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Chapter 1

Qubit

1.1 Bit and Qubit

The binary digit, bit in short1, is the currency classical information: b ∈ {0, 1}.
It describes the state of a classical two state system, such as a coin. Strictly
speaking, there are no bits in classical physics since all observables, position,
momenta, angles, are continuous, not discrete. A classical bit is an idealized
notion. More important is the fact that classical physics is itself only an ap-
proximate theory.

The underlying physical theory is quantum. In contrast with classical physics
quantum mechanics offers observables with discrete values. But, it is not quite
a bit.

A qubit is a two state quantum system. It too is an idealized notion. Often
a qubit is a physical system with two nearly or better strictly degenerate energy
levels which are almost isolated from the rest of the world. Examples are:

• The two polarization states of photon

• The two spin states of the electron or nucleon

• Two optical cavities

• Any two isolated modes in atoms, ions, or Josephson junctions (whatever
this is).

The qubi is the currency of quantum information.

The important difference between a bit and a qubit is superposition. An
ideal classical coin can be either up or down. Schrödinger cat can be both
dead and alive.

1Popularized by Shanon who attributed it to Tukey. We’ll meet both later.
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Figure 1.1: At low energies, the two lowest energy levels act like an approximate
qubit

1.2 The Hilbert space of a qubit

The Hilbert space of a qubit is C2. We can pick a basis C2 anyway we want.
But anu such basis will have two basis vectors which we denote

|a〉, a ∈ Z2

I shall consistently denote by |a〉 with a Roman letters, basis vectors and by
|ψ〉, with Greek letters, a general state, which is a superposition in this basis:

|ψ〉 =
∑
a∈Z2

ψa|a〉, ψa ∈ C, 〈ψ|ψ〉 = 1 (1.1)

Normalized vectors |ψ〉 in the Hilbert space are called pure states. The pure |ψ〉
lie on the unit sphere:

1 = 〈ψ|ψ〉 = |ψ0|2 + |ψ1|2 (1.2)

Geometrically, this is S3, the 3-sphere in 4-D.
Since |ψ〉 and eiγ |ψ〉 are physically indistinguishable there is a circle in S3

that represent the same physical state. The space of physically distinct states
is therefore

S3/S1 ∼ S2

Geometrically, this is the 2-sphere in 3-D, which we can easily visualize. This
space of distinct states of a qubit is known as CP (1).

Figure 1.2: Left: S1 in R2 is given by x2 + y2 = 1. Right: S2 in R3 is given by
x2 + y2 + z2 = 1, etc.
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1.3 Projections

A nice way to get rid of the redundant overall phase in |ψ〉 is to look at the
associated projection

Pψ = |ψ〉〈ψ| (1.3)

Clearly
P 2
ψ = Pψ

which simply expresses the fact that Pψ is a projection. Since Pψ = P †ψ we may
also view Pψ as an observable. It has eigenvalues 1 and eigenvalue 0

Pψ|ψ〉 = |ψ〉, Pψ|ψ⊥〉 = 0

where |ψ⊥〉 is a state orthogonal to |ψ〉.
As a general rule, we shall only measure projections, so the result of the

measurement will always be either a ∈ Z2. This fact does not depend on the
state of the qubit: If the qubit is in the state |ψ〉 and we measure the projection
Pφ then we get 0 and 1 with probabilities:

Prob(1) = 〈ψ|Pφ|ψ〉 = |〈ψ|φ〉|2, P rob(0) = 〈ψ|(1− Pφ)|ψ〉 = 1− |〈ψ|φ〉|2

This makes a qubit like a bit: You always find either head or tail.
You can think of a projection concretely as representing a detector, and the

1 means the detector clicks and 0 that it does not.
There are S2 worth of projections. If you think of the qubit as spin, you

may think of these as measuring the direction in which the spin is pointing.
The same is true for any 2-level system only that the direction is a direction in
Hilbert space rather than in physical coordinate space.

Exercise 1.1. Show that if H is a Hermitian operator so that H2 = 1 then

P± =
1±H

2

are orthogonal projections.

1.4 The computational basis

Qubit comes with a distinguished basis: The basis in which we are supposed to
measure, or read the qubit. For example, if we had a quantum computer and
wanted to read its output, we need to be told a-priori in what basis to read the
output. This basis is called the computational basis.

