiment in [62]; the worm is propelled head to the right. (b) The deformation function of a sine wave 

with the parameters 9, 0.2, 0.8kl b l p� � � , in the geometrical center frame of reference. 

Even though the nematode does not use a simple sine wave, the parameters of the sine 

waveform optimized to the furthest advancement per stroke are similar to the values employed 

by the nematode (see the comparison in Figure 38). However, the shape of the waveform 

exploited by the worm allows a considerably superior locomotion (in terms of both the 

displacement per stroke and efficiency!) compared with the sine waveform optimized for the 

furthest displacement showing / 0.12D l , and 2
 2 . One significant difference is that the 

nematode does very little rotation during the stroke; the maximum pitching angle is 6m� , , 

compared with 53m� , for the sine wave advancing the maximum distance per stroke, and 

similar to the efficient sine wave for which 9.5m� , . 
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Figure 41: The trajectory of the 

geometric center of the 

nematode: tracking experiment 

(Red line) and particle-based 

simulation (Blue line). The worm 

in this experiment was ~1.2mm 

long, and it progressed ~0.2mm 

per period of undulation, 

yielding / 0.17D l , . 
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3.4 Conclusions 
This work began with two main questions in mind: the first was what is the best finite 

sinusoidal swimmer and whether its parameters comply with the predictions of an infinite 

sinusoidal swimmer, and the second concerned the specific swimming gait of the nematode C. 

elegans and its optimality. 

To answer these questions we calculated the advancement, pitching and dissipation for a 

sinusoidal swimmer with wide range of wave numbers and amplitudes, employing two 

computation methods, namely particle-based algorithm and RFT. The comparison between the 

methods revealed that the inter-filament hydrodynamic interactions become important when 
1( ) 0.5kb kl 	, 1	 , above which the RFT overestimates the advancement of the swimmer and its 

efficiency. Comparing to the infinite swimmer, the finite sinusoidal swimmer has  global 

maximum of distance per stroke at the parameters 0.8 , 0.24 ,p b l, , and 8.86kl , , for which 

0.1167.D l , These parameters are distant from the line of 1.15kb � yielding the maximum 

velocity for the infinite swimmer. The efficiency maximum, on the other hand, is located close to 

the line of 1.29kb , appropriate for the maximum efficiency for the infinite swimmer. For the 

finite swimmer, however, there is a global maximum of 2.8%
 , around relatively low values of 

9.25kl , and 1.2p , , ( 0.12,  1.11b l kb, , )  and the high kl global maximum is correct only 

for very slender filaments. Comparing contours of distance per stroke and efficiency, we found a 

large region in the parameters space in which both the distance and the efficiency are close to 

their maxima.  This region, of 8 12kl , 	 and 0.1 0.3b l , 	 , should be a fine compromise for 

swimmers trying to optimize both parameters. Available data for undulatory micro-swimmers 

including various sperm cells and nematodes shows that despite the difference between their 

deformation function and a sine wave, most of them operate in a narrow range of wavelengths 

and amplitudes 7.5 11.5,kl , 	 0.08 0.16,b l , 	 which is similar to the preferred region found for 

the sine waves swimmers.  

Concentrating on C. elegans, we calculated its swimming from its experimental deformation 

function, using the particle-based algorithm, and reached a good agreement with the 

experimental path of the geometrical center. This verifies the use of low Re calculations for the 

simulation of C. elegans swimming which in water has Re~1. From this calculation the distance 
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per stroke and the efficiency of the nematode swimming were extracted, both revealed to be 

much higher than the sine waves displacement and efficiencies. This demonstrates the 

superiority of the nematode swimming stroke, presumably achieved by employing significant 

amplitude changes between different parts of its body.  

