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Abstract

In reality, all quantum systems are in fact open systems, that undergo dissipative
evolution. One of the main tools in describing the evolution of open quantum
systems is the Lindblad equation, which is a general Markovian master equation
which is completely positive and trace preserving.

The motivation to this work arises from the SERF effect that occurs in atomic
vapor, in which the relaxation caused by interatomic collisions, decreases with the
collision rate. Although the effect was explained theoretically in the past, it is
difficult to draw an elementary understanding of this counterintuitive effect, as the
description of the atomic system is complicated. This motivated us to search for
similar effects in a simpler setting, where the effect could be easily understood. The
effect also motivated us to study relaxation in different collision-inspired models,
which in general are nonlinear.

We start with a linear Lindblad equation that arises from a stochastic term in
the Hamiltonian, and gives a discrete set of relaxation rates. We present a simple
example of a system, where certain relaxation rates decrease with the noise power,
instead of increasing, a result which resembles the SERF effect. We give an interpre-
tation that identifies this result with the quantum Zeno effect. We also show similar
phenomenon occurs in general, for degenerate noise operators.

We then investigate nonlinear Lindblad equations, which have not been previ-
ously subject to much research. These equations follow from mean field equations
describing interacting many body dynamics at the limit of infinitely many particles.
These equations can arise, for example, from collisions between particles.

We first discuss a nonlinear equation that describes collision-induced dephasing.
The solution to this equation exhibits a continuum of exponential dephasing rates.
This result is fundamentally different from the relaxation in linear equations, which
takes place only through a discrete set of rates.

Next, we discuss a model for qubits that undergo pairwise decay, where excited
qubits are only allowed to decay to the ground state in pairs, and not separately as in
usual spontaneous decay. The Lindblad equation that describes an ensemble of such
qubits is solved using two different approaches. In the first approach (mean field
approach), we take the number of qubits to infinity, and obtain a nonlinear equation
for a single qubit. The solution to this equation exhibits a polynomial decay law,



which is essentially different from the exponential decay law that arises from linear
equations. In the second approach, given certain initial data, the complexity of the
full Lindblad equation reduces from exponential to linear (in the qubit number).
Using this, we obtain the solution for a finite number of qubits. We show agreement
between the solutions arising from the two approaches, upon taking the number of
qubits to infinity.



Abbreviations and Notations

h reduced Planck constant
speed of light

1 identity matrix

oj the j** Pauli matrix

Jk the k" thee dimensional angular momentum operator
d(t) Dirac delta function

dab Kronecker delta

p density matrix operator

L Lindblad superoperator

|v), (¢| quantum states in the Dirac notation

E expected value of a random variable

(A) expectation value (ensemble average)

tr trace

7 [, N] trace over the Hilbert spaces labeled n, n + 1, ..., N
dim dimension of a vector space

spec spectrum

ker kernel

@] order of

H Hilbert space

[A, B] commutator

{A,B}  anti commutator

® tensor product

A% tensor power

a' and @ raising and lowering operators, respectively
A eigenvalue

P projection operator
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Chapter 1

Introduction

In this chapter, we give a preface for this work. In section 1.1 we will present a
short theoretical background on open quantum systems and the Lindblad equation.
In section 1.2 we will briefly introduce a work on the relaxation properties of atomic
vapor, which motivated this work. In section 1.3 we will discuss the objectives of
this work.

1.1 Open Quantum Systems and the Lindblad Equation

The field of open quantum system deals with quantum mechanical systems that
are coupled to their environments, and decohere! as a result of this coupling. The
description of decoherence plays an important role in many areas of quantum me-
chanics, such as quantum computation|1, 2|, quantum metrology|3, 4| and studies
in phase transitions[S, 6]. The main objective of describing the dynamics of open
quantum systems, is the description of the system of interest (i.e. reduced system)
alone, without resorting to a detailed description of the environment degrees of free-
dom. In general, open systems are in a statistical mixture of quantum states, and
thus cannot be described by a wavefunction |¢)) (i.e. vector), but rather by a density
matrix p, which is an operator defined by,

p= ij i) (1 (1.1)

where [|¢;) and p; denote a quantum state and the probability associated with it,
respectively. Note that the density matrix satisfies p > 0, tr (p) = 1 by definition.
When the environment correlations decay much quicker than the typical time
that takes the state of the reduced system to change significantly, the evolution
of the reduced system can be regarded as a Markovian process (i.e. a process
without memory). The Lindblad equation shown below presents a general form of

!Throughout the work, by decoherence we shall mean either dissipation or dephasing.



a master equation, describing the state of a reduced system undergoing Markovian
evolution|7],

d (dim#)?-1 1 1
o =—i[H.p+ oy (Lijj - 5L}Ljp - 2pL}Lj> = Lp, (1.2)
j=1

where H denotes the free Hamiltonian of the reduced system, v; are positive coef-
ficients and L; are operators that characterize the interaction between the reduced
system and the environment. £ is a superoperator acting on p, and it is sometimes
referred to as the Lindbladian. The Lindblad equation is the most general form of a
Markovian master equation which is completely positive and trace preserving.

1.2 Anomalous Relaxation in Atomic Vapor

Happer et al.[8] investigated the precession of atomic spins due to magnetic field
(Larmor precession), in which the components of the total atomic spin perpendicular
to the precession axis (set here to be the z axis) undergo damped oscillations,

(S,) o cos (wt + @) et (1.3)
(S,) o sin (wt + @) e,
where w is the precession frequency, ¢ is a phase and I' is the precession damp-
ing rate (or relaxation rate). The main cause of the damping is collisions between
atoms. They measured that at a sufficiently large rate of atomic collisions (caused
by a high atomic density), the collisional relaxation rate begins to decrease with the
collision rate and approach zero. This observation, named “SERF” (spin exchange
relaxation free), is counterintuitive since the collisions are the main cause of re-
laxation in the first place. The effect was later theoretically reproduced|9, 10| by
modeling the dynamics of the atomic vapor, using a Lindblad type master equation
that describes the three main interactions of the atom: the hyperfine coupling (be-
tween the electron and the nucleus), the Zeeman effect (coupling between the spin
and the magnetic field) and the collisions. The term describing the collisions in the
resulting Lindblad equation is in fact nonlinear in the density matrix p, in the sense
that the coefficients, denoted ~; in equation 1.2, are dependent on p. This nonlinear-
ity arises from the fact the environment in this case, is an ensemble of subsystems
(atoms) represented by the same density matrix p, as the reduced system.
Happer et al.[9] solved the master equation via linearization? around the fully
mixed state (defined by ppys = ml), and indeed found the atomic spin performs

%It should be noted that the linearization does not result in a Lindblad equation, which raises the
question whether a similar effect may be obtained within a linear Lindblad equation.



decaying Larmor precession. The solution also exhibits two different regimes. when
the collision rate (denoted R) is much smaller than the precession frequency R < w,
the relaxation rate is linear in the collision rate I" «« R. In contrast, when the
collision rate R is much higher than the precession frequency R >> w, the relaxation
rate behaves as I" ‘”—RQ, i.e. decreases with the collision rate, in agreement with the
experimental results.

The model for SERF considers a detailed description of the atoms, which involves
three different interactions, and requires an atomic Hilbert space which is at least
six dimensional. Therefore, despite reproducing the experimental results, the model
is too complex to offer an elementary understanding of this peculiar effect.

