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We describe a macroscopic demonstration of quantized adiabatic transport coefficients using su-

perconductors coupled by Josephson junctions. The transport coefficients relate charges and

currents to changes in potential differences and loop fluxes. They have geometrical significance

and quantized average related to first Chem characters.

Recently, one of us (J.A.)' discussed the adiabatic
transport coefficients of coherent electron states with ap-
plications to mesoscopic normal electron systems. In mul-
tiply connected systems, the transport coefficients for the
charge transported around one loop due to a slow enough
change of the magnetic flux in a second loop have geome-
trical significance and have quantized averages related to
first Chem characters (i.e., the quantized integrals of
curvature associated with eigenfunction spaces). In nor-
mal electron systems it is difficult to estimate how slow the
changes must be to justify the adiabatic approximation.
In the present work we consider a macroscopic implemen-
tation using superconductors coupled by Josephson junc-
tions, where the adiabatic restriction might be expected to
be more easily satisfied. In addition, the experimental
feasibility can be estimated from recent experimental
work on the macroscopic quantum description.

We consider two classes of examples. In the first we
take a simple circuit of two superconductors connected by
two junctions, and study the transport of charge between
the superconductors as the chemical potential between
them is varied. For this network simple arguments lead to
explicit results for the quantized averages. We find that
exactly a unit charge is transferred between the supercon-
ductors each time the potential difference is raised by the
charging energy q /C. This result is related to recent
work on charging effects on the tunneling between small
conductors: our result is a fully coherent quantum ver-
sion of this phenomenon. More surprisingly, we find that
on averaging over the magnetic flux contained in the loop
the charge is carried entirely by the stronger link.

The second class of networks we briefly consider in-
volves more complex geometries, but now the quantized
transport coefficients relate charges carried around loops
to flux changes in other loops, analogous to the situation
of Ref. l.

Consider an array of superconductors coupled by

Josephson junctions. A chemical potential p, is associat-
ed with the vth superconductor and a gauge potential a, is
associated with the eth junction with a, the integral of the
vector potential across the junction. We allow the vectors
of chemical and vector potentials p. and a to depend adia-
batically on time. It is also useful to define loop fluxes +&

equal to the sum of the a, around each loop.
The response of the system to p. and a is in two parts: a

"persistent response" that is determined by It and a (and
the state of the system) alone and a "transport response"
that is proportional to the rates a and p. . The coe%cients
of proportionality are the transport coefficients. They
have geometric and topological significance, as is often the
case for adiabatic transport.

First we consider two finite superconductors coupled by
two Josephson junctions as in Fig. 1. The system is de-
scribed, quantum mechanically, by the Mathieu equation

2

H(p, ar, a2) = N +Nit+ Jr cos[8 —(q/hc)ar]

+J2cos[8 —(q/hc)a2] .

N= —ir)e is the num—ber transfer operator, 8 is the super-

FIG. 1. Two superconductors, one at chemical potential 0
and one at p, coupled by t~o Josephson junctions: Jl and J2.
The vector potentials, ai and a2, across the junctions are related
to the flux @& through the figure by N] =a 2

—a i.
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conducting phase difference, and q =2e is the pair charge.
C is the capacitance and J] 2 the coupling of the junctions.

We regard H(p, a&, a2) as a quantum Hamiltonian de-
pending on the three parameters p, a], and a2 and we
shall focus on the charge transported between the two su-
perconductors as the parameters p, a i, and a2 are varied
adiabatically. It is convenient, for notational purposes, to
treat the three parameters on equal footing so we let x be
the triplet (p, ai, a2). Similarly a, , j=0, 1, 2 denotes the
components of V„.

