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1 What is information?

Like “work”, “heat” “temperature” and “energy” information is a notion
that existed before it was given a precise scientific meaning. The scientific
definition allows quantifying the concept at the price that it does does not
always coincide with the common meanings. In particular, we shall not be
able to say “How much information is in the bible” or in Newton’s Principia.
However, it allows to compress and transmit data without losing information,
to encode information in noisy channels and recover from errors.

Information theory quantify how much you learned getting the string x.
You may view its as a measure of the “surprise” in the message. The surprise
is bigger the larger the panorama of messsages that you expect to receive.

Example 1.1. Prof. X flunks every student and Prof. Y passes every
one. In either case, if you know which professor gave the grade, there is no
information in the grade itself. At least not about the student. But, if you
do not know which Professor gave the grade then there is information in the
grade, if not about the student’s knowledge then about the professor.

2 Kolmogorov Complexity

A conceptually nice definition of the information content of a list x, is the
Kolmogorov Complexity, K(x)

K(x) = Length of the shortest algorithm that generates x (2.1)

For example the information given by the string of the first million digits of

π = 3.1415926 . . . (2.2)

can be encoded in a short program, shorter than a million characters, for
computing π to this accuracy.

The problems with this definition is that there is no algorithm for com-
puting or even estimating K(x).

Kolmogorov assigns high complexity to a (given) random string. In a
truely random string there is, essentially, by definition, no deterministic al-
gorithm to fix it. The best you can do is list the original string. We see that
this definition does not attempt to analyze the content of the string x, decide
if it is nonsense or profound.
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3 Entropy in statistical mechanics

Boltzman defined the entropy as the number of microscopic states available
consistent with thermodynamic information, such as total energy (or tem-
perature), volume (or pressure) etc. Inscribed on his grave is his formula

S = kB lnW (3.1)

From now on we shall use unit so that kB = 1.
Consider a large one dimensional system of n “atoms” located at sites

j ∈ 1, . . . , N . Each “atom” can be in m different energy states, labeled by x

x ∈ 1, . . . ,m (3.2)

A microscopic configuration tells you the state of each atom

x(1) . . . x(n) (3.3)

There are
mN = eN lnm (3.4)

microscopic configurations and the associated entropy with such a system
(which corresponds to the case where T =∞) is

S = kBN lnm = (kB ln 2)N logm (3.5)

Where log is in base 2. From now on we shal use units where

kB ln 2 = 1 (3.6)

so entropy is simply
S = N logm (3.7)

Now suppose the temperature is finite and I give you the thermodynamic
characterization of this system by telling you the fraction of atoms in state s

pE(x) =
#atoms in energy state x

N
(3.8)

There is a large number of microscopic configurations compatible with the
given p(x), corresponding to permuting the positions of the “atoms”.

To compute S in this case is a problem in combinatorics and the answer
turns out to be

S(E) = −N
m∑

x=1

pE(x) log pE(x), (3.9)
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The entropy is extensive as it must be.
This may be taken as a motivation to define a generalization of the notion

of entropy to any probability distribution PX(x), that need not be associated
with energy states. In the application to communication

PX(x) (3.10)

will normally be the probability distribution for letters in an alpha-bet, and
the microscopic configuration is a string of text. The Shannon information
associated with PX is,

H(PX) = −
m∑

x=1

pX(x) log pX(x), (3.11)

and by convention
0 log 0 = lim

x→0
x log x = 0 (3.12)

Let me derive this result in the simplest case m = 2. The number of
microscopic configurations corresponding to Np atoms being in s = 1 and
(1− p)N atoms in s = 2 is(

N

pN

)
=

N !

(pN)!((1− p)N)!
(3.13)

According to Boltzman, the entropy is

S = log

(
N

pN

)
(3.14)

Stirling formula says that

logN ! = N(logN − 1) +O(logN) (3.15)

When N is large, it is a good (relative) approximation to keep the terms on
the left. Doing so you will find by simple algebra

S = −N (p log p+ (1− p) log(1− p)︸ ︷︷ ︸
−H2(p)

+O(logN) (3.16)

We shall drop the O(logN) from now on. However,it sometimes useful to
remember that this is an approximation, for example, when you think you
discovered a logical inconsistency in the theory taken literally, check that the
inconsistency is not a consequence of going beyond the approximation.
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Figure 1: H2(p) is a concave function of p, symmetric about p = 1/2 where
H2(1/2) = 1.