1.3 Research Objective

The work described in the previous section demonstrates relaxation that decreases in
rate, upon increasing the collision rate, which is the process causing the relaxation.
The effect is reproduced by a collisional model that involves a nonlinear master
equation. However, it is difficult to characterize the mechanism that generates the
effect, as the model is complicated since it describes the realistic system in detail.
Inspired by the phenomenon, the goals of this work are:

* Demonstration of a SERF-like effect in a simple quantum system, governed
by a linear Lindblad equation. The source of relaxation we will consider is
white noise, and the expected dynamics will be damped oscillations, similarly
to equation 1.3. In this setting, the goal is to demonstrate a decrease in the
relaxation rate due to an increase in the noise power (or amplitude). In chapter
2 we present a model for a system under white noise, and show how it can
exhibit a SERF-like effect.

* Investigation of different collision-based models described by nonlinear Lind-
blad equations. We would like to study the decoherence under such models,
with emphasis on finding slow relaxation. A familiar example where many
body dynamics alter the behavior of a system is superradiance|11|, where the
the collective interaction of excited particles with the electric field causes an
emission of a high intensity light pulse, which differs from the spontaneous
emission of separate particles which obeys an exponential law. In chapter 3
we present other nonlinear models, which lead to different results.
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Chapter 2

The Dependence of the Relaxation
Rates on the Noise Power

Consider the stochastic Hamiltonian,

H(t) = Hy+ £ (1) C, (2.1)

where Hj, C' are fixed Hermitian operators that describe the sure and stochastic
parts of the Hamiltonian respectively, and ¢ (¢) is Gaussian white noise?,

E€®) =0, E(()E(s)=0(t—s), (2.2)

where ~ is a positive number, it serves as a measure of the noise power. It has been
shown before [12|[13] that the noise-averaged system would evolve by a Lindblad
type equation of the form,

8y Lp=—i [Ho. p] + <CpC - % {CQ,p}> — i[Ho,pl - 291G, [C.l], (23)

dt 2
where equation 2.3 holds for any positive value of ~, and for any set of Hermitian
operators Hj, C. This will be relevant in the following sections, where we will
characterize the system’s behavior at the limit v — oo, i.e. in the strong noise limit.
From general principles, since equation 2.3 is linear, p (¢) can be decomposed to
the sum

p(t) = ijktke)‘jt, (2.4)
ik

Where )\; denote the eigenvalues of the Lindbladian £. The imaginary parts of
the eigenvalues generate periodic (or quasi-periodic) evolution, and thus can be
considered as oscillation frequencies; while the real parts (which are necessarily
nonpositive) generate relaxation-type evolution, and can be considered as relaxation

'We set Hy and ¢ (t) to have dimensions of frequency, and C' to be dimensionless.

9



rates. An eigenvalue that has nonvanishing real and imaginary parts describes a
damped oscillation of the eigenvector associated with it.

In the this chapter we will investigate the dependence of the relaxation rates on
the noise power . Intuitively, one expects the relaxation rates to increase with the
noise power, however we will show how some of them can actually decrease with
the noise power and approach zero. First we will present a simple example of a
Lindbladian (of the type presented in equation 2.3) that demonstrates this effect.
Next we present an alternative explanation to the same result using the quantum
Zeno effect. We then generalize the result we found for this example by using a
perturbative approach.

2.1 Three Level System Under White Noise

Consider a 3 level system characterized by

g+b 0 0 00 1
Hy=bl,+q¢J2=| 0 0 o0 o C=2J2 -1=10 1 0|, (25)
0 0 g—b 100

where b, ¢ are free parameters that have dimensions of frequency. In this example
Hj can be viewed as being composed of a Zeeman term (denoted by bJ.) and a
quadrupole splitting term (q.J2).

Using the fact: C? = 1, the Lindbladian can be simplified to the form

Lo=—ilHop) + 1 (Cpc - {ﬂ,p}) — i[Hopl £ (CoC—p).  (26)

We show that in the case above £ decomposes into smaller blocks, and use this
fact to find some of the eigenvalues. Consider the decomposition p =3, pji |7) (kl.
where {|j)} is the standard basis of the matrix representation in equation 2.5. Note
that excluding the term CpC, the remainder of the Lindbladian is diagonal, i.e.

—i[Ho, |7) (K[} = v [7) (k[ oc |7) (K] . (2.7)

Computing the remaining term CpC' yields,

P11 P12 P13 P33 P32 P31
CpC=C1|pa pa p|C=|pas p2 pal, (2.8)
P31 P32 P33 P13 P12 P11

C swaps the indices 1 = 3, Thus the Lindbladian decomposes into 4 2 x 2 blocks
that separately act on opposite elements of p (i.e. (ps2,p12), (p31,p13) and so on),

10



and the remaining one dimensional block acts on the element ps,.

Consider the pair ps1, p23, by substituting 2.8 in equation 2.6 we find their relevant
block in the Lindbladian,

Lot s ( P21 ) _ ( v (p23 — p21) +i(q +b) p21 > (2.9)

P23 v (p21 — p23) +i(q —b) pas3

:<—7+i(Q+b) Y )(Pm)
¥ —v+i(qg—0b) p2s )

The spectrum of the resulting block Ly 23 is,

A =g — v £ /72— b (2.10)

For v < b, the relaxation rate is linear in the noise power, I' = —Re[\y] = 7.
Approximating the eigenvalues at v > b (i.e. when the noise power is much larger
than the analogous magnetic field) yields

b2 b2 ig— 2\
Ay =iqg—y =+ 12%iqy:|:’y<12)¢z 7 (2.11)
Vo 2y ig—2v A

At v > b the relaxation rate associated with A\, decreases with 4. The real and
imaginary values of A\, are plotted in figure 2.1 as functions of the noise power
v, for the parameters: ¢ = 5,b = 1. At 0 < v < b the real part of \1 is indeed
equal to —v, however at v > b it sharply increases and approaches monotonically
to 0. At this range the imaginary part satisfies: Im [A.][. ., = ¢. Therefore A\.| _,
describes damped oscillation with frequency ¢ and a damping rate that decreases
with the noise power ~. In other words, at v > b the quality factor of the oscillation

associated with A\, increases with the noise power.

In order to measure the relaxation decrease, we would like to propose an ob-
servable that exhibits this effect. The evolution of observables is governed by the
adjoint Lindbladian (this equation corresponds to the Heisenberg picture), which in
our case takes the form,

%B — i[Hy, B+~ (CBC — B), (2.12)

where B is an arbitrary observable. The difference between equations 2.6 and 2.12
is the in the sign of the commutator with Hj, thus the adjoint Lindbladian has
a spectrum which is complex conjugate to the spectrum of the Lindbladian. An
observable that exhibits the behavior of the eigenvalue A, should be constructed of
the corresponding eigenvector.

11
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Figure 2.1: Real and imaginary values of A, (left figure) , A\_ (right figure) as func-
tions of the noise power ~, for the parameters ¢ = 5, b = 1.