In some applications we shall read certain qubits in one basis and other
qubits in another basis. In some cases, e.g. in cryptography, the choice of basis
will be a secret that we share with people we trust.

The computational basis is sometimes associated with the Hamiltonian of
the (isolated) qubit. Since energy eigenstates evolve in time by

|a〉 7→ e−iEat|a〉
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and the rules of QM say that states that differ by an overall phase are physically
indistinguishable, the energy eigenstates behaves like a classical bit in the sense
that once you set the bit to be |a〉 it remains |a〉 until you decide to operate on
it (e.g. by changing the Hamiltonian).

1.5 Mixed states

|ψ〉 gives a complete description of a quantum state. Suppose that the state is
not completely specified. For example, you have a source that with probability
pj gives the state |ψj〉. This situation of incomplete knowledge is described by
a density matrix

ρ =
∑

pj |ψj〉〈ψj |

Clearly

Tr ρ = Tr

∑
j

pj |ψj〉〈ψj |


=
∑
j

pjTr |ψj〉〈ψj |

=
∑
j

pj〈ψj |ψj〉

=
∑
j

pj = 1

ρ, being the convex combination of positive operators (projections) is a positive
operator:

ρ ≥ 0 (1.4)

The special case

ρ1/2 =
1

2

is called fully mixed. We know nothing about the state of the qubit. We only
know we have a qubit.

1.5.1 Classical probability theory

Density matrices allow to describe classical probability theory with the bra and
ket notation. A classical coin with probability p of being up and 1− p down, is
described by

ρp = p|0〉〈0|+ (1− p)|1〉〈1|

The case of complete ignorance corresponds to p = 1/2. In this case

ρ1/2 =
1

2
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Exercise 1.2. Write the density matrix for a quantum cat in a dead-alive su-
perposition

ρ± = |±〉〈±|, |±〉 =
|0〉 ± |1〉√

2
(1.5)

and compare it with the dead or alive density matrix.

Quantum probabilities Classical probabilities
Space H︸︷︷︸

Hilbert space

Ω︸︷︷︸
Sample space

Information on system ρ ≥ 0︸ ︷︷ ︸
positive matrix

pj ≥ 0︸ ︷︷ ︸
positive function

Observable Matrix (operators) on H Functions on Ω
Events Projections points j in Ω
Expectation 〈F 〉 = Tr(Fρ) 〈F 〉 =

∑
j∈Ω Fjpj

Independence ρA ⊗ ρB pApB

Mixtures of systems
∑

pjkρj ⊗ ρk︸ ︷︷ ︸
separable

p(j, k) =
∑

pjkδjj′δkk′︸ ︷︷ ︸
general

Table 1.1: The table compares classical probability with quantum probabilities

1.6 Pauli gates

Define the operators Z and X, in the computational basis, by

Z|a〉 = (−1)a|a〉 X|a〉 = |a⊕ 1〉

where 1⊕ 1 = 0. These are denoted graphically

|ψ〉 Z Z|ψ〉 , |ψ〉 X X|ψ〉

Z and X are both unitary and hermitian. Since Z is diagonal in the computa-
tional basis, it identifies the computational basis. The projection

1− Z
2︸ ︷︷ ︸

projection

|a〉 = a|a〉

measures the qubit in the computational basis.
X is the NOT operation that flips the qubit.
It is easy to see that

Z2 = X2 = 1, XZ + ZX = 0

Since X and Z anti-commute their product is anti-hermitian and so

Y = iXZ
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is Hermitian. I is also unitary. It is easy to see that

Y 2 = 1, Y X +XY = Y Z + ZY = 0

The eigenstate of X are denoted by

X|+〉 = |+〉, X|−〉 = −|−〉

where √
2|+〉 = |0〉+ |1〉,

√
2|−〉 = |0〉 − |1〉

In physics X,Y, Z are known as the Pauli matrices

X = σx, Y = σy, Z = σz

A representation is

X =

(
0 1
1 0

)
, Y = i

(
0 −1
1 0

)
Z =

(
1 0
0 −1

)
(1.6)

