A century of adiabatic evolutions

J Avron

December 13, 2020

Outline

- History
- A collection of results
- Spectral evolutions
- Pictures
- Why should you care?
- The smooth part of the evolution
- Controlling oscillations

Quantum numbers and adiabatic invariants

Pre QM

- Bohr-Sommerfeld $\oint p d q=n h$
- Harmonic Oscillator
- Adiabatic: $\dot{\omega} \ll \omega^{2}$
- Invariant: $\frac{E}{\omega} \approx$ const

Ehrenfest: Adiabatic Invariants:
Quantum numbers in "old QM"

Photons: $N=E / \hbar \omega$

Einstein 1905

- Light beam hitting a detector
- $\frac{E}{\omega}$ Lorentz invariant
- No role in his photoelectric paper

$$
\frac{E}{\omega}=\frac{E^{\prime}}{\omega^{\prime}}
$$

914

 A. Einstein.welche Formel für $\varphi=0$ in die einfachere übergeht:

$$
\frac{E^{\prime}}{E}=\sqrt{\frac{1-\frac{v}{V}}{1+\frac{v}{V}}} .
$$

Es ist bemerkenswert, daß die Energie und die Frequenz eines Lichtkomplexes sich nach demselben Gesetze mit dem Bewegungszustande des Beobachters ändern.

Adiabatic theorems with and without crossings

Matrices and the role of the gap

Born and Fock 1928
$\frac{1}{g}$: internal time-scale
wrong folk wisdom:
Adiabaticity fails when $g=0$

Beweis des Adiabatensatzes.

Von M. Born und V. Fock in Göttingen.
(Eingegangen am 1. August 1928.)
Der Adiabatensatz in der neuen Quantenmechanik wird für den Fall des Punktspektrums in mathematisch strenger Weise bewiesen, wobei er sich auch bei einer vorübergehenden Entartung des mechanischen Systems als galtig erweist.

Landau-Majorana-Zener-Stückelberg (1932)

Exact, Exponential tunneling

$$
H(t)=\left(\begin{array}{cc}
\omega^{2} t & g \\
g & -\omega^{2} t
\end{array}\right)
$$

Tunneling $(t=\infty)=e^{-2 \pi g^{2} / \omega^{2}}$

- Exact
- Exponential
- Adiabaticity $=\omega / g$
- Beyond perturbation in adiabaticity

From matrices to operators

Kato 1950

Motivation

- Degenerate ground state
- Tunneling to continuum

1917-1999

Byproducts

- New techniques
- Geometric picture

Spectral evolutions

aka quasi-adiabaticity

- P: Spectral projection
- V : spectral evolution

$$
V_{s} P_{0}=P_{s} V_{s}
$$

- Generator:

$$
d K=i(d V) V^{*}=(d K)^{*}
$$

$$
V_{s}: P_{0} \longrightarrow P_{s}
$$

Commutator equation

$$
[d K, P]=i d P
$$

A useful identity for projections

Kato's generator

- $\quad P^{2}=P$
- $\quad P(d P)+(d P) P=d P$

Useful identity

$$
P(d P) P=0
$$

Kato's spectral generator

- $\quad d K=i[d P, P]$ solves $[d K, P]=i d P$
- Mother of the "Adiabatic curvature"

$d K$: Non-uniqueness

Band spectra and shortcuts to adiabaticity

$$
\dot{K}=H+\underbrace{i[\dot{P}, P]}_{\text {kato }}
$$

also solves $[\dot{K}, P]=i \dot{P}$

- Physical close to spectral

A. Seiler, Yaffe (1987)

Berry (2009)

Adiabatic theorem without a gap condition

Atom in radiation field

No effective error bound

- Non-commutative analog of

$$
f \in L^{1} \Longrightarrow \tilde{f}(\infty)=0
$$

A. Elgart (1999)

Adiabatic theorems for many-body

Local spectral evolutions

- dK local e.g.
$\left(\sum a_{j}^{*} a_{k}\right),|j-k|<$ con
- $\quad w$ has rapid decay

Hastings spectral generator

$$
d K=i \int d t w(t) e^{i H t}(d H) e^{-i H t}
$$

- $d K$ inherits the localization of H
- Strategy: Lieb-Robinson propagation estimates

Orbits in projective space

- 2-level system lives on Bloch sphere
- Physical orbit
- Instantaneous orbit

Adiabatic limit

- \# oscillations $\rightarrow \infty$
- Wilder and tighter

Tunneling: Distance of state from spectral projection

 Wildly oscillatoryTunneling

Tunneling reversible

Fine tuning

Fubini-Study speed: Driving time scale

 Gap: Internal time scale- Pure state (=projection) $\rho^{2}=\rho$
- Fubini-Study metric

$$
(d \theta)^{2}=\frac{1}{2} \operatorname{Tr}(d \rho)^{2}
$$

- Fubini-Study speed $\dot{\theta}^{2}=\frac{1}{2} \operatorname{Tr}\left(\dot{\rho}^{2}\right)$
- If $i d \rho=[H, \rho] d t$

$$
(\dot{\theta})^{2}=\underbrace{\operatorname{Tr}\left(H^{2} \rho\right)-(\operatorname{Tr}(\rho H))^{2}}_{\text {Uncertainty }}
$$