A straightforward extension of this work would be to explore deformation functions with 

features resembling the C. elegans swimming stroke. The thorough parametric mapping of 

efficiency and distance per stroke which was done for the sine wave can be repeated for 

deformation functions with significant amplitude modulation along the swimmer’s body. The 

location of the nematode’s experimental parameters on such mapping would indicate the 

objective function which the nematode optimizes, which presumably would be some 

compromise between efficiency and speed. Also, the swimming of sperm cells can be simulated 

using the particle-based algorithm which allows the simulation of a swimming filament carrying 

a large head.  
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4 Appendix  

4.1 Particle-based computation scheme 
The general solution for the velocity field around a collection of pN  spherical particles of 

radii a i , can be written in terms of solid spherical harmonics as 0

1
,

pN

j
j

V
�

�*v   where the solution 

outside a single ith sphere has the form of Lamb's general solution of Stokes equations [64]: 

(4.1) � �� � � �
� �
� � � �

� �
� � � �

2
1 1 1 1

1

2 1
2 2 1 2 1

j j j j
j j j jn n n n

n

n n
r p r p

n
r

n
V

n n
� 7

?

	 � 	 � 	 � 	 �
�

	 �
� � �� 	 � �

	 	*  

Here ir  is the radius vector with origin at the center of the ith sphere, | |i i ir a� �r , ( 1)
i

n�	 � , 

( 1)
i

n	 �C  and ( 1)
i

np	 �  are the linear combinations of solid harmonics i
mnu  with the origin at the 

center of the ith sphere, 

(4.2) 

� �
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� �

1

1

1

n
j j j

mn mnn
m n

n
j j j

mn mnn
m n

n
j j j

mn mnn
m n

a u

p b u

c u�

	
	 �

�	

	
	 �

�	

	
	 �

�	

C �

�

�
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*

 

(4.3)    � �1

1 cos ,jimj m
mn n jnu P e

r
7�	

��  

where m
nP  is the associated Legendre function. The no-slip boundary conditions, i�v u , 

where iu  is the local velocity of the surface of ith particle, can be used to determine the unknown 

coefficients i
mna , i

mnb  and i
mnc . An elegant way of computing the coefficients was proposed in 

[59]. The boundary conditions are first transformed to the Lamb's form by applying operators ·ir , 

·ir	 �  and ·i � r  to both sides of the no-slip boundary condition and then the direct origin-to-

origin transformation of spherical harmonics centered at different spheres is applied, yielding an 

infinite system of linear equations for the coefficients, 
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(4.4) 
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The coefficients , , , , ,ij ij ij ij ij ij
mnkl mnkl mnkl mnkl mnkl mnklD E F K L M  and ij

mnklN  are given in the appendix of 

[59] in terms of the transformation coefficient ij
klmnC : 

 
( )( )

( )!( 1) ( , , ) ,
( )!( )!

ij m n j
klmn k m l n ij ij ij

l n k mC u R
l k m n

� D� 	
	 �

� 	 �
� 	

	 �  

Where , ,ij ij ijR � D  are the coordinates of vector ijR  connecting the centers of jth and ith spheres 

in the spherical coordinate system centered at particle j , ( )( )
j
k m l nu 	
	 �  is the decaying spherical 

harmonic defined in (4.3). According to definition of spherical harmonics the coefficients klmnC  

are assumed zero if | |k l-  or if | |m n- . 

i
mnX , i

mnY  and i
mnZ  are the coefficients in the expansions in surface harmonics of 

· ,  ·     ·,   i
i i i i i

i

r
r

	 � � 
r u u r u  . When the particle surface velocity corresponds to the rigid body 

motion, ,i
i i i� �  ωu U r  the right hand side of (4.4) can be written as [59]: 

(4.5) 

 

With { , }i i�U  being the translation and rotation velocities of ith sphere, respectively and k
n
  

being the Kronecker's delta. 
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The viscous drag force iF  exerted on sphere j  and hydrodynamic torque iT  about its center 

can be expressed in terms of the expansion coefficients, 

(4.6) 
11 11 11 11 01

11 11 11 11 01

1 14
2 2

1 18
2 2

i i i i i
i

i i i i i
i

x i y z

T x i y z

F b b b b b

c c c c c

"

"

	 	

	 	