Let y(x) be a nondegenerate eigenfunction of H(x)
and E(x) the associated energy. It was pointed out by
Berry that for a closed loop in parameter space, the adia-
batic evolution gives rise to a geometric phase: the adia-
batic holonomy. It is also known that in the case of the
Hall effect the adiabatic holonomy is related to the Hall
conductance. This view leads to topological interpretation
of the (integer) quantum Hall effect, relating the integers
to first Chem characters. Our purpose here is to extend
this approach to junctions. Thus, first we want to identify
the transport coefficients related to the adiabatic holono-
my and second to determine the Chem characters.

The answer to the first question comes from focusing on
the right observables. The observables V„H turn out to
have transport coefficients related to the adiabatic holono-
my, as we shall presently see. For the case at hand

1 1VH= N, —I]—I2
C C

qN =q(i/6) [H(x),N] =I&+I2. (3)

As well shall show below, this simple fact, together with
Eq. (2), determines the Chem characters and so the aver-
age transport coefficients. This concludes the geometric
part of the problem.

The topological aspect comes from combining the
geometric aspect, together with the fact that parameter

~here I ~ 2
= (qJ&, z/Ii ) sin [0—(q/A c )a

& z] are the Joseph-
son currents through the junctions.

An easy computation from the time-dependent
Schrodinger equation gives

(y~ (a,H)
~ y) =a,E+g~k(t)~k, (x),

k

k, ( )—= h((ak~~a, ~) t,a, ~~aky))-.

This is the basic equation of the theory of adiabatic
response. It may be viewed as a generalization of the
Feynman-Hellman theorem to the adiabatic, time-
dependent Hamiltonian. The term (a~E) is the persistent
response in the sense that it is the response when x—:0;
tpkj(x) are the adiabatic curvatures and are identified as
the transport coefficients since the response is proportional
to their product with the rate of change of the parameters
x(t). Note that cokj(x) is, by Eq. (2), an antisymmetric
matrix. For the case at hand to~2(x) has the physical
significance of conductance for it relates currents to volt-
ages, whereas top~(x) and tpp2(x) relate charges to volt-
ages (or equivalently, currents to voltage rates).

The three operators V„H are related: the Heisenberg
equation for n is the equation for charge conservation

space can be viewed as a torus. This is clearly the case for
the a~ 2 since H(x) is periodic in a~ 2 with period of the
quantum flux 2n(h, c/q). The Hamiltonian H(x) is, of
course, not periodic in p (it is linear). The basic period in

p is determined by

q /C can be viewed as a period because the last term on
the right-hand side of Eq. (4) is a c number. It follows
that

E(p, ai, a2) E(p+q /C, ai, ai)+(q /2C)+p.
This structure makes the cok~. periodic up to a complete
derivative.

It is natural to consider paths in x space that connect
points that diA'er by a period. In particular, for an adia-
batic path where p increases by a period. Equations (2)
and (5) combine to give

(y~ N
~ y)(p+q /C, a&,a2) —(y ~

N
~ y)(p, ai, a2) -1.

(6)

So, a single quasiparticle is transported between the two
superconductors. Note that the individual terms,
(y ~

N
~
y)(x), on the left-hand side of Eq. (6), need not be

integers, only the difference is.
Equation (6) can now be used to relate top&(x) and

tpp2(x). This is because the transported charge can be
computed also by integrating Eq. (3) over time, and then
using Eq. (2). One finds

t' p+ (q 2/C)
dp [topi(x)+coo2(x)] -q/c (7)

and we have used the fact aiE+a2E =0 since E(x) is
only a function of a i

—a2, the flux in the loop.
Equation (7) is, of course, not sufficient in order to

determine cop~(x) and Cop2(x). However, as we now show,
combined with a topological deformation argument, it
determines the periods (cop~) and (tpp2).

The periods (tojk) are defined by

(COJ'k) = dxj'dxkCOJk (X), (s)

where the integration is over a single period, and so (totk)
are closely related to averages. The periods are first
Chem numbers and are quantized to be integer multiples
of 2xh. Notice that (co~k) is a function of xt with j, k, and
l distinct.