The Pauli group has 16 elements and is given by

±X, ±Y, ±Z, ±iX, ±iY, ±iZ, ±1, ±i

1.7 Bloch ball

The eigenvalues of the 2× 2 matrix ρ are given by the solution of the quadratic
equation

det(λ1− ρ) = λ2 − λTr ρ+ det ρ = 0,

ρ is positive if both the trace and the determinant are positive.
Write

ρ =
ρ01 + r · σ

2
, r = (x, y, z), r · σ = xX + yY + zZ

We can interpret ρ as a state if

Trρ = ρ0 = 1 and 4 det ρ = ρ2
0 − r · r ≥ 0

It follows that quantum states of a qubit are described geometrically by the unit
ball in 3-D

ρ(r) =
1 + r · σ

2
, |r| ≤ 1

This is the Bloch ball.
The interior of the ball |r| < 1 describes mixed states and its bundary , the

sphere, |r| = 1 describes the pure states. If |r| > 1 the matrix ρ is not positive
and does not describe states.

Exercise 1.3. Show that

Tr
(
ρ(r)ρ(r′)

)
=

1 + r · r′

2
(1.7)

In particular, antipodal points on the Bloch sphere represent orthogonal vectors
in Hilbert space; Orthogonal states in the Hilbert space are represented by anti-
parallel Euclidean vectors.
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Y

Z

X

|0〉〈0|

|1〉〈1|

Figure 1.3: Bloch ball: Pure states lie on the surface, the Bloch sphere. Mixed
states lie in the interior. The center is the fully mixed state. Orthogonal pure
states are antipodal points on the surface.

X

Z

Figure 1.4: The red dot at the center represents the “Dead or alive” state. Every
point on the equator represents a superposition representing the states that are
both ‘Dead and alive”.

1.7.1 Poincare sphere– Polarization

The electric field of right circularly polarized plane wave propagating along the
z-axis is

|R〉 = (x̂ + iŷ)eiφ, φ = kz − ωt

A dictionary between polarization states and qubit states

|R〉 7→ |0〉, |L〉 7→ |1〉,

where R and L correspond to right and left circular polarization.

√
2|R〉 = |H〉+ i|V 〉,

√
2|L〉 = |H〉 − i|V 〉
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where H and V correspond to horizontal and vertical polarization. Alterna-
tively,

|H〉 7→ |+〉, |V 〉 7→ |−〉

With this identification the circular polarization are associated with the poles
of the Bloch sphere and the Horizontal and Vertical polarization lie at antipodal
points on the equator.

Z

Figure 1.5: Poincare ball. The poles are circular polarizations. The equator
represents linear polarization. The center of the ball represents unpolarized
light. Antipodal points on the surface are orthogonal states.

Exercise 1.4. Find the location of the two diagonal polarizations D and D̄ on
the Bloch sphere. Show that the equator is the locus of linear polarizations.

1.8 State preparation

Consider a polarizer, a bit like what you have in sun-glasses, that perfectly
transmits a photon if it is |H〉 and perfectly absorbs it if it is |V 〉. The action of
the polarizer is described by the projection PH = P|+〉. If a photon gets through
we call this a success and we have prepared the state |+〉. If it failed, we lost
the photon.

More generally consider the projection Pψ which prepares the state ψ. If we
start with a qubit in state ρ then success has probability

Tr(ρPψ) = 〈ψ|ρ|ψ〉

and failure has the probability

Tr
(
ρ(1− Pψ)

)
= 1− 〈ψ|ρ|ψ〉

Note that no matter what ρ is only |ψ〉 can be prepared.
There are to extreme special cases worth noting

• If ρ is fully mixed the success probability is 1/2 no matter what ψ is
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• If ρ = |ψ〉〈ψ| the probability of success is 1. The measurement is “non-
demolition”.

Exercise 1.5. Show that

Tr(PψPφ) = |〈ψ|φ〉|2 =
1

2
+

rψ · rφ
2

(1.8)

1.9 Mixtures have multiple decomposition

You can always write a mixed state in the basis of its eigenvectors uniquely

ρ =
∑

pj |ψj〉〈ψj |, 〈ψj |ψk〉 = δjk

This correspond pictorially to representing a point in the Bloch sphere by two
antipodal pure states.

X

Z

Figure 1.6: The blue dot on the z axis is a weighted sum of 2 red dots, repre-
senting pure states at the poles.

However you can get the same state ρ by mixing more than 2 pure states as
illustrated in the figure.

The moral of this is that in general, given a state ρ you can not tell from
how many pure states it has been constructed, and which states they were.