One can show that the spectrum of the block corresponding to pi2, ps2 is AL, At
large noise power v > b, the eigenvectors that correspond to A, A’ satisfy

b
p21 = p23 + O <v> (2.13)

b
p12 = p32 + O <> .
Y

One observable that can be constructed of these eigenvectors is J,, which takes the
form,

1 0
0o 11. (2.14)
1 0

Figure 2.2 shows the expectation value (J) (t) = tr [Jyp (t)] that was calculated
numerically for the initial state |j, = +1), for several values of noise power v (and
for the parameters ¢ = 5, b = 1). It is seen from the plot that (.J,) (t) undergoes
damped oscillations (with more that one frequency at v < b). The plot shows the
damping increasing with v up to v = b, after which the damping decreases with ~,
making the oscillations more and more long lived.

12



In conclusion, we presented above an example of a 3 level system that experiences
white noise, found an eigenvalue that exhibits a relaxation rate that decreases with
the noise power, and demonstrated this effect using a simple observable.

20 t(a.u.)

Figure 2.2: The expectation value (J,) as a function of time for several values of
noise power +, for the parameters ¢ =5, b = 1.

2.2 Quantum Zeno Effect

The quantum Zeno effect is the inhibition of transitions between quantum states due
to frequent measurements |14, 15|. The result in the previous example demonstrating
decreasing relaxation with the noise power, can be explained through this effect. We
do that by showing the stochastic part in Lindblad equation 2.3 can be regarded as
a von Neumann measurement.

The operators presented in equation 2.5 can be expressed in an eigenbasis of C'

in the following manner,

-1

Hy = (2.15)

o O O
Q
Il
oS = O
_= o O

b
q
0

o o

0
0

Since equation 2.3 is invariant to subtraction of the identity from Hj, C' and to
sign flipping of C, it is equivalent to consider the more simple matrix representation,

0b 0 200
Ho=1|b 0 0 . C=1000 (2.16)
00 —gq 000

The operators can be expressed in the Dirac notation,

13



Ho=0b(11) 2[+2) 1)) —qB) B 5 C=2[1) (1] =2h, (2.17)

where P, is a projection on the state |1). Computing the stochastic term in equation
2.3 yields

1
=57(C[Copl) = =29 [Py, [Py, pl] = 29 (PupPy+ P pPry = p), (2.18)

where P, = 1 — P, is the complementary projection of P;. The expression on the
right hand side suggests that the stochastic term on its own, converts the density
matrix to a statistical mixture of the form,

pr— PipPy + Py, pPy (2.19)

which is equivalent to a (continuous) von Neumann measurement of the population
in the state |1) (conversely, the population in the subspace spanned by [2), |3)).

We decompose H to the diagonal and off diagonal parts according to the repre-
sentation in equation 2.16,

Hy = Hy + Ho, (2.20)

where,
Hy=—q[3)(3] 5 Hx=0b(|1)(2+(2)(1]). (2.21)

H, causes Rabi oscillation between states |1) , |2) with frequency b. Since the stochas-
tic part is equivalent to a measurement of |1) at the typical frequency ~, we expect
the oscillations to be eliminated for v >> b, due to the quantum Zeno effect. At this
regime, two protected subspaces (also called Zeno subspace [1 6]) form, the first cor-
responds to |1) and the other is the subspace spanned by |2) , |3). The dynamics within
the Zeno subspaces is not necessarily stationary, as the diagonal part of the Hamilto-
nian H; continues to act and generate oscillatory dynamics (called Zeno dynamics
[16]). For example, consider an initial pure state |¢) (t = 0) = ——— (a|2) + (]3)).

Jar i

At the Zeno regime, this state would evolve by the H; in the following manner,

al2) +eB3)). (2.22)

) Ol = s (

The evolution of |¢) (t) can be described as a rotation in the Bloch sphere of the
subspace spanned by the states |2) , |3), this rotation is illustrated in figure 2.3. This
motion is related to the evolution of the observable .J, presented in the previous
section. The expression for the observable in the current basis is

Je = 12) (3| + |3) (2], (2.23)
which represents the x components in the Bloch sphere associated with the states

14



13

Figure 2.3: The rotation due to H; (blue trajectory) in the Bloch sphere describing
the states |2), |3).

12),13).
From the Zeno picture, it becomes clear that since any Hermitian operator C can
be expressed as a sum of orthogonal projections,

C=> P, (2.24)
j

where c; are real coefficient, the stochastic part in equation 2.3 can always be viewed
as a repeated von Neumann measurement, which forms protected Zeno subspaces
at a sufficiently high measurement frequency. However, nontrivial Zeno dynamics
(i.e. oscillation) can only take place in Zeno subspaces which are at least two di-
mensional. Thus the occurrence of Zeno dynamics requires the sum in equation 2.24
to contain at least one multidimensional projection. In other words, the formation
of Zeno dynamics requires the operator C' to be degenerate.

2.3 Generalization at the Strong Noise Limit

Consider general Hermitian matrices Hy, C' at the strong noise limit, i.e. where
Hj can be considered as a small perturbation to C. We will later show that this
condition is satisfied whenever the following inequality holds,

min <7 ()\c — )\,C) 2) > max ()\H — )\IH> , (2.25)

Where \¢, XC € spec(C), Ao # )\'C, AH, XH € spec (Hp). Clearly, this condition
is satisfied for a sufficiently large ~, i.e. at large noise powers (in a finite dimensional
system).

Define the unperturbed Lindbladian £, and the perturbation £,,

15



Lop = —%v [C,[C, pl] (2.26)

,Cpp =—1 [HQ, p] .

Denote by c¢; and |j) the eigenvalues and eigenstates of C, respectively. {c;} are
real since C' is Hermitian. We propose the following ansatz for the eigenvectors of
the unperturbed Lindbladian,

Xik = 17) (k| (2.27)

Substituting the ansatz in equation 2.26 yields their respective eigenvalues,

Loxsn = 570,10, 13) () = =57 (&5 = @) [C,13) (k1] = —57 (e — en)* xe. (2:28)

The unperturbed eigenvalues are thus,

1
)\ﬁ) =37 (¢j — ck)2 ) (2.29)

The unperturbed eigenvalues are all real, thus describing pure relaxation (with no
oscillation). Similarly we find the spectrum of the perturbation to be,

spec(Lp) = {1 (h; — hu)}ty, - (2.30)

Perturbation theory is valid when the all the nonzero elements in spec (L) are
much larger than all the elements in spec(L,), which results in the condition ex-
pressed in equation 2.25.

From the expression presented in 2.28, it is clear that,

Xjk € ker (,CQ) <~ Cj = Cg, (2.31)

in particular, x;; = |j) (j| € ker (Lo). Since ker (L) is a degenerate subspace,
in order to compute the first order correction we must use degenerate perturbation
theory, in which the perturbation matrix is computed and projected onto the degen-
erate subspace. The eigenvectors of the resulting matrix redefine the unperturbed
eigenvectors, and its eigenvalues are the first order corrections. First we define the
projection superoperator onto ker (Lp),

dimH

P (W)=Y by 13) (I W [ (K, (2.32)
7,k=1

where W denotes an arbitrary projected operator.