4 Shannon entropy and communication the-

ory

e is the most common letter in English with frequency of about 13%. Wikipedia
gives the frequencies of all letters. In a large text, you’d expect it to obey
these frequencies. We can now play the game we did with the string of atoms
with a string of letters and ask for the entropy associated with all strings that
satisfy the frequency constraint. A microscopic configuration is then the ana-
log of a string of letters and the Shannon entropy is a measure of how many
different text of length N you have. It is, of course, exponentially big

O
(
2NH

)
(4.1)

You may argue that it is more reasonable to treat all configurations of atoms
on equal footing than treat on equal footing all strings of texts. After all
most strings will be meaningless. Surprisingly, this turns out to be a fruit-
ful starting point. It turns out that it is best not to try to “understand”
messages, but instead focus on their statistical properties.

Indeed, some messages are corrupted and others are encrypted and fo-
cusing on the meaning turns out to lead nowhere. Shannon allows for much
flexibility in choosing the probabilities PX and the alphabet according to
circumstances.

Example 4.1. A pool has N lists.

• Suppose the probability of receiving any of the lists is the same p(x) =
1
N

. The entropy is

H = −N × 1

N
log

1

N
= logN ≡ n
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Since you can encode the N members of the list by an integer, which
you can write with n binary digit the information you got is naturally
quantified by n.

You may wonder why is it useful to have freedom in choosing PX . Here
is an example.

Example 4.2. Alice can encode 4 pieces of data in two bits by choosing
probabilities equal

PA(a, b) =
1

4
, a, b ∈ 0, 1 (4.2)

leading to
H(PA) = log 4 = 2 (4.3)

expressing the fact that each of the four messages

00, 01, , 10, 11 (4.4)

are equally likely.
Now suppose Alice is worries about the possibility of errors in data trans-

mission and to safeguard against error encode the logical bit by multiple bits,
e.g.

00 7→ 0, 11 7→ 1 (4.5)

Alice sends the logical 0 or 1 with equal probabilities

PB(a) = 1/2, a ∈ 0,1 (4.6)

The corresponding Shannon entropy is

H(PB) = log 2 = 1 (4.7)

expressing the fact that she only sends two messages with equal probability..

5 Typical sequences

Consider the list of N coin tosses made with a biased coin, with probability
p ≤ 1 for head and q = 1− p ≤ 1 for tail. When N is large, you expect

# heads = Np+O(
√
N) (5.1)

Strings of coin tosses with

|# heads−Np| � O(
√
N) (5.2)
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are extremely rare events when N is large. We shall forget about them.
These are the typical coin tosses.

We can partition the 2N string of head and tails into disjoint sets, obtained
by the typical N tosses of (infinitely) many different coins, each one with its
own bias, p1:

L(p, L) = {Typical N coin tosses of a coin with bias p } (5.3)

Clearly

all N strings of head and tail = ∪pL(p), L(p) ∩  L(p′) = 0 p 6= p′ (5.4)

Although all strings have N elements, some of them are richer than the others
in theh sense that they have many more different element. This richness is
measured by the entropy:

# distinct element in L(p, L) = O
(
2NH2(p)

)
If H(p) > H(p′) then

L(p, L) has exponentially more different elements than L(p′, L) (5.5)

There is greater richness, i.e. more information, in a list of N bits that comes
from an unbiased coin than from any list of the same length that comes from
a biased coin.

Shannon (lossless) compression theorem is basically:
The number distinct lists of length N with a given H(p) is the same, i.e.

in 1-1 correspondence, with the lists of length N ′ and H(p′) provided

NH(P ) = N ′H(p′) (5.6)

In particular, the shortest list is the one corresponding the the maximal en-
tropy H.

The theorem does not tell you how to compress a given string. It only
guarantees the existence of compression in the case that the entropy of the
lists is not already maximal.

One of the most famous and widely used compression algorithm is Lempel-
Ziv, which you may know as zip. It was the PhD work of Avraham Lempel
under the supervision of Jacob Ziv, both faculty members of the Technion.