1.10 Tomography of a qubit

One of the first things you learn in QM is that if you are given and unknown state
|ψ〉, you can not find out |ψ〉 by measuring the state since measurements in QM
prepare from |ψ〉 a new state: An eigenvector of the measured observable. The
situation changes if you happen to have an large supply of identical quantum
systems that are all in the same state.

Suppose you have an unlimited supply of a single identical qubits all in
the same unknown state ρ. You can determine the state by measuring the
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X

Z

Figure 1.7: Now the red dot on the z axis is expressed as a weighted sum of 3
pure states.

expectation values of

Tr (Xρ), T r (Y ρ), T r (Zρ),

From which you can reconstruct ρ. This is quantum tomography.

Example 1.6. It is instructive to compare the density matrix describing a su-
perposition (of a dead and alive cat) with the density matrix of a cat in an
unknown dead or alive state:

ρsup =
1

2

(
1 eiφ

e−iφ 1

)
︸ ︷︷ ︸

dead and alive

, ρmix =
1

2

(
1 0
0 1

)
︸ ︷︷ ︸
dead or alive

If you are only allowed to measure Z you can not make full tomography
and can nor distinguish between a mixture and a superposition. You can not
distinguish a qubit from a bit.

Remark 1.7. This is what happens in measurements: A measurement appa-
ratus is macroscopic object with many degrees of freedom that are in practice
inaccessible. This means that for the system+apparatus you can not distinguish
superpositions from mixtures.
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Single qubit gates

Isolated quantum states evolve unitarily. We shall write this graphically as

|ψ〉 U U |ψ〉

The action of U on the (computational) basis is

U |a〉 =
∑
b

Uba|b〉︸ ︷︷ ︸
note order

⇐⇒ Uba = 〈b|U |a〉 (2.1)

U acts on density matrices by conjugation

ρ 7→ U ρU†

Unitaries map states to states

ρ ≥ 0⇔ UρU† ≥ 0, tr ρ = 1⇔ tr (UρU†) = 1

Hence, U maps the Bloch ball to itself. It also maps pure states to pure states,
and leaves the fully mixed state invariant because

ρ2 = ρ⇔ (UρU†)2 = UρU†, U1U† = 1,

2.1 Unitaries: Rigid rotations of Bloch ball

We define the scalar product between states by

Trρρ′

Unitary transformations preserve the scalar product

Tr (ρρ′) = Tr (UρU†) (Uρ′U†)

As a consequence, they also preserve the distance

Tr(ρ− ρ′)2

19
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As we shall now show unitary transformations corresponds to a rigid rotation
of the Bloch ball.

To see this write:

ρ− ρ′ =
(r− r′) · σ

2

Using the fact that

Tr
(
x · σ y · σ

)
= xjxk Tr(σjσk) = 2 x · y (2.2)

We find

Tr(ρ− ρ′)2 =
(r− r′)

2

2
(2.3)

This means that the Euclidean distance in the Bloch ball is proportional to the
Hilbert space distance between states.

Rigid transformations of Euclidean space are translations and rotation (and
inversions). Since unitaries take the Bloch ball to itself, translations are not
allowed. Inversions are not allowed because they dot preserve the commutation
relations of X,Y, Z. We are left with rigid rotation of the ball.

To find the axis of rotation U we need to distinguish two cases:

• U = eiα1 is degenerate: The rotation is the identity.

• U is non-degenerate and has two distinct eigenvalues.

– The two eigenvectors define two unique directions in Hilbert space

U |ψ〉 = eiα|ψ〉, U |ψ⊥〉 = eiβ |ψ⊥〉

which are invariant under the action of U .

– |ψ〉 and |ψ⊥〉 are associated with antipodal points on the Bloch
sphere.

– The line connecting the antipodes is the axis of rotation.

– The angle of rotation is α− β.

rotation axis
|ψ〉

|ψ⊥〉

Figure 2.1: H gate is a rotation by π of the Bloch sphere around the -z-x axis

It follows that if U 6= ±1 while U2 = 1 then U rotates the Bloch ball by π.
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2.2 NOT gate

X rotates the Bloch ball by π around the X axis. and is represented by the
unitary X.