16



Lemma 2.1. For eigenvectors inside ker (L),

Pre (=i [Ho, Xji])ly,,, erer(co) = —4 [P (Ho) s Xjk]

Proof. Compute the projection of the term,

Prc (HoXomn) o chen(coy = 32 Oeyn 1) (il Ho lm) (n] k) (K (2.33)
7.k

= > by ) 1 Ho ) ()

J

=D Besen |3 Gl Ho 1) (Il [m) (n].

al
Recall that ¢, = ¢, in ker (Lp). Also, the term (l|m) ensures that the expression in
the sum vanishes for [ # m, thus we may replace o, ., with d, ¢,

Pic (HoxXomn) ly,ererco) = | D Sesoen 1) (G Ho D) (U1 | 1m) {n] = Pic (Ho) Xmn-
4.l
(2.34)
By applying adjoint to both sides of equation 2.34, we get

PK (anH0)|anEk;er(£0) = X’I’I’LTLPIC (HO) 9 (2’35)

thus,

Prc (=i [Ho, X))l erer(e) = —1 (P (Ho) Xjr — Xj#Px (Ho)) = —i [P (Ho) , X;n]

(2.36)
0

The perturbation matrix acting on ker (L) is given by,
P (Lpxjk) = Pic (=i [Ho, xjx]) = —i [P (Ho) , xji) = £V x5, (2.37)

and the first order corrections to eigenvalues associated with ker (L) are the eigen-
values of the superoperator £(1),

Al(cle)r = spec (,C(l)) . (2.38)

According to equation 2.32, the projection of the Hamiltonian Py (Hy) is a Her-
(1)

mitian operator, thus A, .

are imaginary, and describe pure oscillations without re-
laxation. Within the kernel, this correction is the dominant correction at the strong
noise limit, as it is O (1) while the higher order corrections are O (%) , O (7%) and
so on (i.e. they approach zero as v — o0). Therefore, these first order corrections
describe the oscillation frequencies corresponding to ker (Lp), at the strong noise
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limit.

)

When C' is nondegenerate, ker (Ly) is spanned by the eigenvectors x;; = |j) (j

and the perturbation matrix £(!) vanishes,

—i [P (Ho) , xj5) = —i Y _ (k) (k| Ho |k) (k[ ,|5) (] = —i Y _ Hoy, [Ik) (k[ |5) (] = 0.
k k
(2.39)

Thus in agreement with the previous section, we have shown that the appearance
of oscillations at the strong noise limit (i.e. the Zeno regime) requires C to be
degenerate.

The higher order correction (which will not be computed explicitly) is of order
@] (%) This correction scales as ~ EI%, which implies it’s real and describes relax-
ation. This means that the leading order of relaxation in ker (Ly) decreases as the
inverse of the noise power ~.

In conclusion, using a perturbative approach for the strong noise limit, we find
the decrease in relaxation with the noise power is in fact a general effect, occurring at
the kernel of the noise. We also obtained an expression for the oscillation frequencies
at this limit. This expression shows that protected oscillations appear only when the
noise operator C' is degenerate, in agreement with the Zeno interpretation discussed
in the previous section.
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Chapter 3

Anomalous Relaxation in Nonlinear
Mean Field Lindblad Equations

This chapter discusses two relaxation features that emerge due to nonlinearity in the
Lindblad equation. The first phenomenon shown in this chapter is the emergence
of a continuum of relaxation rates (as opposed to a discrete set of rates observed
in the linear Lindblad equation). The other phenomenon is polynomial decay (as
opposed to exponential decay in the linear equation).

In this chapter we discuss the mean field class of nonlinear Lindblad equations. It
describes single particles in an ensemble of identical particles, where the nonlinear-
ity stems from interaction between particles, that can be associated with collisions
between particles. The single particle Lindbladian can be obtained under certain
conditions via a mean field approximation.

In this chapter we first present the mean field nonlinear Lindblad equations.
Then we present two examples of mean field Lindbladians, each demonstrating one
of the two phenomena mentioned above.

3.1 Nonlinear Lindblad Equations

Nonlinear Lindblad equations emerge as an approximation for interacting many body
systems. In these systems, the particles act as a bath that depends on their quantum
state, giving rise to nonlinearity in the density matrix. When the interactions between
particles are symmetric and scale as the inverse of the number of particles, the system
becomes tractable. In that case, upon taking the number of particles to infinity, the
interacting particles evolve effectively by a single particle Lindblad equation which

is nonlinear in general.

Mean field nonlinear Lindblad equations are discussed in [17, 18]. Consider an
ensemble of N identical particles with the following Hamiltonian,
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HN_ZH +— Z Vik, (3.1)

J#k 1

Where H; acts on #; (the j'th Hilbert space, where { = ®;7{,) and is an identical
copy of Hy, which is the Hamiltonian of the single particle; and Vj;, acts on H;QH,,
and describes an interaction term between two particles, where Vj,, is an identical
copy of Vi (setting Vi = ij).

The partial trace over the Hilbert spaces labeled n,n + 1,..., N is denoted by
trp, Ny It is proven in [17] that given a symmetric product state as an initial state
pn (t=0) = p(?N , then at the infinitely many particles limit, the partial trace over
the evolved state also becomes a product state,

Jim trp 8 (e oy (t = 0) ™) = (p(1)°", (3.2)

and moreover p (t) satisfies the equation

B p(4) = i [Hu,p ()] + tr (i [Via + Vo1, p () 2 (1) (3.3)

Equation 3.3 is the mean field equation, and is nonlinear in general. We shall
now show that this equation can be expressed as the Heisenberg equation, with an
effective Hamiltonian that depends on p,

%p = —i[Hess (p), 0], (3.4)

and thus cannot describe decoherence.
Proof. Decompose the interaction terms into a sum of tensor products
Vig + Va1 = _ hjuW;@Wi, (3.5)

ak

and substitute in equation 3.3 to yield

p="i [Hi,p] —itry | Y hjpW;@Wi, p@p (3.6)
3k

= —i[Hy,p| —i Z hjktra (Wip@Wip — pW;@pWy)

= —i[Hi,p] - iZtr (Z hjkap> (W, p]

= — H1 p sz] _Z[Heff(p)ap]
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O

The theorem expressed in 3.2 was extended in [18] to cover many body Lindbla-
dians of the form,

N
L on ()= - Z Hyp (0] + gy ; Loon (1), (3.7)

where H; is the same as before. £;,Vj # k is a Lindblad superoperator that acts
on states that lie in H;®%H;, and describes a, possibly dissipative, interaction term
between two particles. Lj; is an identical copy of L2 (setting L, = ﬁkj). L;; is
a Lindblad superoperator that acts on states that lie in #;. In particular, the mean
field theorem is proven, i.e. given a symmetric product state py (¢t = 0) = pf)@N , there
exists p (t) such that

Nlim i1, NN () = (p (t)*", (3.8)
—00

where p (t) satisfies the nonlinear equation,

G p(t) = ~ilHr p (0] + g trs [(Lro -+ L22) p () @0 (1) (3.9)

In the following sections we will use equation 3.9 in various cases.

3.2 Continuum of Dephasing Rates

Consider an ensemble of N particles that evolve by the Lindblad equation,

N
d 1
PN (t) = N Z Lirpn (t), (3.10)
J7#k=1
Where L, is defined by
" w1 o\ 2 1 1\ 2
Likpy =4 [POJ P =5 (Pf*) ow = 5on (P") ] , (3.11)

P * denotes a projection on the state |0) ; ®10).. The operator P * is Hermitian,
thus the Lindbladian above conforms to the general form of stochastic Lindbladians,
presented in equation 2.3.

