The advantage of quantum computers Deutsch algorithm

J Avron

July 26, 2018

Quantum mechanics is weird

Schrodinger's cat

The quantum world is different Superpositions

Qubit

A probabilistic logical bit

- Qubit
- Atoms with 2 levels
- Nuclei with spin $1 / 2$
- Polarization of photons
- Photon in a pair of fibers

Photon in a pair of optical fiber

Qubit: Answers True/False questions probabilistically

Superposition

Key to quantum behavior

- Superposition

Photon in a pair of optical fiber

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}
$$

- Schrodinger's cat

Spinning coin: Classical analog of a bit in superposition

Familiar superpositions

Polarization of photons

|R

- Horizontal/vertical polarized

$$
|H\rangle=|0\rangle, \quad|V\rangle=|1\rangle
$$

- Right/Left circular polarized

$$
|R / L\rangle=\frac{|H\rangle \pm i|V\rangle}{\sqrt{2}}
$$

Weird superpositions

Schrodinger's cat

Half silvered mirror:
Photons with schizophrenia

Superposition respects individuality

$$
|0\rangle \mapsto|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}, \quad|1\rangle \mapsto|-\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

Quantum mechanics is probabilistic

Always, only one detector clicks, randomly

Deterministic preparation, random clicks
Qubits: probabilistic logical bits
Answer True/False questions, sometimes lie

Classical and quantum probabilities

Classical probability: consequence of incomplete information.

$$
\operatorname{Prob}(0)=1 / 2, \quad \operatorname{Prob}(1)=1 / 2
$$

Quantum probabilities: emergent reality.

$$
\underbrace{\operatorname{Prob}(+)=1}_{\text {Reality }} \Longrightarrow \underbrace{\operatorname{Prob}(0)=1 / 2, \quad \operatorname{Prob}(1)=1 / 2}_{\text {emergent }}
$$

Interference

Superpositions are reversible

- $|0\rangle \mapsto|+\rangle \mapsto|1\rangle$
- $|1\rangle \mapsto|-\rangle \mapsto|0\rangle$

$$
|0\rangle \mapsto|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}} \mapsto \frac{(-|0\rangle+|1\rangle)+(|0\rangle+|1\rangle)}{2}=|1\rangle
$$

Vaidman Elitzur Bomb

Action at a distance

Qubit

Bloch sphere

Probabilistic logical bits

$$
\left.\operatorname{Prob}(0 \| \psi\rangle)=|\alpha|^{2}, \quad \operatorname{Prob}(1 \| \psi\rangle\right)=|\beta|^{2}
$$

Quantum circuit

Hadamard gate

$$
|0\rangle-H
$$

- $|0\rangle-H \quad|+\rangle$
- |1ो H
$|0\rangle-H \quad|+\rangle$
$|0\rangle-H$

Massive parallelism

Function gate

Massive parallelism alone is useless

- Binary function: $a \in \mathbb{Z}_{2}$
- $f: \mathbb{Z}_{2} \mapsto \mathbb{Z}_{2}$
- General function: $a \in \mathbb{Z}_{2}^{n}$

- $f: \mathbb{Z}_{2}^{n} \mapsto \mathbb{Z}_{2}^{n}$

Readout: Picks a single term, randomly

Parity of binary function

Constant and odd functions

- Binary function $f: \mathbb{Z}_{2} \mapsto \mathbb{Z}_{2}$
- Const: $f(0)=f(1)$
- Odd: $f(0) \neq f(1)$
- Parity

$$
\pi(f)=f(0)+f(1) \quad \bmod 2
$$

Parity: A global property of f

$$
\pi(f)= \begin{cases}0 & \mathrm{f}=\text { const } \\ 1 & \mathrm{f}=\text { odd }\end{cases}
$$

Deutsch task

Determine the parity $\pi(f)$

- Need to query the oracle twice
- $|0\rangle-f \quad|f(0)\rangle$
- $|1\rangle-f \quad|f(1)\rangle$

Classical parity algortihm
 Needs two evaluations of f

Deutsch algoritm

Determines parity of f with a single query

Measure $|a\rangle$

$$
\pi(f)=a
$$

Deutsch algoritm

Computation

Shor and Grover algoritms

- Shor: Factors n digits integers in Poly(n)
- Grover: Search an unstructured data base with n entries in time $O(\sqrt{n})$.

Successful quantum algorithms rely on

- Superposition: Create massive parallelism to explore all possible inputs simultaneously
- Interference: Manipulate quantum data to increase probability of desired outcome

References

- M. Nielsen and I. Chuang (Mike \& Ike)
- Quantum Computing for Computer Scientists (YouTube)