X

Figure 2.2: NOT gate is a rotation by π of the Bloch sphere around the x axis

|a〉 X |a⊕ 1〉
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2.3 Z gate

The Z gate is a π rotation of the Bloch sphere about the Z axis:

|±〉 Z |∓〉

This gate has no classical analog since, in the computational basis, it is just a
phase gate

|a〉 Z (−)a|a〉

X

Z

Figure 2.3: Z gate is a rotation by π of the Bloch sphere around the z axis

Exercise 2.1. Determine τ and B so that the pulsed Hamiltonian H(t) =
τδ(t)B · σ implement the X and Z gates.

2.4 Hadamard gate

The Hadamard gate is defined by

H =
X + Z√

2
=

1√
2

(
1 1
1 −1

)
(2.4)

Since X and Z anti-commute
H2 = 1 (2.5)

so H too is a rotation by π of the Bloch ball. It is a rotation about the X + Z
axis and it interchanges the X and Z axis. If you do not trust geometry this
follows from

HZ = XH

As a consequence, U may be viewed as the unitary map between the computa-
tional basis and the |±〉 basis:

|a〉 H |(−)a〉
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A good notation can lead to deep results. This is the case for

H|a〉 =
1√
2

∑
b∈0,1

(−)ab|b〉 a, b ∈ 0, 1 (2.6)

x− z axis

Figure 2.4: H gate is a rotation by π of the Bloch sphere around the -z-x axis

2.5 Pauli generate rotations

The Pauli matrices have the commutation relation[
X

2
,
Y

2

]
= i

Z

2
, and cyclic

These are the commutation relation of angular momentum

[Lx, Ly] = iLz, and cyclic

Since the angular momenta are the generators of rotations

U(n) = e−in·σ/2, (2.7)

is a rotation. The axis of rotation is n since

Un · σU† = n · σ

Rotation of a vector x by angle ϕ about the n̂ axis does not affect the part
parallel to the axis. The part perpendicular to it, rotates:

x′ = Rn(ϕ)x = (x · n̂)n̂︸ ︷︷ ︸
parallel

− (x× n̂) sinϕ+ (x× n̂)× n̂ cosϕ︸ ︷︷ ︸
perpendicular

(2.8)

One can show from this, with some more work, that the angle of rotation is |n|.



24 CHAPTER 2. SINGLE QUBIT GATES

n

x

Using the fact

(n · σ)2 = n2
1

and power expanding one finds a nice and useful formula for the rotation matrix:

e−in·σ/2 = 1 cos

(
|n|
2

)
− i n̂ · σ sin

(
|n|
2

)
(2.9)

2.6 Geometry of SU(2)

SU(2) are the unitary 2× 2 matrices with detU = 1.

Theorem 2.2. A unitary 2 × 2 matrix U with detU = 1 can be identified
uniquely with a point in S3:

U = e−iu·σ/2 = 1 cos
|u|
2
− iu · σ sin

|u|
2
, |u| ≤ 4π

parametrized by |u| ≤ 4π. Note that u = 0 and u = 4π represent a single point
U = 1 and |u| = 2π also represent a single point, U = −1. The geometry
becomes apparent in a 4-D Euclidean representation(

cos 1
2 |u|,u sin 1

2 |u|
)

where each point has unit length. The space is therefore S3. U is a rigid rotation
of the Bloch ball by angle |u| around the axis u. In particular the angle of
rotation is

2 cos

(
|u|
2

)
= Tr U (2.10)

2.7 Gauge freedom

The overall phase of a state is not a physical entity. We could have defined the
computational basis by

|a′〉 =
∑
a

Ua,a′ |a〉, U =

(
eiφ/2 0

0 e−iφ/2

)
(2.11)
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and simultaneously redefine

Z ′ = UZU∗ = Z, X ′ = UXU∗, etc. (2.12)

In the new basis, the state ρ takes the form

ρ′ = UρU∗ =

(
ρ00 ei(φ0−φ1)ρ01

ei(φ1−φ0)ρ10 ρ11

)
(2.13)

The diagonal is gauge invariant but the off diagonal terms are not. Only their
magnitude is gauge invariant.

Since U is a rotation about the Z axis, you may relate gauge freedom to the
freedom to choose the point along the equator of the Bloch sphere where the
matrix X of Eq. (1.6) represents the X axis.