The Lindbladian above can be interpreted as describing a pair of particles cou-
pled by a Hamiltonian ¢ (t) Ph@ Py (Py = |0) (0
coupling strength which may be a result of random collisions between the particles

)» where & (t) denotes a stochastic

(where the distance between them vary stochastically with time). According to
this interpretation, equation 3.10 describes an ensemble of particles that undergo
pairwise collisions associated with the interaction Hamiltonian H;,; = Py®P,.
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Taking the number of particles N to infinity, we obtain the single particle master

equation,

S () = 4ty [Pa% (02 B — 5 (BE) 0 (0%~ o (1) (Pa®2>2] . (312)

Computing the partial trace yields,

try [P(?Qp@?a?? — - (PE2)? R - %p®2 (P0®2)2] (3.13)

1

2
Lo 2 L 2 2

= PypPytr (PopPy) — §PO ptr (P5p) — ipPO tr (pPy)

1 1
= (POPPO - §POQP - 2PP02) tr (Pop)
1
— Lt (Bop) [Py, [P ]

In conclusion, the single particle master equation takes the form,

d
at”
Clearly, equation 3.14 is trace preserving. This equation describes dephasing without

(t) = —2tr (Pop) [Po, [Po, p]] - (3.14)

decay.
When the particles in question are qubits?, the projection Py can be expressed
as: Py = H%, and equation 3.14 reduces to,

=1+ r (o) [0 0w, o], (3.15)

where we used the fact tr (p) = 1.
In order to solve the equation, we use the Bloch vector representation for the

qubit state,

_ltuo (3.16)
2
Clearly,
tr (o.p) = tr (oz uZ;Z) = u,. (3.17)
Also,
|:O-Za |:Uz7 %H =Y, |:O-Za |:O-Z7 O’;,y“ =204y- (3'18)

Thus the equations of motion for the three components of Bloch vector are,

We will use the word “qubit” throughout the work to describe any two level system or particle.
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d 1

Tty = =5 (14 us) ay (3.19)
d

—u, 0

dt"

The z component is constant in time, thus the equations are decoupled and the
solution for the x and y component is,

_ltuz
2 t.

Ugy () = uy € (3.20)

The solution describes a Bloch vector that approaches the z axis as t — oo along
a straight line, perpendicular to the z axis. This motion is exponential in time, with
a rate that depends linearly on the height of the trajectory from the bottom of the
Bloch sphere (see figure 3.1). Depending on the height, the exponential rate may
take any value in the continuous range [0, 1]. A continuum of dephasing rates cannot
emerge from a linear Lindblad equation, which can only give a discrete set of rates.

z

1.0+

0.5

0.0

-1.0

Figure 3.1: Visualization of the solutions expressed in 3.20 through a vector field in
the Bloch sphere. The directions of the arrows represent the direction of motion (i.e.
towards the z axis), while their sizes represent the exponential rate of the motion.

3.3 Polynomial Decay

In this section we shall again consider an ensemble of N interacting qubits, where
we will examine a process that generates decay. Decay processes emerge under
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interaction with an external reservoir which absorbs the excess energy. A convenient
choice for such a reservoir is a quantized field of massless bosons (e.g. photons).

We shall consider an interaction that causes the qubits to decay in pairs, rather
than separately. This decay may be a result of binary collisions between pairs of
particles?. First we will present the master equation for the ensemble of qubits,
then present two approaches for its solution. The first approach takes the number
of qubits to infinity and solves the emerging single particle nonlinear equation;
while the second approach solves the full equation for any number of qubits, but is
restricted to symmetric states. We will discuss the two solutions, their features and
the relations between them.

The Master Equation

In order to construct an N qubit Lindblad equation that describes pairwise decay
between the qubits, we shall consider a mutual interaction of a single pair of qubits
with a quantized field of massless bosons, held at zero temperature. We rely on a
previous derivation presented in |7|, which considered an interaction with a bath of
quantized radiation. By allowing transitions only between the excited-excited state
(i.e. a state where both qubits are excited) and the ground state, we obtain the
Lindbladian for a single pair of qubits (the full derivation is given in appendix A),

®2 1 ®2 1 ®2
Liop = a®?p <aT) —3 <aT) a®%p — Pl (aT) a®?, (3.21)
where a = |0) (1| is the lowering operator. It is may be verified that the states

|00), |01), |10) are the stationary states of L;o, while |11) is unstable and decays to
|00). This means that the qubits cannot decay separately, but they must do it as a
pair, as initially desired.

Now we consider an ensemble of qubits, each interacting with all the other qubits
via L1, expressed in equation 3.21, with a coupling strength that scales as ﬁ The
master equation that governs such an ensemble is,

N
d 1
AN () =5 D Lieon (1) (3.22)

k#j=1

N

1 1 1
= N Z (ajkPNa;r-k - §a;r~kajkPN - 2pNaj~kajk> )
k>j=1

where, as in equation 3.7, £, are identical copies of L2, and act on states in H;@Hy;
pn denotes the N qubit state and a;;, = a;®ax, which act on H;QH,,.

2An example for a scenario where collisional decay is a dominant decay process, is a particle in
which spontaneous decay is forbidden due to selection rules.

24



Solution in the Infinite Particle Limit

At the limit of an infinite number of qubits (N — c0), given an initial product state,
the single qubits evolve separately according to the nonlinear master equation,

d
P = e (£120%?) (3.23)

= tr2 [(apa) @ (apa") ~ 3 (afan) & (wap) = 5 (pata) @ (pa'a) .

where p is a single qubit state. Further simplifying the equation yields,

d 1 1
@p =tr (aTap) (apcfr - iaTap - 2paTa) (3.24)

1 1
=tr (P1p) (apaJf — iaTap — 2paTa) =tr(Pip) Lsp,

where P; = a'a is the projection onto the state |1), and L is a linear Lindbladian
describing regular spontaneous decay (we derive the spontaneous decay Lindbladian
in A). We characterize £, by finding its eigenvectors.

Consider Py = |0) (0|, and recall that a® = (aT)2 =0, Py = aal,

2 1 1
LsPy=Ls (aaT) = a2 (aT) — iaTaaaT — iaaTaTa =0. (3.25)

Next consider the Pauli matrix o, which can be expressed as

o, =Py— P, (3.26)

Lo0. =Ly (Py— P) = LyPy — L aTa) (3.27)

N~~~

1
=0- (an'anr — iaTaaTa — aTaaTa> = — (P12 — POQ) = —0,.

Next o,, which can be expressed as,

oy =a+al (3.28)

Loz = Ly (a + aT) =a (a + aT) al — %aTa <a + aT> — % (a + aT) ala (3.29)



Finally o,, which behaves similarly to o,

oy = ia' —ia (3.30)
1 1 1
Lsoy = Ly (z’aT — ia) =0- §iaT + iia = —iay. (3.31)

Table 3.1 gives the four eigenvectors and eigenvalues obtained above. We see

that the ground state |0) is the only stationary state of £, which is consistent with
the fact it describes spontaneous decay.

Eigenvector | Eigenvalue
Py 0
o, -1
Ty —3
o -1

Table 3.1: The eigenvectors and corresponding eigenvalues of the Lindbladian L.