# $� � � �� 	 	 � � �� � � �% &� � � �' (
# $� � � �� 	 	 � � �� � � �% &� � � �' (

$
&z$$&&

$
&z$$&&

 

Thus when velocities of pN  spheres are prescribed the forces and torques exerted on any sphere 

can be found by solving 3 ( 2)pN   �( 2)((  equations for the expansion coefficients 

{ , , },i i i
mn mn mna b c  obtained by truncating the series in Eqs (4.4) after � terms, together with using 

(4.6). Alternatively, forces and torques can be prescribed and velocities are computed or a mixed 

problem can be formulated when some velocities and forces/torques are prescribed 
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4.2 Parameterization and incompressibility constraint in the RFT   
This section details additional subjects concerning the derivation of RFT for the finite 

swimmer in plane motion brought in  3.2.3.1.   

In our description of the swimmer as ( , )s t0r , we parameterized it using a parameter s . It was 

implicitly assumed that each specific value of s  corresponds to specific material point of the 

swimmer. i.e. a specific material point at 2( , )s t0r at time 2t  is the same one which was at 1( , )s t0r

at time 1t . If this assumption fails, then the calculation described above would fail too. In most 

biological cases the filament is assumed to be incompressible. This automatically implies that a 

good parameterization corresponding to actual material points is by its proper length parameter. 

In such case the correct parameterization should be through the proper length 

ds ds
s

< 2 �
� �

�3 3 0r
 rather than by s . The above formulation would still hold provided we 

interpret 0�0v r0r0  as a derivative at constant proper length <  rather than at constant s , 

(4.7) .
s t

s
t t s t <<

� � � �� � � � � � � �� � � � � �� � � � � �� � � �� �� � � � � �

.
0 0 0

00
r r rv r   

 Actual implementation of this requires calculating ( / )s t <� �  as a function of ( , )s t  for the 

prescribed undulating filament. 

Alternatively, the velocity in (4.7) can be expressed as 

(4.8) ( , )s t
t

1�
� �
�

0
0

rv ss  

for some ( , )s t1  where 1

s
2 	 �

�
�

0rs 12 	 �
�

�
0r0s  is the local unit tangent. In other words, the second term 

on the r.h.s. of Eq. (4.7) can be interpreted as an extra tangential velocity. Demanding 

incompressibility requires vanishing of the 1D velocity divergence · · 0 s s
�

� � �
�

0
0

vv s· 0�·
�

0v��
. Solving 

this equation we find 
2

( , ) · ( )s t ds C t
s t

1 �
� 	 �

� �3 0rs
2

d·
t

�·
� �

0r0  up to some arbitrary function of time ( )C t . 
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The integration constant ( )C t  may be determined by considering the boundary conditions at the 

swimmer edges. Note that if s  is not proportional to the proper length parameter <  then 

incompressibility constraint also implies that its range 0 1[ , ]s s s;  must be time-dependent, 

0 0 1 1( ), ( )s s t s s t� � . The constraint 1

0

s

s
l sd2� 3  does not determine the endpoint 0 1,s s  uniquely. 

Only by specifying an extra condition (e.g. requiring 0s  or 1s or their average to vanish) does one 

completely define the swimming mode. The possible arbitrariness of 0 ( )s t  does not matter 

however, in the special case of our main interest where ( , )s t0r  corresponds to the traveling wave 

{ , ( )}s ks t7� 	�0r . Indeed any choice of (periodic) 0 ( )s t  may be compensated by redefining the 

time parameter as 0( ( )) /t t ks t� � � 	 � (and applying the 'gauge' transformation 

0ˆ( ) ( ) ( )t t xs t> 	R R ). Thus in the following we use the simplest choice namely 0 ( ) 0s t � . Since 

the velocity of the endpoint (which is a material point) at 0s s�  is 0
0

ds
t s dt

� �
� �
� �

0 0r rv  we see that 

the condition 0 0s �  imply 0| 0s1 � �  and hence 
2

0
s( , ) ·

s
s t ds

s t
1 �

� 	
� �3 0r2

s ds·s
t

�
� �

0r0 . For the specific example 

( , ) { , sin( )}s t s b ks t� 	�0r  we obtain 

(4.9) 2 2 2 2( , ) 1 ( ) cos ( ) 1 ( ) cos ( ) .s t kb ks t kb t
k

1 � # $� � 	� 	 � �
' (

 