Y

Y ′

Z

X X ′

|0〉〈0|

|1〉〈1|

2.8 Universal single qubit gates

Logical operations in classical computers can be done with few standard gates.
A discovery made in the MSc thesis of Shannon at MIT. If the computation
is complex we may need many gates, and use some gates many times, but the
number of gate types does not increase with the complexity of the computation.
This issue is related to the fact that Turing machines are, by definition, finite.

What about quantum gates? Can we cover the Bloch sphere starting with
the computational basis and operating with a finite number of gate types?

The X and Z gate generate the Pauli group which is a finite subgroup of
the group of the unitary group U(2). Starting with the state |0〉〈0| all the Pauli
group can do is generate the computational basis.

The the X,Z and H generate a larger, but still finite group. Starting with
the state |0〉〈0| all you can get are the 4 states:

|0〉〈0|, |1〉〈1|, |+〉〈+|, |−〉〈−|
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Exercise 2.3. How many different words do X,Z and H with the relations

Z2 = X2 = H2 = 1, ZH = HX, ZX +XZ = 0

generate?

2.9 Irrational rotations

The gate
eiπ

p
qZ , p, q ∈ N, gcd(p, q) = 1

rotates the Bloch sphere by the angle π pq about the Z axis. Using such a rotation

we can map |+〉 to q states that are evenly distributed along the equator.

Figure 2.5: A rational rotation by 30 degrees.

This makes it intuitively clear that to generate an arbitrarily good approx-
imation to eiαZ for any α, we need just a single gate: One that generates an
irrational rotation about the Z axis, e.g.

eiπZ/
√

2

Exercise 2.4. Prove this? Hint: Use the fact from number theory that any
irrational α can be approximated by rationals so that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

with arbitrarily large p and q.

2.10 T Phase gate

The phase gate T is defined by:

T =

(
1 0
0 ω

)
, ω = eiπ/4, T |a〉 = ωa|a〉
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Since
T 4 = Z

and Z rotates the Bloch ball by π, it follows that T rotates the Bloch ball by
π/4 about the z axis. Another way to see this is to write

T = eiπ/8T8, Tn =

(
z̄n 0
0 zn

)
, zn = eiπ/n

Evidently, T and T8 give the same rotation of the Bloch ball. Since detT8 = 1
we can use Eq. 2.10 to conclude that the rotation angle is π/4.

Although T and H are both rational rotations (about different axis) their
product is an irrational rotation. As we shall now see T is, in a certain sense,
the simplest rotation around Z that has this property.

Write

iHTn =
i√
2

(
z̄n zn
z̄n −zn

)
,

Since det(iHTn) = 1 we can use Eq. 2.10 to find the angle of rotation θn

cos
θn
2

=
sin(π/n)√

2

With n = 1, 2, 4 you get rational rotations by π, 3π/2, 4π/3 which are all
rational rotations. However with n = 8 the rotation angle θ8 is irrational. (I do
not prove that.) Since HT is proportional to iHT8, we learn that HT gives an
irrational rotation.

Exercise 2.5. Find the corresponding axis of rotation.

Similarly, THwill give us the same irrational rotation but about a a different
axis.

H and T generate an infinite group with infinitely many different words, e.g

HTn1HTn2H . . . , nj ∈ {1, . . . , 7}

Remark 2.6. You may also want to worry about the question: Suppose I want
to approximate arbitrary rotation with n digits of accuracy given universal gates.
How does the number of actual gates (not gate types) scale with n?

2.11 Complete control

We say that we have complete control of a qubit if we can rotate the Bloch vector
by arbitrary rotation. Rotations of a qubit, like ordinary rotation, parametrized
by three angles for example the three Euler angles:

You might think that to generate arbitrary rotation you’d need to be able
to rotate by arbitrary angle about three different directions. After all, a pilot
has three controls for pitch, yaw and roll.
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Figure 2.6: Euler angles rotate the frame (x, y, z) to (X,Y, Z). N is the line of
nodes. (Figure taken from Wikipedia.)

Figure 2.7: Pitch, yaw and roll. (Figure taken from Wikipedia.)

However, it turns out that actually two controls suffice. This is because
rotations are non-commutative:

[L · a,L · b] = iL · a× b

In fact, Euler only uses rotations about the x and z axis.

U(α, β, γ) = eiαZ/2 eiβX/2 eiγZ/2

As we can generate arbitrary rotations about the HT and TH axes, we can
generate any rotation.