Using the eigenvectors obtained for £,, we choose a useful representation of p,

p(t) = P+ %u 1) o. (3.32)

u (t) describes a vector in the Bloch sphere anchored at the north pole (i.e. the
|0) state, unlike the Bloch vector which is rooted at the center of the sphere). The
representation satisfies the normalization condition ¢r (p) = 1 and it describes a
positive state as long as the following condition for u is satisfied,

lu+2<1=>-2<uz<0. (3.33)
Substituting the representation above in the master equation (equation 3.24),
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d 1du 1 1
priai- i tr (P1p) Lsp = tr <P12U3O'Z> Ly <2u . a) (3.34)
1 1 1
= —Zu?, (—211,101» — §UQO'y — U,3O'Z> .

Equating the coefficients of the different Pauli matrices on both sides yields three
coupled, nonlinear differential equations,

d 1

S = Jusw (3:35)
d 1

at? T

at' = 2"

The equation for u3 is decoupled from the rest, and can be solved separately. Its

solution is,

us () = —2_ — 0 (1> : (3.36)

where u3; denotes the initial value u3 (¢ = 0). The solution exhibits a polynomial
decay of the ~ component (note u3 is negative by equation 3.33), we may use it to
compute the probability to find the qubit in the |1) state,

Py (8) = (P) = tr (Pip) = —<us (£) = —1L (3.37)

2 N 1+p‘1>it’

where p);); denoted the initial probability p|;); = pj1) (t = 0). We thus found that
the survival probability of the |1) state decays polynomially with time, rather than
the standard exponential decay, typical to linear Lindbladians. This feature is a result
of the nonlinearity of the master equation.

Remark 3.1. It is known that the decay of states under Hamiltonian evolution (given
the Hamiltonian is bounded from below), is described by an exponential decay law
e~ for intermediate times, and by a powerlaw decay for long times (after a large
number of decay times !/r have passed) [19, 20, 21, 22, 23, 24|. The powerlaw decay
appears at a late time, after the amplitude of the state has managed to decrease
in many orders of magnitude, making the effect practically undetectable in most
cases. The polynomial decay we found above expressed in equation 3.37 (which is
approximately powerlaw at ¢ >> 1), is different (it is a direct result of the nonlinearity
introduced by the many body interaction), and it behaves non-exponentially right
from the beginning, allowing the effect to be detected relatively easily.

Next we solve the equations for the other two components, u; > by first substi-
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tuting the solution 3.36 in equations 3.35,

d 1 u3;
—Uj 9 = ————U 2. 3.38
dt T A1 = Lugt (3.38)
Equation 3.38 may be solved via separation of variables, the resulting solution
is,

uis (t) = ——2 (3.39)

1-— %u;),it
where u;; denote the initial values for the transverse components wu; s (t =0).
u12 (t) decay as a square root of the time, and the resulting trajectory in the Bloch
sphere is the parabola,

us (t) _ us;
u%,? (t) u%,%

S (3.40)

where o » denote two constants that characterizes the trajectory. At long timescales
t>> 2 |ug;’

, equation 3.39 becomes,

U3 3 1 -3
ui g (t) ~ <—2u2’ t) = <2a1,zt> : (3.41)
1,24

Note that the expression on the right hand side of equation 3.41 depends solely

on o 2, and not only on the initial values u; 2;. This behavior causes a Mpemba-like
effect® [25], where comparing two trajectories each with a different initial » compo-
nent (r is the cylindrical radial coordinate), we get that in some cases, the outermost
trajectory approaches quicker to the z axis and overtakes the other trajectory. This
effect is shown in figure 3.2, which compares different trajectories initialized at the
surface of the Bloch sphere.

Solution of the Lindblad Equation For the Entire Ensemble

Consider the symmetric N qubit states of the form,

R, =S (P1®2”®P(?(N‘2”)) : (3.42)

where S denotes a symmetrization which is symmetric under all possible permuta-
tions of qubit labels, and Py ; are the projections on states |0) , |1) respectively. For
instance, for N = 3 the possible R,, states are

3The Mpemba effect is the phenomenon in which a system initiated at a high temperature cools
quicker compared to the same system initiated at a lower temperature [25|. The most common real-
ization of this effect via freezing water.

28



1)

Figure 3.2: An illustration of Mpemba in two trajectories in the Bloch sphere. The
green trajectory starts at the equator, while the blue trajectory starts above it, with a
lower initial y component. The red dots represent the position of the states on both
trajectories at a certain time. It is evident that the position on the green trajectory
is closer to the z axis (i.e. has a lower y components) than the position on the
blue trajectory, despite their initial positions. Unlike the radial component, the z
component does not experience a Mpemba effect, as it is seen that the position on
the blue trajectory is higher in the sphere compared with the green trajectory, in
accordance with their initial positions.

Ry =P (3.43)

1
Ry = 3 (PR + POR@P + ROP) .

These states are similar to the Dicke states, defined by S (\1>®2n ® |0)EWN =)

however they differ in the fact that the Dicke states are pure states by definition,
while the states R,, are mixed in general.

To make the notations simple, from here and for the rest of the chapter we will
restrict the discussion to cases where N is even, though the solution presented below
may be adapted for odd numbers of qubits. When N is even, n € {0,1,..., 5 }.

Since the Lindblad equation 3.22 is symmetric under swapping of qubits, an
initially symmetric state of the form,

N/2

py (t=0) = cn(t =0) Ry, (3.44)
n=0

(¢, are general positive coefficients) will remain symmetric, and with an even num-
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ber of excitations throughout its evolution,

N/2

py (t) = cn(t) Rn. (3.45)

n=0
¢n, (t) is the time dependent probability to have 2n excitations.

Since: afa = P; the two-qubit Lindbladian can be rewritten as,

®2 1
Liops = a®ps (a) " = S {P{?,ps} (3.46)

We shall now make use of the fact,

P0®P0 —P1®P1 a=b=1

L2 (P,@F) = (3.47)

0 otherwise .

According to the equation above, substitution of the state expressed in 3.42 in
the N qubit Lindbladian in equation 3.22 yields

N L2 ) (R R) n>1
1 N n—1 — Lip n =~
N S LigRa=4" \ 2 ’ (3.48)
k=t 0 n=0

2n '\ . .. . L
Where the factor ) is the number of nonvanishing terms in the sum, which is

the number of choices of P pairs present in the state. Thus substituting the state
expressed in 3.45 in equation 3.22 (the master equation for the ensemble) yields,

d 1 & 2n
dt}:cn@)Rn::AIE:cn@)< ) )(Rn_l—zag (3.49)
n n=1
120 (2t 1) 1L 2

We can now obtain a set of coupled ordinary differential equations for the probabil-
ities ¢y, (1),

d wer (t) n=0
Zon () = D@t () =22 Ue (1) 0<n< N (3.50)
—%CN/2 (t) n = N/2

This is a set of first order linear differential equations, which can be rewritten as,
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%cn (t) = Zm: Dmem () = c(t) = ele (t = 0), (3.51)

where I" is a matrix of coefficients that has nonzero elements only on the diagonal
and the superdiagonal, which are given by equation 3.50. The explicit form of the
solution in equation 3.51 was calculated numerically for several values of N, and
the respective probabilties of a single particle to remain in the excited state were
extracted. These probabilities are plotted in figure 3.3.
Since I is a triangular matrix, its eigenvalues are given by its diagonal,
n(2n —1) N

spec (I') = —TVn IS {0, 1,..., 2} , (3.52)

thus the solution can be expressed as the sum of exponentials,

N/2

en(t) =3 Be ", (3.53)

m=0

where £3,, are general coefficients. Also, the diagonalizing matrix (which consists
of the eigenvectors of I') is also triangular, which suggests the existence of a recur-
sive formula for the eigenvectors (we will not explicitly obtain this formula). The
smallest (in absolute value) nonzero eigenvalue in 3.52 is —%, which means that at
large times ¢, (t) ~ e N,

