Geometry of Qubits

A picture book

J Avron, O. Kenneth

June 18, 2018

Bloch sphere and ball

Is it a good guide for many qubits?

- Bloch sphere: $\mathbf{x} \in \mathbb{R}^{3}$

$$
\rho=\frac{\mathbb{1}+\boldsymbol{\sigma} \cdot \mathbf{x}}{2}, \quad|\mathbf{x}|= \begin{cases}1 & \text { pure states } \\ <1 & \text { mixed } \\ >1 & \text { not positive }\end{cases}
$$

- Pauli matrices: $\sigma_{\mu}, \quad \mu=0, \ldots, 3$

Geometry of n qubits:

- Live in huge dimensions
- Not n Bloch balls
- Not a high D ball

Bloch sphere and ball

Is it a good guide for many qubits?

- Bloch sphere: $\mathbf{x} \in \mathbb{R}^{3}$
$\rho=\frac{\mathbb{1}+\sigma \cdot \mathbf{x}}{2}, \quad|\mathbf{x}|= \begin{cases}1 & \text { pure states } \\ <1 & \text { mixed } \\ >1 & \text { not positive }\end{cases}$
- Pauli matrices: $\sigma_{\mu}, \quad \mu=0, \ldots, 3$

Geometry of n qubits:

- Live in huge dimensions

- Not n Bloch balls
- Not a high D ball

n-qubits: Separable and Entangled

Convex sets and extreme points

Bengtsson \& Zyczkowski

- n qubits, $\operatorname{dim} \mathcal{H}=2^{n}=N$
- Extreme points=Pure states
- Entangled \cup Separable $=$ States

States

Convex

Extreme points: Tiny part of boundary
Separable \subset States

n-qubits: Separable and Entangled

Convex sets and extreme points

Bengtsson \& Zyczkowski

- n qubits, $\operatorname{dim} \mathcal{H}=2^{n}=N$
- Extreme points=Pure states
- Entangled \cup Separable $=$ States

	Separable	States
Extreme	$\underbrace{\|\psi\rangle\langle\psi\|}_{n_{1}-\text { qubits }} \otimes \underbrace{\|\phi\rangle\langle\phi\|}_{n_{2} \text {-qubits }}$	$\underbrace{\|\Psi\rangle\langle\psi\|}_{n-\text { qubits }}$
Convex	$\sum p_{j}\left\|u_{j}\right\rangle\left\langle u_{j} \mid Q_{j}\right\rangle\left\langle o_{j}\right\| \sum p_{j}\left\|\psi_{j}\right\rangle\left\langle\psi_{j}\right\|$	

Extreme points: Tiny part of boundary
Separable \subset States

n-qubits: Separable and Entangled

Convex sets and extreme points

- n qubits, $\operatorname{dim} \mathcal{H}=2^{n}=N$
- Extreme points=Pure states
- Entangled \cup Separable $=$ States

Separable	States	
Extreme	$\underbrace{\|\psi\rangle\langle\psi\|}_{n_{1} \text {-qubits }} \otimes \underbrace{\|\phi\rangle\langle\phi\|}_{n_{2} \text {-qubits }}$	$\underbrace{\|\Psi\rangle\langle\Psi\|}_{n-\text { qubits }}$
Convex	$\left.\sum p_{j}\left\|\psi_{j}\right\rangle\left\langle\psi_{j}\right\| \otimes\left\|\phi_{j}\right\rangle\left\langle\phi_{j}\right\|\left\|\sum p_{j}\right\| \Psi_{j}\right\rangle\left\langle\psi_{j}\right\|$	

Extreme points: Tiny part of boundary
\qquad

n-qubits: Separable and Entangled

Convex sets and extreme points
Bengtsson \& Zyczkowski

- n qubits, $\operatorname{dim} \mathcal{H}=2^{n}=N$
- Extreme points=Pure states
- Entangled \cup Separable $=$ States