Time scales

- Gap: internal
- P: external
- \dot{E} : gauge freedom

What makes the adiabatic limit interesting

Fast and slow time: $t=\tau s$

$$
i\left|d_{t} \psi\right\rangle=H(t / \tau)|\psi\rangle \Longleftrightarrow i\left|d_{s} \psi\right\rangle=\tau H(s)|\psi\rangle
$$

- Long time $t \in[0, \tau]$
- $\delta H=O(1)$
- Singular limit

Adiabatic expansion

Motions in kernel and co-kernel have different character

- Asymptotic: $i|\dot{\Psi}\rangle=\tau H(s)|\Psi\rangle, \tau \gg 1$
- $|\Psi\rangle=\underbrace{\sum \tau^{-n}\left|\Psi_{n}\right\rangle}_{\text {smooth part }}+O\left(e^{-i \tau}\right)$
- $|\Psi\rangle=\underbrace{P|\Psi\rangle}_{|\alpha\rangle}+\underbrace{(\mathbb{1}-P)|\Psi\rangle}_{|\beta\rangle}$

Recursion

Linear: $\beta_{n}=M\left(\dot{\beta}_{n-1}, \dot{\alpha}_{n-1}\right)$

$$
\text { ODE: } \dot{\alpha}_{n}=F\left(\dot{\beta}_{n}, \alpha_{n}\right)
$$

G.M. Graf

$n=0$

Berry's phase=Holonomy of parallel transport

$$
n=0
$$

CoKernel: $\left|\beta_{0}\right\rangle=0$
Kernel: $\underbrace{P d\left|\alpha_{0}\right\rangle=0}_{\text {parallel transport }}$

Tunneling is reversible and memory-less

 $n=1$- $\quad\left|\beta_{1}\right\rangle=\frac{i}{H} \dot{P}\left|\alpha_{0}\right\rangle$
- Tunneling probability

$$
\approx\left\langle\beta_{1} \mid \beta_{1}\right\rangle=\left\langle\alpha_{0}\right| \dot{P} \frac{1}{H^{2}} \dot{P}\left|\alpha_{0}\right\rangle \geq 0
$$

Remarkably:

- $|\beta(0)\rangle$ not free initial data!
- Tunneling memory-less
- No jerk: $\dot{P}(T)=0 \Rightarrow\left|\beta_{1}(T)\right\rangle=0$

Physical Instantaneous

Adiabatic

Confronting the oscillations

The adiabatic thm: Non-commutative integration by parts

- Physical evolution:

$$
i \dot{U}=\tau H(s) U, \quad U(0)=\mathbb{1}
$$

- Spectral evolution V

- Comparison $\Omega=V^{*} U$

$$
\Omega-\mathbb{1}=-\int_{0}^{s} \underbrace{[\dot{P}, P]_{s} \Omega}_{\text {Oscillatory }} d s^{\prime}, \quad X_{s^{\prime}}=V^{*} X V
$$

MP: When is $\|\Omega-\mathbb{1}\|=O\left(\tau^{-n}\right) \forall n \geq 1$
CS: When is $\|\Omega-\mathbb{1}\|<1 / 3$ guaranteed?

Self-averaging commutators

Hamilton equation

- Rapid oscillations: $i \dot{U}=\tau H U$
- $X_{s}=U^{*} X U=O(1),\left(\dot{X}_{s}\right)=O(\tau)$

Hamilton equation

$$
\left(\dot{X_{s}}\right)=i \tau[H, X]_{s}+(\dot{X})_{s}
$$

$$
\begin{aligned}
& \text { Self-averaging commutators } \\
& \int d s[H, X]_{s}=O(1 / \tau)
\end{aligned}
$$

The gap condition

Trade P for H in commutators

- $\quad \Omega-\mathbb{1}=-\int[\dot{P}, P]_{s} \Omega d s$
- $[\dot{P}, P]_{S} \Omega=[X, H]_{S} \Omega$

$$
X=\frac{1}{2 \pi i} \oint d z R \dot{P} R=O\left(\frac{\dot{P}}{g a p}\right)
$$

Proof:

$$
[X, H]=\frac{1}{2 \pi i} \oint d z\left[\frac{1}{H-z} \dot{P} \frac{1}{H-z}, H-z\right]=[\dot{P}, P]
$$

What controls the remainder

Jensen, Beth-Ruskay, Seiler; Reichradt

$$
\|\Omega-\mathbb{1}\|=\frac{1}{\tau}(O(\dot{X})+(\dot{P} X)), \quad X=\dot{\dot{P}}
$$

Where is the gap?

$$
\dot{P}=O\left(\frac{\dot{H}}{g}\right), \quad \tilde{X}=O\left(\frac{X}{g}\right)
$$

Acknowledgment

Ruedi Seiler

Gian Michele Graf

Martin Fraas

Alex Elgart