PDE for the Probability Distribution in the Limit N — oo

In the limit where the number of particles N approaches infinity, it is possible to
consider the variable x defined by z = %" as a continuous variable in the range
0 < x < 1. the definition of x suggests that the differential of x should be dz =

%. Substituting these two definitions into the equation 3.50 (the middle equation)

yields,
gc(fv t) = 0w <£ + 1) <2£ +1> c(z+dz,t) — or @ (2i - 1) c(z,t) (3.54)
ot 77 2 \ox oz ’ 2 ox \ oz ’ '
_ ec(@+iz,t) —c(at) 3z T oz
=z 5 + 2c(m+6a:,t)+2c(w,t)+ 2c(x+5m,t)
~ xQC(x—i-(Sx,t) —c(z,t) -
ox
Using the definition for the derivative: w = %c(m,t) results in a
partial differential equation for c(z,t),
gc (x,t) — l’QQC (z,t) =2z c(x,t). (3.55)

ot ox
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Solving the PDE Using the Method of Characteristics

Equation 3.55 may be solved using the method of characteristics [26], which reduces
solving the partial differential equation to solving a set of ordinary differential equa-
tions. This is done by introducing a curve in the z,¢ plane along which the partial
differential equation transforms into an ordinary differential equation,

C%c (x(s),t(s)) = F(c,z(s),t(s)), (3.56)

where s is a variable associated with the curve, and F is a some function of ¢, z, t.

The left hand side of the equation above may be rewritten as,

d Ocdt Ocdx
£C($ (5),t(s)) = 9t ds + D5 ds”

Equating the coefficients between equations 3.57 and 3.55 yields a set of three
ODEs,

(3.57)

dt

-~ -1 .
- (3.58)
de.
% = =X
F (c,z,t) = 2xc
The solution for ¢ (s) is
t(s)=s (3.59)
The solution for x (s)is
1 1
x (s) sxg=Ye—1t)". (3.60)

- S+1/$0 - t+1/m0
Finally, the solution for c(s) is,
d

S e=9
dsc 8+1/x0

c=Inc=2In(s + Yao) + In (f (x0)) = In (;Qf ((1/x - t)_1)>
(3.61)

f (zo) is an integration constant. Therefore the solution to the partial differential
equation for c(x,t) (equation 3.55) is,

¢ (zt) = %f (ta=1)71). (3.62)

The function f <<1/a: — t)_1> is determined by the initial condition.

In the case where the ensemble is initially fully excited, the appropriate initial
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probability distribution is,

1 n=N/2
cn (t=0) = / : (3.63)
0 otherwise

and at the limit N — oo, this corresponds to the initial condition,
1
c(:c,t:()):—gf(:v):5(x—1):>f(x)::c2(5(x—1):5(17—1), (3.64)

substituting back in equation 3.62 yields,

o(z,t) = %5 ((e—ty ' 1) = (st (m - 1) — <x - 1) . (3.65)

2 1+t 1+t

Note that the distribution above is normalized, as expected.

We may now compute the single particle survival probability (the probability of
a particle to remain in the excited state) as a function of time,

pr(t)=(P)(t) = en(t)tr (P1V'R,) Zﬁ” (t) (3.66)

n

) 1 1 1 1
]\}linwpl(t)—/o dx xc(x,t) ——/0 dmx6<$_1—i—t> 5t

This solution agrees with the mean field solution presented in equation 3.37, in
the case p; (t =0) = 1.

In the analysis above, this non exponential decay arises from the infinite dimen-
sional Lindbladian, which gives a continuum of rates from O to infinity. For com-
parison, when we previously obtained the nonlinear mean field equation describing
the single particle, the nonlinearity gave rise to the non exponential decay.

Figure 3.3 shows how the solution in equation 3.51 for a finite number of qubits,
approaches the limiting solution (appearing in equation 3.66) as the number of
qubits in the ensemble increases. Each curve computed for finite N, approximately
follow the limiting solution (N — oo) up to a point in time from which it continues
an exponential law which is tangent to the local slope. This point in time scales
as N, which may be seen by equating the logarithmic derivatives of the limiting
solution with that of the slowest exponent in equation 3.53,

dlog( L ) ilog( 1t>:>t~N. (3.67)

dt 1+t dt

Indeed, as the number of qubits N increases, the exponential law appears later in
time and with an accordingly slower rate (this point is more clearly seen in the log
plot shown in figure 3.3).
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Figure 3.3: The single particle survival probability as a function of time. The prob-
ability is shown in linear scale in the upper figure, and in a logarithmic scale in
the lower figure. The probabilities are computed for an initially excited state that
evolves according to equations 3.50, for several values of the particle number N.
The analytic solution obtained for the limit of infinite number of particles (equation
3.66) is also plotted. We notice a trend where probability curves tend to the analytic
solution as the number of particles increases, as expected (the trend is shown more
clearly in the logarithmic scale).

Finally, we would like to propose an intuitive interpretation to the polynomial
law obtained. Recall that the Lindblad equation discussed (equation 3.22) describes
an ensemble of qubits that undergo pairwise decay. Upon initializing the ensemble
at the fully excited state, a single qubit may perform pairwise decay with any of the
other N — 1 qubits, with a certain probability per qubit. As the ensemble decays
with time, a still-excited qubit has less and less potential partners with which it can
decay. Thus, the decay rate decreases as the ensemble decays, and approaches zero
as the ensemble approaches the ground state. An analogy from relationships is that
if one does not marry sufficiently early, he may struggle to find a spouse later in life
(although this analogy breaks when considering divorce, which reintroduced people
back into the market).
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Chapter 4

Summary and Conclusion

In this work we studied relaxation in quantum systems obeying the Lindblad master
equation. Both linear and nonlinear Lindblad equations were considered. The new
results found in the work are bulleted below.

We discussed linear Lindblad equations that arise from a noise term in the Hamil-
tonian.

* We presented a simple example where certain relaxation rates decrease with

increasing noise power.

* We have shown how to construct an oscillatory observable, whose damping
rate decreases with the noise power.

* We have shown this effect occurs in general, whenever the noise term is rep-
resented by a degenerate matrix.

This phenomenon was explained using the quantum Zeno effect, where the noise
plays the role of a continuous measurement. This in turn causes the state to be kept
inside a protected subspace.

Nonlinear Lindblad equations are a mean field description of the evolution of
many interacting identical particles.

* We constructed a nonlinear equation describing dephasing that arises from col-
lisions between the particles. In this case, we found a continuum of dephasing
rates.

* We constructed a nonlinear equation describing pairwise decay of interacting
qubits. this decay can be, for example, a result of collisions between particles.