	Separable	States
Extreme	$\underbrace{\|\psi\rangle\langle\psi\|}_{n_{1}-\text { qubits }} \otimes \underbrace{\|\phi\rangle\langle\phi\|}_{n_{2}-\text { qubits }}$	$\underbrace{\|\Psi\rangle\langle\psi\|}_{n-\text { qubits }}$
Convex	$\left.\sum p_{j}\left\|\psi_{j}\right\rangle\left\langle\psi_{j}\right\| \otimes\left\|\phi_{j}\right\rangle\left\langle\phi_{j}\right\|\left\|\sum p_{j}\right\| \psi_{j}\right\rangle\left\langle\psi_{j}\right\|$	

Extreme points: Tiny part of boundary

Separable \subset States

$\operatorname{dim}($ pure $)=O(N)$

States in Pauli basis

- Pauli basis: $\sigma_{\mu}=\sigma_{\mu_{1}} \otimes \cdots \otimes \sigma_{\mu_{n}}$

States: Pauli basis

- $\rho=\frac{\mathbb{1}+\sqrt{N-1} \mathbf{x} \cdot \boldsymbol{\sigma}}{N}, \quad \mathbf{x} \in \mathbb{R}^{N^{2}-1}$
- Pure states $\Longrightarrow|x|=1$ (but not \Longleftarrow)
- Fully mixed: $x=0$
- States $\subset\{|x| \leq 1\}$

States in Pauli basis

Pure states sit on unit, $O\left(N^{2}\right)$, sphere

Horodecki, Shor, Zyczkowski, ...

- Pauli basis: $\sigma_{\mu}=\sigma_{\mu_{1}} \otimes \cdots \otimes \sigma_{\mu_{n}}$

States: Pauli basis

- $\rho=\frac{\mathbb{1}+\sqrt{N-1} \mathbf{x} \cdot \sigma}{N}, \quad \mathbf{x} \in \mathbb{R}^{N^{2}-1}$
- Pure states $\Longrightarrow|\mathbf{x}|=1$ (but not \Longleftarrow)
- Fully mixed: $\mathbf{x}=0$
- States $\subset\{|\mathbf{x}| \leq 1\}$
$\operatorname{dim}($ sphere $)=O\left(N^{2}\right)$

Convex but not symmetric

Complicated shape

- $0 \leq N \operatorname{Tr}\left(\rho \rho^{\prime}\right)=1+(N-1)\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)$
- $\mathbf{x} \cdot \mathbf{x}^{\prime} \geq-\frac{1}{N-1}$
- $\{|\mathbf{x}| \leq O(1 / N)\} \subset$ States

Convex but not symmetric

Complicated shape

- $0 \leq N \operatorname{Tr}\left(\rho \rho^{\prime}\right)=1+(N-1)\left(\mathbf{x} \cdot \mathbf{x}^{\prime}\right)$
- $\mathbf{x} \cdot \mathbf{x}^{\prime} \geq-\frac{1}{N-1}$
- Antipode $|\psi\rangle\langle\psi|$

$$
\underbrace{\frac{\mathbb{1}-|\psi\rangle\langle\psi|}{N-1}}_{\text {rank }=N-1}
$$

- $\{|\mathbf{x}| \leq O(1 / N)\} \subset$ States

Orthogonal basis balanced on ($\mathrm{N}-1$)-sphere

States almost lie in a quadrant

- Orthogonal basis

$$
\mathbf{x}_{j} \cdot \mathbf{x}_{k}=-\frac{1}{N-1} \Longrightarrow \sum \mathbf{x}_{j}=0
$$

- Lie essentially in a quadrant

$$
\mathbf{x} \cdot \mathbf{x}^{\prime} \geq-\frac{1}{N-1} \approx 0
$$

Two qubits: $n=2, N=4$

- $\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{4}\right)$ span tetrahedron

Orthogonal basis balanced on ($\mathrm{N}-1$)-sphere

States almost lie in a quadrant

- Orthogonal basis

$$
\mathbf{x}_{j} \cdot \mathbf{x}_{k}=-\frac{1}{N-1} \Longrightarrow \sum \mathbf{x}_{j}=0
$$

- Lie essentially in a quadrant

$$
\mathbf{x} \cdot \mathbf{x}^{\prime} \geq-\frac{1}{N-1} \approx 0
$$

Two qubits: $n=2, N=4$

- $\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{4}\right)$ span tetrahedron