1Since the mean is defined up to variance, p takes discrete values, e.g. pj = j/
√
N and

j ∈ 1 . . . ,
√
N .
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6 Basic properties of Shannon entropy

Let x be a random variable taking values in a set X. I shall write

PX(x) (6.1)

for the probability of the event x ∈ X and

H(X) = −
∑
x

PX(x) logPX(x) (6.2)

• The first basic property is

H(X) ≥ 0 (6.3)

This follows from the fact that each term in the sum is positive.

• The second basic property is

H(X) ≤ log |X| (6.4)

where |X| is the number of elements in X. The bound is saturated
when all events are equally probable

PX(x) =
1

|X|
(6.5)

• If we have two independent random variables PX and PY then define
the joint probability by

PXY (x, y) = PX(x)PY (y) (6.6)

It is a simple exercise to show that in this case the entropy is additive

H(X, Y ) = H(X) +H(Y ) (6.7)

• In the opposite limit when x determines y

PXY (x, y) = PX(x)δy,f(x) (6.8)

we find

H(X, Y ) =
∑
x,y

PXY (x, y) logPXY (x, y)

=
∑
x

PX logPX(x)

= H(X)

• It can be shown that, in general

H(X) ≤ H(X, Y ) ≤ H(X) +H(Y ) (6.9)

The left hand side is called monotonicity and the right hand side is
called sub-additivity.
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7 Mutual information and channel capacity

The most important concept in information theory is the mutual information
defined by

H(X : Y ) = H(X) +H(Y )−H(X, Y ) ≥ 0 (7.1)

(Positive by sub-additivity.)
In communication theory X is the random variable in the input and Y is

the random variable at the output. Real channels are noisy:

Example 7.1 (Noisy channel:). Suppose the channel is noisy so that a bit
a sent by Alice is transmitted faithfully to Bob with probability p ≥ 1/2 and
flipped with probability q = 1 − p ≤ 1/2. This situation is described by the
conditional probabilities:

PBA(b|a) = pδab + qδa6=b, a, b,∈ 0, 1 (7.2)

Suppose Alice sends the bits with equal portability

PA(0) = PA(1) = 1/2 =⇒ H(A) = 1 (7.3)

The joint probability can be computed by Bayes theorem

PAB(a, b) = PA(a)PBA(b|a) (7.4)

One finds

PAB(a, a) =
p

2
, PAB(a,¬a) =

q

2
, a ∈ 0, 1 (7.5)

and ¬ is not a.
PB is the marginal of PAB

PB(0) = PB(1) =
p+ q

2
=

1

2
=⇒ H(B) = 1 (7.6)

which is also clear by symmetry. The joint Shannon entropy is

H(A,B) = −p log
p

2
− q log

q

2
= H2(p) + 1

The mutual information is

H(A;B) = 2−H(A,B) = 1−H2(p) ≤ 1 (7.7)

The mutual information says that Alice and Bob need to exchange 1/H(A;B) ≥
1 physical bits in order to exchange one logical bit in this particular scheme.
However, it does not give a protocol to do that.
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The following example gives an example of a protocol:

Example 7.2 (Encoding and decodind). To fight the noise Alice encodes the
logical bit in 2 bits.

PA(0) = PA(1) = 1/2, a = aa, H(A) = 1 (7.8)

The channel acts as in the previous example

PAB(bb′|aa) = p2δabδab′ + pq (δabδa6=b′ + δa6=bδab′) + q2δa6=bδa6=b′ (7.9)

From this you can compute PAB

PAB(aa, aa) =
p2

2
, PAB(aa, a¬a) = PAB(aa,¬aa) =

pq

2
, PAB(aa,¬a¬a) =

q2

2

and the marginal

PB(aa) =
p2 + q2

2
, PB(a¬a) = pq

Bob decodes the message by keeping only the identical pairs and junking the
mistakes. This means he decodes the message not in bits but in trits (0, 1,J)
The conditional probabilities are

PAB(a|a) = p2, PAB(a|¬a) = q2, PAB(J|a) = pq, a ∈ 0,1

From this one computes the joint probabilities

PAB(a, a) =
p2

2
PAB(a,J) = pq, PAB(a,¬a) =

q2

2

and the marginals

PB(0) = PB(1) =
p2 + q2

2
, PB(J) = 2pq
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Now we turn to Shannon entropies. Since Bob can have 3 outcomes and
jointly there are 6 outcomes

0 ≤ H(B) ≤ log 3, 0 ≤ H(A,B) ≤ log 6 (7.10)