* We solved this equation in the mean field limit, and found the excited particles
population decay as ~ %

* We have shown that given symmetric initial data, the complexity of the problem
reduces from exponential to linear (in the number of particles).
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* At the infinitely many particles limit, we derived a PDE describing the prob-

ability distribution for the number of excited qubits. We solved it using the

method of characteristics and confirmed the % decay obtained by the mean

field solution.
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Appendix A

Construction of The Pairwise Decay
Lindbladian

In this appendix we shall show the construction of a two-qubit Lindbladian describing
pairwise decay. We shall consider a mutual interaction between a single pair of
qubits and a quantized massless boson field, held at zero temperature. We rely on
a previous derivation presented in |7|, which considers an interaction with a bath
of quantized radiation (photons). This derivation gives a general master equation
(often referred as the quantum optical master equation) at the weak coupling limit.
The Hamiltonian presented there for the system and bath combined is divided into
three terms: the free Hamiltonians of the reduced system and the bath, denoted
Hg, Hp respectively, and the interaction term between them, denoted H;. The three
terms are expressed as,

HS = Zeij (A']-)
Hp=>" 3" wb) (k)bx (k)

k xe{1,2}
H=-D-E

where Hg is expressed as a sum of its eigenvalues e; multiplied by the projections P;
onto their corresponding eigenspaces (which make up a complete and orthonormal
set of projections). by (k) is the photon annihilation operator associated with the
wave vector k and polarization A\, wy = c|k| is the photon energy, D is the dipole
operator of the qubit and E is the electric field operator in the Schrédinger picture,
which under the dipole approximation takes the form

E=iy Y \/@ex (k) (bx (k) — b} (k)> , (A.2)

k \e{1,2}
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where e, are two unit polarization vectors, and V' is the volume where the photon
modes are assumed to lie (later taken to infinity). Introduce the ladder operators,

A (w) = Z P,DP, (A.3)
er—ej=w
note that the resulting ladder operators are eigenoperators of the system Hamiltonian
Hg, ie. [Hs, A (w)] = —wA (w). Using the definitions above, the master equation
for the reduced system p, sometimes referred as “the quantum optical master equa-
tion”, is then derived (the full derivation is shown in [7], we will only use the final
equation) at the weak coupling limit!,

d .
—p = —i[Hs + HLs, p] (a.4)

dt
Y 1) (AWl @) - 5 {AT AW}
w>0

43 1
Y (@) (8w eaT @) - {ATWA W }),
w>0
c denotes the speed of light in vacuum, »n (w) denotes the Bose-Einstein distribution
(the mean photon number at frequency w) describing the photon bath (the temper-
ature of the bath will be introduced through this distribution) and H;g denotes a
Lamb shift induced by the coupling to the bath, which takes the form,

Hps=)» 5(w) AT (w)-A(w), (A.5)

where S (w) is a c-number function which is related to the properties of the the bath
(the explicit expression is not presented since it is irrelevant for the derivation of
the master equation).

As mentioned above, equation A.4 is valid when the coupling between the system
and the bath is sufficiently weak, such that it has a negligible influence on the state
of the bath, which can thus be regarded to be constant?. This condition is met
provided D is sufficiently small.

As a simple demonstration, we will first use equation A.4 to obtain the master
equation for the case of a single qubit in a photon bath at zero temperature. Consider

't should be noted equation A.4 relies on the secular approximation, which involved discarding of
terms of the form e*(/ _ek)t, Ve; # ey. This elimination is justified when the frequencies determined by
the system Hamiltonian,|e; — e| are much higher that the relaxation rate of the system. This condition

is met provided the dipole operator D is sufficiently small.
“More precisely, the weak coupling condition does not require the bath to be free of excitations due

to the coupling. It does require the state of the bath to be approximately constant in the coarse grained
time of the system. This means that excitations in the bath, should they occur, are assumed to vanish
due to the bath thermalization before the the state of the system manages to change significantly.
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the following Hamiltonian and dipole operator,

Hg = wo 1) (1 (A.6)
D =d|0) (1] +d* [1) (0],

which give rise to the eigenoperator A (w) and Lamb shift Hyg,

A (wo) = [0) (0D [1) (1] = d|0) (1] = da (A.7)
Hps oca’a=1) (1| o Hg,

where w is the qubit energy splitting, d describes the transition dipole moment
between the states |0), |1), and a is the lowering operator. Since A (—wy) gives no
contribution to equation A.4, we shall not compute it. We would like to compute
the master equation in the rotating frame associated with the unitary transformation
U = ¢!HstHLs)t In this frame, the Hamiltonian part in equation A.4 (i.e. the first
term in the right hand side) vanish, however the operator A (w;) becomes time
dependent and takes the form,

et HsHHLS) A () e HsHHLs)t — gt (=01 (A.8)

Where () is defined by Hg + Hrs = 2|1) (1|. The exponent takes the form

S (1] 10) (0] + AL 1) (1, (A.9)

thus the transformed operator becomes,

(HHSTHLS) A (o) ¢~ HsHHLS)! (A.10)

= d (0) (0] + €™ |1) (1]) a (0) (0] + e~**|1) (1|) = dae™*.

We found that upon rotation, the ladder operator is simply multiplied by a time
dependent phase. Clearly, upon substituting the rotated ladder operators in equation
A.4, these phases cancel out, and the non-Hamiltonian parts of the equation appear
to be invariant to the transformation U. Substituting the ladder operator and setting
the bath temperature to zero (i.e. n(w) = 0) yields the quantum optical master
equation for the qubit in the rotating frame, which is up to a constant,

d 1
PT Lp = apal — 3 {aTa,p} . (Aa11)
Using the identities aa® = |0) (0], afa = |1) (1], a® = 0, it is possible to verify

that the |0) state is a stationary state of equation A.11, while the |1) state decays
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exponentially to |0). This behavior resembles spontaneous decay, a process expected
to emerge at the current setting.

Now, in order to obtain a Lindbladian describing pairwise decay, we shall con-
struct the master equation for a pair of qubits that mutually interact with an (empty)
photon bath. Consider the Hamiltonian and the dipole operator for the two qubits,

H = Lo (1) (| @1+ 19[1) {1]) = Zwo (110} (10] + [01) (01]) + wo 11 1] (A12)

1
=0- Py + Z@o (Pro + Po1) + woPri1

®2
D = d[00) (11| + d*|11) (00| = d a®2 + d* (aﬁ) ,

where P,;, denotes a projection onto the two qubit state |ab) and d again denotes
a transition dipole moment, this time between the states |00) and |11). Note that
the Hamiltonian Hg is a sum of two single qubit Hamiltonians, and generates inde-
pendent evolution of the two qubits (i.e. it does not couple between the qubits).
However, the dipole operator D does not act separately on single qubits, and may
therefore generate coupling between them. Computing the eigenoperators A (w)
yields (as before, we will suffice in positive frequencies only),

1
A (2w0> = PO()D (P10 + P()l) + (PIO =+ P()l) DPH =0 (A.13)

A (WO) = PO()DP11 =d |00> <11| = da®2.

The Lamb shift Hamiltonian is thus,

®2
Hyg x (aT) a®? = Py, (A.14)

We now move to a rotating frame in which the Hamiltonian part in equation A.4
vanishes, and similarly to the previous example we find that the ladder operators
A (w) transform as,

e’i(H5+HLs)ta®2€—i(Hs+HLs)t — eiQta(X)Q, (A.].S)

which means that the non-Hamiltonian parts of equation A.4 remain invariant to
the rotation. Substituting the ladder operator in equation A.4 and imposing zero
temperature for the bath yields the master equation for the qubit pair in the rotating
frame, which is up to a constant,

d ®2 1 ®2 1 ®2
ap o Liap = a®?*p <aT) —3 (aT) a®?p — ip (aT) a®?. (A.16)
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