2 Qubits: Generic 2 D section in \mathbb{R}^{15}

Misses pure states

- Random, orthonormal pair

$$
\begin{array}{r}
\hat{\mathbf{u}}, \hat{\mathbf{v}} \in \mathbb{R}^{15} \\
|\hat{\mathbf{u}}|=|\hat{\mathbf{v}}|=1, \hat{\mathbf{u}} \cdot \hat{\mathbf{v}}=0
\end{array}
$$

- 2D section: $x \hat{\mathbf{u}}+y \hat{\mathbf{v}} \in \mathbb{R}^{15}$
- Misses pure states

2 Qubits: 2D section in \mathbb{R}^{15}

Generic section through pure states

- Random pure $|\psi\rangle,|\phi\rangle \in \mathbb{C}^{4}$
- Orthonormal:

$$
\langle\psi \mid \psi\rangle=\langle\phi \mid \phi\rangle=1, \quad\langle\psi \mid \phi\rangle=0
$$

- 2D section: $x|\psi\rangle\langle\psi|+y|\phi\rangle\langle\phi|$

Two dimensional sections: $n \gg 1$

Tiny squares and circles

- $0 \leq \mathbb{1}+\sqrt{N-1} \mathbf{x} \cdot \boldsymbol{\sigma}$
- 2-d section $\mathbf{x} \cdot \boldsymbol{\sigma}=x \sigma_{\mu}+y \sigma_{\beta}$
- $\sigma_{\mu} \sigma_{\beta}= \pm \sigma_{\beta} \sigma_{\mu}$

$$
\operatorname{Spec}\left(x \sigma_{\mu}+y \sigma_{\beta}\right)= \begin{cases} \pm \sqrt{x^{2}+y^{2}} & - \\ \{ \pm(x \pm y)\} & +\end{cases}
$$

Two dimensional sections: $n \gg 1$

Tiny squares and circles

- $0 \leq \mathbb{1}+\sqrt{N-1} \mathbf{x} \cdot \boldsymbol{\sigma}$
- 2-d section $\mathbf{x} \cdot \boldsymbol{\sigma}=x \sigma_{\mu}+y \sigma_{\beta}$
- $\sigma_{\mu} \sigma_{\beta}= \pm \sigma_{\beta} \sigma_{\mu}$

$$
\operatorname{Spec}\left(x \sigma_{\mu}+y \sigma_{\beta}\right)= \begin{cases} \pm \sqrt{x^{2}+y^{2}} & - \\ \{ \pm(x \pm y)\} & +\end{cases}
$$

Tiny cross section

$$
O\left(\frac{1}{\sqrt{N}}\right)
$$

3D sections: 2 Qubits

Section through 4 Bell states

- Section through Bell

$$
\mathbf{x} \cdot \boldsymbol{\sigma}^{\otimes 2}=\sum_{j=1}^{3} x_{j} \sigma_{j} \otimes \sigma_{j}
$$

- $\sigma_{j}^{\otimes 2}$: Commuting with relation

3D sections: 2 Qubits

Section through 4 Bell states

- Section through Bell

$$
\mathbf{x} \cdot \boldsymbol{\sigma}^{\otimes 2}=\sum_{j=1}^{3} x_{j} \sigma_{j} \otimes \sigma_{j}
$$

- Positivity:

$$
\mathbb{1}+\sqrt{3} \mathbf{x} \cdot \sigma^{\otimes 2} \geq 0
$$

- $\sigma_{j}^{\otimes 2}$: Commuting with relation

$$
\sigma_{1}^{\otimes 2} \sigma_{2}^{\otimes 2} \sigma_{3}^{\otimes 2}=-\mathbb{1}
$$