For the case at hand

H(B) = (p− q)2 − (p2 + q2) log(p2 + q2)− 2pq log pq

and

H(A,B) = (p2 + q2)− p2 log p2 − q2 log q2 − 2pq log pq

and mutual information

H(A;B) = 1− 2pq − p2 log
(
1 + (q/p)2

)
− q2 log

(
1 + (p/q)2

)
≤ 1

p

H(A;B)

1

.5 1

Figure 2: The blue line shows the mutual information in a pair of bits when
errors are discarded. The green line is the mutual information in the previous
example per two uses of the channel. It shows that the decoding and encoding
we have chosen are close to optimal near p = 1/2 but are far from optimal
near p = 1. For example, it may be better to encode and decode in triplets
a 7→ aaa with majority votes when an error occurs.
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8 Shannon coding theorem

The success of communication theory is due to the fact that one can correct
for errors of arbitrary long message. Even with N → ∞, errors can be
corrected (with high probability and provided the probability for error is not
too large). Shannon coding theorem says that:

You can transmit information through a noisy channel without errors
provided the rate 2 r is smaller than the channel capacity.

You might think a-priori that this must be impossible. If the message
has length N and there is probability of error p for each letter, then the
probability that the message is error free is exponentially small

pN → 0 (8.1)

Indeed, you expect to have
pN (8.2)

errors in the message. In fact, if the message is long enough all possible types
of errors will appear. For example if you try to encode the logical bits by a
triplet

0 7→ 000, 1 7→ 111 (8.3)

and then try to fix mistakes by majority vote

001 7→ 000, 010 7→ 000, etc. (8.4)

The method will fail when N is long enough. Indeed, the probability for two
and therr consecutive bits to err in a block of three bits is

P (2 errors) = 3pq2, P (three errors) = q3 q = 1− p (8.5)

Hence, if you send N blocks of 3 you’d expect to find

N(3p+ q)q2 = N(1 + 2p)q2 (8.6)

errors with majority voting.
How can you ever expect to be able to protect against all errors? That

arbitrarily long messages can be corrected for errors if the mutual information
is non-zero, was a crowning achievement of Shannon.

2See Rq. 10.3
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9 The geometric of error correction

We can identify a binary message of length N with a vertex of the unit cube
in RN . Here are two simple facts about the unit cube

• The total number of vertices is 2N

• Each vertex of the has (
N

R

)
(9.1)

neighbours at (Hamming) distance R

Hamming distance is the number of different bits in two strings of equal
length.

10 Code-words

To protect against errors we pick a subset of strings as legitimate code-words.
We want the Hamming distance between any two code-words is large so errors
will not confuse us between codewords. An message with an error will still
point to a single code-word, the one closest to it.

We pick 2R vertices with R < N , chosen as far form each other as possible.
These are our codewords.

Let us now compute the Hamming distance between codewords.
Each codeword is surrounded by a ball of radius P of junk vertices. The

number of junk vertices per code-word is

2N−R (10.1)

Since in high dimensions most points of the ball lie on its surface we get that

N −R ≈ log

(
N

P

)
≈ NH2(x), p =

P

N
(10.2)

This fixes the relation between R and P

r = 1−H2(p), p =
P

N
r =

R

N
(10.3)

The wonderful thing about this relation is that we get an equation for the
“intensive” quantities r and p, independent of N . r is a decreasing function
of p (for p < 1/2) as one expects.
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Figure 3: The vertices of the 3D cube represents the eight words of 3 bits. The
two red dots (0, 0, 0) and (1, 1, 1) are the two code words. They are separated
by Hamming distance 3. The blue dots represent errors at Hamming distance
1 from one of the code-words and can be corrected and Hamming distance 2
fro the other. These errors can be fixed.

11 Recovery from errors

If p is the probability of an error in each bit then there will be about pN
errors corresponding to each code-word. Since an error would increase the
Hamming distance by (at most) 1, errors in a code-word will lie in a ball of
radius P

P = pN (11.1)

around the code-word. It follows that for arbitrary long messages, one can
still recover from errors, provided we choose the code-words sparsely enough

R = rN (11.2)

with p and r as in Eq. 10.3. The larger the error rate p the fewer code-words
we pick. The message will get through error free no matter how large N is.
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