It is a property of the Mathieu equation (1), that for
J~eJ2, no eigenvalues cross. [The eigenvalues are con-
sidered as functions of (p, ai, a2)]. The (tojk), being first
Chem characters, can only jump at crossings. Since there
are none, we can deform the subdominant J to zero
without affecting the &tojk). Combining this with Eq. (7)
gives

0 &f Jl+ J2
(cop()(a2) - t 2xh if J] & Jp.

This says that as p increases by a period, (q /C), the sin-

e ' H(p, a~, a2)e' H(p+q /C, ai, a2) +(q /2C+p),

(4)
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E
+ g J;cos [i9, —(e/h c)a, ],

R 1

(10)

with N the vector of number operators for the vertices, C
the Vx V capacitance matrix with ~ & C & 0 and
(p, N) g;-ip;N;. Also, 0, is the phase difference
8„—O„between vertices connected by the edge e. The
Iluxes in each loop are defined by @t pt ~ta, and as
above are the important magnetic variables. The Hamil-
tonian is periodic in the fluxes a, with period of one flux
quantum. The adiabatic curvatures co~2 for the loops asso-
ciated to the fluxes @~ and N2, are transport coefficients
relating the loop current I in loop 1 to flux changes @2 in
loop 2. The quantized values for the periods (to&2)
=fco&2d@td@2 correspond to quantized values for the
charge carried around loop 1 due to a change of flux by
one flux quantum in loop 2, when averaged over a period
of the flux in loop 1:

Q~ =„ Itdt c tot2d@2=integerxe,

where the bar corresponds to an average over @~. The in-
teger in Eq. (11) must be calculated for each network,
and set of parameters (e.g. , @3 in Fig. 2). If all the p; are
equal, the Hamiltonian (10) is real and the integers are

gle charge transported between the two superconductors,
goes, on the average (over ai), through the dominant
junction. This is remarkable for the (0,2ttttt) dichotomy
hold even if J~ and J2 are very close.

It is clear that an analogous result to Eq. (9) holds for
(too2). By a different, but related, argument, one shows
that (tot2) 0 so that all the Chem characters for this
equation can be determined without explicitly solving the
eigenvalue problem (1). The method we have used to
derive Eq. (9) is related to a Galilean invariance argu-
ment, used in Ref. 8 to determine the Chem numbers for
commensurate and incommensurate problems. We may
extend the argument to determine all the Chem numbers
associated to two superconductors coupled by an arbitrary
number of junctions. Similar results hold for the tight-
binding model associated with Fig. 1.

For more general networks of V vertices connected by E
edges such as Fig. 2 the Hamiltonian is the natural gen-
eralization of (1),

H(p, a) =
2 (N, C ', N)+(p, N)

1

4r OJ

FIG. 2. More complicated network of three superconductors,
five junctions and three Auxes.

zero. This case corresponds to a charge-conjugation sym-
metry. It is necessary to break this symmetry by imposing
diferent p; to get a nonzero integer.

We hope that these eA'ects may be observed experimen-
tally. Here we briefly discuss requirements for them to be
observable in principle, without inquiring about the prac-
tical feasibility, although we are encouraged by recent ex-
periments observing single electron charging phenomena.
The theory requires that the rate of change 0 in the vari-
ables is slo~ enough so that the adiabatic approximation
holds, but fast enough that the macroscopic quantum
description (1) or (10) is a good description (e.g. , incoher-
ence eA'ects from coupling to microscopic degrees of free-
dom are small). The scale of the energy gaps in (1) or
(10) limits the maximum rate of change and is of order
the "Josephson plasma frequency" co —v JC/e . In ex-P
periments by Devoret, Martinis, and Clarke (to~/2tt) was
of order 5x10 Hz. We can bound the incoherence rate
I =~ ' with i the quantum coherence time by the lowest
observed tunneling rate out of the lowest level in a current
biased junction, which is well described by the macroscop-
ic Hamiltonian. This gives I ~2x10 Hz leaving a large
range 10 Hz ~ 0 &10 Hz for the approximations to be
good.
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