$$
\pm x_{1} \pm x_{2} \pm x_{3} \leq \frac{1}{\sqrt{3}}
$$

3D Entanglement: Separable states

Octahedron=Intersection of tetrahedra

- Partial Transpose

$$
\sigma_{j} \otimes \sigma_{k} \mapsto \sigma_{j} \otimes \sigma_{k}^{t}
$$

- Peres test
$\rho_{s} \in$ Separable $\Longrightarrow \rho_{s}^{P T} \geq 0$

Platonic

- States: Tetrahedron,
- Separable=Octahedron
- Witnesses=Cube

3D Entanglement: Separable states

Octahedron=Intersection of tetrahedra

- Partial Transpose

$$
\sigma_{j} \otimes \sigma_{k} \mapsto \sigma_{j} \otimes \sigma_{k}^{t}
$$

- Peres test
$\rho_{s} \in$ Separable $\Longrightarrow \rho_{s}^{P T} \geq 0$

Platonic

- States=Tetrahedron,
- Separable=Octahedron
- Witnesses=Cube

Cross section vs equivalence classes

Relation to work of Horodecki

- LOCC: States/SU(2) $\otimes S U(2)$
- Fully mixed subsystems

$$
\operatorname{Tr}_{A \rho}=\operatorname{Tr}_{B} \rho=\frac{1}{2} \mathbb{1}
$$

- $|00\rangle\langle 00|$ out of diagram

Cross section vs equivalence classes

Relation to work of Horodecki

- LOCC: States/SU(2) $\otimes S U(2)$
- Fully mixed subsystems

$$
\operatorname{Tr}_{A \rho}=\operatorname{Tr}_{B} \rho=\frac{1}{2} \mathbb{1}
$$

- $|00\rangle\langle 00|$ out of diagram

Bloch ball: $S U(2)$ equivalent to interval

n dim Clifford: section

$$
\left\{\sigma_{\mu}, \sigma_{\beta}\right\}=2 \delta_{\alpha \beta}
$$

- $\rho \geq 0 \Longrightarrow \mathbb{1}+\sqrt{N-1} \mathbf{x} \cdot \sigma \geq 0$

$$
(\mathbf{x} \cdot \boldsymbol{\sigma})^{2}=\sum x_{j} x_{k} \sigma_{j} \sigma_{k}=\mathbf{x}^{2} \mathbb{1}
$$

- Spectrum $(\mathbf{x} \cdot \boldsymbol{\sigma})= \pm|\mathbf{x}|$

Clifford section: Tiny n-ball

n dim Clifford: section

$$
\left\{\sigma_{\mu}, \sigma_{\beta}\right\}=2 \delta_{\alpha \beta}
$$

- $\rho \geq 0 \Longrightarrow \mathbb{1}+\sqrt{N-1} \mathbf{x} \cdot \sigma \geq 0$

$$
(\mathbf{x} \cdot \boldsymbol{\sigma})^{2}=\sum x_{j} x_{k} \sigma_{j} \sigma_{k}=\mathbf{x}^{2} \mathbb{1}
$$

- Spectrum $(\mathbf{x} \cdot \boldsymbol{\sigma})= \pm|\mathbf{x}|$

Clifford section: Tiny n-ball

$$
|\mathbf{x}| \leq \frac{1}{\sqrt{N-1}}
$$

Dvoretzki Milman theorem

Generic low dimensional section are balls

Theorem

A generic $O(n)$ dimensional section through 0 of a convex body in \mathbb{R}^{N}, containing 0 is approximately the n-ball

- Example: Random 2D sections of unit

Dvoretzki Milman theorem

Generic low dimensional section are balls

Theorem

A generic $O(n)$ dimensional section through 0 of a convex body in \mathbb{R}^{N}, containing 0 is approximately the n-ball

- Example: Random 2D sections of unit cube in \mathbb{R}^{N}

Application to quantum states

Szarek

- $N=2^{n} \gg n \gg 1$.
- Can we say more
- Bare hands

Generic ray

Connection with Random matrix theory

- $\mathbb{1}+\sqrt{N-1} \mathbf{x} \cdot \sigma \geq 0$
- $\hat{\mathbf{x}} \in \mathbb{R}^{N^{2}-1}$ vector in random direction
- $\hat{\mathbf{x}} \cdot \boldsymbol{\sigma}=$ Random matrix
- Wigner semi-circle law
- Radius $=O\left(\frac{1}{\sqrt{N}}\right)$,