The equation 1

0

s
l ds2� 3 determining 1( )s t  leads in the case of the sine wave to 

(4.10)  
2 2

12 22
E , E ( ), ,

1 (
( ) ( )

) 1 ( )1 ( )
kl t tkb ks t

kb kbk
kb

b

� � � �
� � 	 � 	� � � �� �� � � � �

 

where 2 1/2

0
E( , ) (1 sin )m m d

D
D � �� 	3  is the elliptic integral of the second kind. Only in the 

special case where the sine wave contains exactly half integer number p  of periods, one finds 

that 1( ) /s t p k"�  becomes t -independent. In this special case one may relate k  and p as 

21 E( ( ) )
4

lkb
bpkb

	 � , where E( ) E( / 2, )m m"�  is a complete elliptic integral. 
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4.3  Useful identities 

Denoting 
0

1 ( )ds
8

8
9=: � =3 , for 1 2 2( ) 1 ( ) cos ( )d kb ks t

ds
<2 	� � � � � 	�s x) 1) 1) 1  we have: 

22 E( ( ) ) ,kb2
"

9 : � 	  

21 2 K( ( ) ),kb
2 "
9 : � 	  

2 21 ( ) / 2,kb29 : � �  

2 2

1 1 .
2 1 ( )kb2

9 : �
�
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IV 
 

אומטרי, חישבנו באלגוריתם מבוסס החלקיקים את בנוסף למסלול המרכז הג. 1-קרוב ל

ושניהם התקבלו גבוהים משמעותית  שלה, מרחק ההתקדמות של הנמטודה ויעילות השחיה

גלי הסינוס שנידונו קודם לכן. זוהי הדגמה לכך שצורת החבטה מהתוצאות האופטימליות של 

של הנמטודה, אשר מאפיין מרכזי בה הוא שינויים משמעותיים באמפליטודה לאורך גוף 

 השחיין, עדיפה על גל סינוס פשוט. 

©
 T

ec
hn

io
n 

- I
sr

ae
l I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry



III 
 

 חושבה בעזרת שתי שיטות. הראשונה היא חישוב בעזרת אלגוריתםהתקדמות השחיינים 

ושדה הזרימה מסביב לכדורים  ,לקיקים, בו השחיין נבנה ממערך של כדוריםחמבוסס  נומרי

, ובה מזניחים את Resistance Force Theory (RFT)נפתר באופן מדויק. השיטה השניה היא 

האינטראקציות ההידרודינמיות בין חלקים שונים של השחיין. ההנחה היא שהשחיין דק 

מספיק, כך שהכוח על כל אלמנט אורך ניתן לביטוי בעזרת רכיב המהירות המקביל והניצב 

לאלמנט האורך, עם מקדמי פרופורציה קבועים. היתרון של שיטה זו שהיא מאפשרת 

 מהירים ופיתוחים אנליטיים.  חישובים נומריים

, מעליו ההזנחה של RFTפשרה למצוא את גבול התקפות של ההשוואה בין שיטות החישוב א

מעבר לגבול זה פוגעת באופן משמעותי בדיוק התוצאות. האינטראקציות ההידרודינמיות 

 גבול זה הם בעלי ערכים גבוהים מדי.  RFTערכי היעילות ומרחק ההתקדמות המתקבלים מ

     נקבע על ידי דקיקות השחיין ביחס לעקמומיות המקומית של פונקציית הדפורמציה.

מספר גל ואמפליטודה עליו מתקבלת ישנו קו במרחב הפרמטרים של עבור שחיין אינסופי, 

ן יבור שחילעומת זאת, ע .היעילות המקסימלית , וקו דומה עבורהמקסימלית ההתקדמות

מקסימום בערכים נמוכים של מספר הגל, ו עבור גדלים אלו מצאנו מקסימות גלובליותסופי 

בדומה פי. והמרחק בחבטה עבור שחיין סופי נמצא רחוק מהקו המאפיין את השחיין האינס

מות מקסימות מקומיות של יעילות יקיבלנו כי קי  RFTלעבודות קודמות, בחישוב בשיטת

בערכי מספר גל נמוכים יחסית, אולם המקסימום הגלובלי הוא במספרי גל גבוהים ככל 

האפשר, בדומה לשחיין אינסופי. לעומת זאת, חישוב באמצעות אלגוריתם מבוסס חלקיקים 

ימום מקסהראה כי לשחיין שאינו מאד דק מתקבל מקסימום גלובלי בערכי מספר גל נמוכים. 

 זה נמצא קרוב לקו המאפיין את היעילות המקסימלית של השחיין האינסופי.

יעילות ומרחק שחיה בחבטה. מצאנו פשרו לנו לחשב קונטורים של א  RFTהחישובים בשיטת

כי קיים אזור במרחב הפרמטרים של מספר הגל ואמפליטודת הגל בו גם יעילות השחיה וגם 

מוצלח לשחיינים המעונינים באופטימליות של רמטרים פהמרחק בחבטה גבוהים. זהו אזור 

יחד. השוואה לשחיינים ביולוגיים העלתה כי הם פועלים בתחום פרמטרים גם שני המדדים 

צר, הקרוב לתחום הפרמטרים המתאים לגל הסינוס. זאת למרות ההבדלים בין צורת 

 החבטה שלהם וגל סינוס. 

ו את זרת האלגוריתם מבוסס החלקיקים, חישבנבע .C. elegansבנמטודה  התמקדנו לבסוף,

סיונית יאומטרי של הנמטודה מתוך פונקצית הדפורמציה הנמסלול ההתקדמות של המרכז הג

 קיבלנו התאמה טובה בין המסלול המדוד והמחושב של המרכז הגיאומטרי.שלה, והמדודה 

באמצעות הידרודינמיקה של מספר  נמטודהה חישוב התנועה של התאמה זו מאשרת כי

במים  C. elegansנולדס של שחיית י, למרות שמספר הרינולדס נמוך הוא מדויק מספיקירי
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ל אינטראקציה זו לא נידונה בעבודות קודמות, ואנו מראים כי היא יכולה להביא להסתדרות ש

המקלות באותו כיוון, כתלות בתכונות המנוע המולקולרי. בדקנו מספר תכונות אפשריות של 

התנתקות ספונטנית אקראית מהמקל, תכונות מנוע היוצרות סדר הן כי מצאנו המנוע, ו

התלויה בזווית שבין המקלות או בשינוי הזווית שבין המקלות.  מהירות התקדמות בשילוב עם

היוצרים נקודת  מנועים מחוברים יבור בין מנועים ומקלות היא שניהאפשרות השניה של ח

אינטראקציה זו  במודל שלנובניגוד לעבודות קודמות, מגע הנעה על שני מקלות בו זמנית. 

 הביא לסדר.להתיישרות של המקלות ולכן אינה יכולה ללא מביאה היא סימטרית לגמרי ו

בנוסף לאינטראקציה בין זוגות, חישבנו את התנועה של מבנים מורכבים יותר. במבנה של 

צפויים במשולש שאינו שווה צלעות משולש מקלות הנסגר על ידי מנוע מולקולרי, הראינו כי 

גורמים למנוע להתנתק מהמקל ובכך להתפרקות כוחות גדולים מאד בזמן סגירת המשולש ה

של צורות משוכללות של מקלות המחוברים  תה פתרנו היא הבעיהוספת אובעיה נ המשולש.

לו נסגרות ליצירת כוכב של מקלות, ואת ההבדל בין על ידי מנועים. הראינו כיצד צורות א

 תנועת מקלות בתווך בעל ריינולדס נמוך ובין תנועת מקלות ללא גרר.