Spectrum $(\hat{\mathbf{x}} \cdot \boldsymbol{\sigma})$

Cross sections with $D \ll N$; States: a tiny ball

Generic ray

Connection with Random matrix theory

- $\mathbb{1}+\sqrt{N-1} \mathbf{x} \cdot \sigma \geq 0$
- $\hat{\mathbf{x}} \in \mathbb{R}^{N^{2}-1}$ vector in random direction
- $\hat{\mathbf{x}} \cdot \sigma=$ Random matrix
- Wigner semi-circle law
- Radius $=O\left(\frac{1}{\sqrt{N}}\right)$,

Spectrum $(\hat{\mathbf{x}} \cdot \boldsymbol{\sigma})$

Cross sections with $D \ll N$; States: a tiny ball

$$
\text { Radius }=O\left(\frac{1}{\sqrt{N}}\right)
$$

Unbound entangled states

Connection to Tracy-Widom

Spectrum $(\hat{\mathbf{x}} \cdot \boldsymbol{\sigma})$

- Peres: Reflection symmetry test
- Balls: Reflection symmetric
- Statistics of extreme eigenvalues:
- Tracy-Widom

- Small relative width $O\left(N^{-2 / 3}\right)$

Unbound Entanglement needs fine tuning

Ball is mostly empty

Most of the orange is its skin

Euclidean volume: super-exponentially small

Available volume unbound entanglement $\left(1+N^{-2 / 3}\right) N \sim e^{N^{1 / 3}}$

Ball is mostly empty

Most of the orange is its skin

Euclidean volume: super-exponentially small

Available volume unbound entanglement $\left(1+N^{-2 / 3}\right)^{N} \approx e^{N^{1 / 3}}$

States and Witnesses

- Witnesses

$$
\operatorname{Tr}\left(W \rho_{\text {separabale }}\right) \geq 0
$$

- Swap

$$
S|\psi\rangle \otimes|\phi\rangle=|\phi\rangle \otimes|\psi\rangle
$$

Witnesses \supset States \supset Separable

- Witnesses NOT positive

$S L(2, \mathbb{C})$ equivalence

 Invariants- Equivalence

$$
W^{M N} \cong M \otimes N W M^{\dagger} \otimes N^{\dagger}, \quad M, N \in S L(2, \mathbb{C})
$$

- Invariants

$$
\operatorname{det} W, \quad \text { Spectrum }\left(W^{\star} W\right), \quad W^{\star}=\sigma_{2}^{\otimes 2} W^{t} \sigma_{2}^{\otimes 2}
$$

Theorem

- $\min _{M N} \operatorname{Tr} W^{M N} \exists$
- Minimizer: $\sum W_{\mu} \underbrace{\left|\sigma_{\mu}\right\rangle\left\langle\sigma_{\mu}\right|}_{\text {Bell }}$
- $W_{0} \geq W_{1} \geq W_{2} \geq\left|W_{3}\right| \geq 0$

Visualizing 2 qubits

4D representation

$$
\rho_{\mu}^{2}=\text { Eigenvalues }\left(\rho^{\star} \rho\right)
$$

$$
1 \geq \rho_{0} \geq \ldots \rho_{3} \geq 0, \quad \sum \rho_{\mu} \leq 1
$$

4 Stokes like parameters

Faithful to entanglement
Verstraete et. al. , Wootters

$$
\begin{array}{rlc}
\sum \rho_{\mu}=1 & \Longleftrightarrow & \text { Fully mixed subsystems } \\
\rho_{0}-\rho_{1}-\rho_{2}-\rho_{3} & \Longleftrightarrow & \text { Entanglement measure } \\
\rho_{0} \neq 0, \quad \rho_{1}=\rho_{2}=\rho_{3}=0 & \Longleftrightarrow & \text { Pure state } \\
\rho=0 & \Longleftrightarrow & \text { Pure product }
\end{array}
$$

Illustration

Entangled photons from quantum dot
Gershoni et. al.

Tomography: 16 opaque numbers Stokes: transparent

References

- Leinaas, Myrheim and Ovrum, PRA
- Verstraete, Dehaene and De Moor, PRA
- Wootters, PRL
- Avron Kenneth, AP
- Bengtsson and Zyczkowski Geometry of quantum states
- Aubrun and Szarek Alice and Bob Meet Banach