ריינולדס מספר על בתווך ב סופי של חוט בעל אורךעוסק בשחיה של העבודה החלק השני 

בתווך זה, המשוואות המתארות את התנועה הן משוואות סטוקס שהן לינאריות ולא . נמוך

תלויות בזמן. בשל כך, על מנת לשחות על השחיין לבצע סדרת תנועות מחזורית אך לא 

סימטרית בזמן. אחת האסטרטגיות של מיקרואורגניזמים היא שחיה באמצעות שינוי צורה 

  שוטון. וןבר חוטי כגשל איבצורת גל מתקדם מחזורי 

. זוהי תולעת שטוחה C. elegans  מהשחיה של הנמטודה נובעת המחקרת המוטיבציה לשאל

מילימטר, החיה באדמה ומסוגלת לזחול בחומר גרגירי ולשחות בנוזל.  1-באורך של כ

בטווח רחב רת שחייה ווהתגלה כי היא מבצעת את אותה צ הזו נחקר נמטודההתנועה של 

ן כלשהו באופטימלית במוהאם צורת שחייה זו השאלה נשאלת של תנאי צמיגות של התווך. 

. שרירים או מערכת העצבים שלהנובעת ממגבלות על מבנה ההיא או ש, מבחינת הנמטודה

הקשורה לכך היא שאלת השחייה האופטימלית עבור שחיין יותר ללית כשאלה מתמטית 

 פי. שהוא חוט סו

של  המתנודד בפונקציית דפורמציה של חוט סופי ההיא שחי הספציפית אותה פתרנוהשאלה 

של  מדדים. סקרנו את פרמטרי הגל בחיפוש אחר השחיין הטוב ביותר בגל סינוס מתקדם

תווך בעל מספר מקובלים להשוואה בין שחיינים בעילות שחייה ומרחק התקדמות בחבטה, הי

בין יחס בין האנרגיה המושקעת כדי לגרור שחיין פסיבי, ללות השחיה היא הירינולדס נמוך. יע

לשחיין יש שחיה של אותו מרחק. מדד זה מתאים כאשר ב האנרגיה שאותו שחיין מוציא

. מרחק מקסימלי בחבטה הוא אופטימיזציה גיאומטרית של צורת החבטה, אנרגיה מוגבלת

 ומתאים כאשר אין הגבלה על האנרגיה אלא על תדירות החבטות. 
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 תקציר

רינולדס נמוך. מספר סקנו בשתי שאלות מתוך התחום של הידרודינמיקה בבעבודה זו ע

ס הוא היחס בין רכיב התאוצה לרכיב הצמיגות בכוחות הפועלים על גוף הנע דמספר רינול

תחום  .התנועה היא בעלת רכיב צמיגות משמעותי וללא תאוצה ,רינולדס נמוךמספר בבתווך. 

השוחים במים, ולתנועה של רכיבים מולקולריים  םטי למשל למיקרואורגניזמיתנועה זה רלוונ

נידונות בעבודה זאת, ונעשה עבורן מידול  ך תאים חיים. תופעות משני נושאים אלובתו

. החלק הראשון של העבודה נעשה בהשראת תופעת הסתדרות של אנליטי ונומרי

מיקרוטובולים ומנועים מולקולריים, והוא עוסק בתנועה של מקלות המחוברים על ידי מנועים. 

ועוסק בשחייה  C. Elegansשחייה של הנמטודה החלק השני של העבודה מושפע משאלת ה

  סופי המתקדם על ידי תנודה של גלי סינוס. חוטשל 

מיקרוטובולים הן מולקולות ארוכות העשויות מחלבונים ומהוות רכיב משמעותי במבנה תאים 

, ואורך ההתמדה 0.001-קטן מביולוגיים. עבור מולקולות אלו, היחס בין האורך לרוחב 

)persistence lengthבצורה טובה תן ) שלהם הוא מספר מילימטרים, לכן ניתן למדל או

לרי קינסין, . אחד המנועים המתקדמים על מיקרוטובולים הוא המנוע המולקוכמקלות קשיחים

כמסילות ארוכות המאפשרות לו להוביל חומרים ממקום למקום  המשתמש במיקרוטובולים

 נת הנצפית בתאי ביציתים בתופעה מעניימשתתפמיקרוטובולים ומנועים מולקולריים בתא. 

 זו נקראת זרימה ציטופלסמית, ובה מתרחשת . תופעהופילהזשל זבוב הפירות דרו

הסתדרות ספונטנית של מיקרוטובולים ממצב של רשת רנדומית למצב מסודר לאורך דפנות 

גם ניצפתה דומה ערבוב משמעותי של תוכן התא. הסתדרות ספונטנית ביחד עם התא, 

טובולים ומנועים מולקולריים בלבד. במערכות אלו, במערכות מהונדסות שהכילו מיקרו

היתה תלויה בריכוז המנועים  מערבולות וכוכביםההווצרות של צורות שונות כגון 

מידול תיאורטי של מערכות אלו נעשה בעבר על ידי ניתוחים המולקולריים במערכת. 

השפעה חלשה של התווך ההידרודינמי על  ניחוהאנליטיים וסימולציות, אולם ברובן 

הסתדרות המערכת. ברוב המקרים, אכן כוח המנועים המולקולריים חזק בהרבה מהגרר 

הצמיגות האפקטיבית עולה  שמפעיל התווך ההידרודינמי, אולם בתמיסות צפופות

 המנועים המולקולריים.יא לכוחות באותו סדר גודל של משמעותית ויכולה להב

מנועים המחוברים על ידי  מקלותשני ניתחנו את האינטראקציה בין בעיה זו,  בהשראת

בשונה מעבודות קודמות אשר מידלו את המנועים המחוברים כקפיצים מולקולריים. 

המקשרים בין שני המקלות, אנו מידלנו את המנועים כנקודות מגע קשיחות, המאפשרות 

כוח השפעה משמעותית יותר של ר סיבוב חופשי של המקלות סביבן. מודל זה מאפש

של שתי אפשרויות חיבור פתרנו את הבעיה עבור על תנועת המקלות.  צמיגות של התווךה

המנועים והמקלות. באפשרות הראשונה, מנוע אחד הולך על מקל ונושא מקל נוסף. 
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 תודות

 פיסיקה.בפקולטה ללישנסקי  נדראברון ופרופ' חבר אלכס פרופ' יוסיהמחקר נעשה בהנחיית 

 

 

 י. לישנסק נדראברון ופרופ' חבר אלכס פרופ' יוסיהודות למנחים שלי, ברצוני ל

 מן והמאמץ שהקדשת לעבודה הזו.הז הההדרכ, על העזרהמקרב לב תודה  –אלכס 

והשאלות הקשות. להסביר לך תמיד דרש הבנה ההנחיה,  תמיכה,העל תודה  –יוסי 

 מעמיקה.

 

ושוע ', ולדר' גולה הפורה ותרומתו החשובה לעבודהתודה לדר' עודד קנט על שיתוף הפע

 המידע הנסיוני.ועזרה בעבודה עם שיתוף ועל  מענייניםעל דיונים מן שניצ

 

, לילדי, שמזכירים לי מה זרתם תמיד ובמיוחד בזמנים עמוסיםל עתודה למשפחתי: להורי, ע

 איש שלי, על העזרה, הזמן, הסבלנות והעידוד כל השנים.חשוב בחיים, ול
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 בתווך צמיגשחייה וסדר 
 

 חיבור על מחקר

 

 

 לשם מילוי חלקי של הדרישות לקבלת

 דוקטור לפילוסופיה תוארה

 

 

 
 ברמןש. רותם 

 

 

 
 מכון טכנולוגי לישראל –הוגש לסנט הטכניון 

  2013 יוני חיפה                    ג"תשע תמוז
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 בתווך צמיגשחייה וסדר 
 

 

 

 

 

 

 

 

 

 

 ברמןש. רותם 
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