Theorem 2.7 (Mor et. al). An arbitrary single qubit unitary can be approxi-
mated arbitrarily well with two qubit types: H and T
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Appendix: Linear algebra

Any orthonormal basis |j〉, with j = 1, . . . N in CN gives a resolution of the
identity ∑

j

|j〉〈j| = 1

Linear operators are represented by matrices. In particular, if |j〉, j ∈
1, . . . , N is the computational basis in CN then

A|j〉 =

N∑
k=1

Akj |k〉

The (funny) order on the rhs is dictated by 〈k|A|j〉 = Akj .

Definition 3.1. An operator A is real (=Hermitian)/positive if every expecta-
tion value 〈ψ|A|ψ〉 is real/positive for any vector |ψ〉.

Exercise 3.2. Show that if A is real then A = A†

Exercise 3.3. Show that AA† and A†A are positive and have identical eigen-
values except possibly for 0.

Exercise 3.4. Show that if λ 6= 0 is an eigenvalue of AA† it is also an eigenvalue
of A†A and vice versa.

Definition 3.5. Let |j〉 be any orthonormal basis. The trace of an operator A
is

Tr A =
∑
j

〈j|A|j〉

The trace is independent of the choice of the basis.

Exercise 3.6. Show that

Tr |φ〉〈ψ| = 〈ψ|φ〉

29
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3.1 Functions of operators

What do we mean by a function of an (Hermitian) operator in Hilbert space H?
Since H is self-adjoint it can be diagonalized. Suppose H has discrete spectrum
with eigenvalues hj and Pj the associated projections. Then

H =
∑

hjPj

We then define

f(H) =
∑

f(hj)Pj

Exercise 3.7. Show that if TrH = 0 then det eiH = 1

In the case of C2 we can say more. Any traceless Hermitian 2 × 2 matrix
can be written as

H(b) = b · σ, b ∈ R3

By Ex. ??,
H2 = |b|21

and then by Ex 1.1 the spectral projections are

P± =
1± b · σ

2

and so

f(H) = 1f+(|b|) + i (b · σ) f−(|b|), 2f±(x) = f(x)± f(−x)

In particular, for any traceless Hermitian 2× 2 matrix

e−iH(b) = 1 cos(|b|)− ib · σ sin(|b|)

Exercise 3.8. What are the corresponding formulas when TrH 6= 0.

3.2 Unitaries

A unitary matrix U may be interpreted as the transformation from one base in
the Hilbert space to another base:

U =

N∑
j=1

|bj〉〈aj |

where |aj〉 and |bj〉 are two bases in CN . A basis independent way of expressing
this is:

Definition 3.9. U is unitary matrix in CN if U−1 = U† or, equivalently

U†U = UU† = 1
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Exercise 3.10. Show that the spectrum of a unitary lies on the unit circle and
that eigenvectors associated with distinct eigenvalues are orthogonal.

Every unitary matrix is diagonalizable.

Remark 3.11. For finite dimensional matrices the inverse of a matrix is both
a right inverse and a left inverse. For infinite dimensional matrices this need
not be true. U is called an isometry if U†U = 1.

The right shift on N, i.e.

(Rψ)(n) =

{
ψ(n− 1) n ≥ 1

0 n = 0

is an isometry.

Exercise 3.12. Show that if U is an isometry then UU† is an orthogonal pro-
jection.
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Gates: Realizations

4.1 Mirror

|L〉

|R〉

Mirror

Figure 4.1: By conservation of angular momentum a mirror interchanges circular
R and L polarization.

By conservation of angular momentum, reflection from a mirror interchanges
left and right circular polarizations. This fixes the gate (up to an overall phase)
to be

M =

(
0 α
ᾱ 0

)
, |α| = 1

Consider now an incoming |H〉. This comes out as (ᾱ, α). We are free to orient
the incoming and outgoing frames so that what we call horizontal agrees in
both. This says that

M = X

4.2 Hadamard – Beam splitter

The photon can be in one of two states: moving to the right or moving up. An
even beam splitter sends

|0〉in 7→
eiα|0〉out + eiβ |1〉out√

2

33
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Since a unitary gate sends orthogonal states to orthogonal states, it follows that

|1〉in 7→
eiα|0〉out − eiβ |1〉out√

2

In fact we are free to redefine the basis so that

eiα|0〉out 7→ |0〉out, eiβ |1〉out 7→ |1〉out
So the beam splitter is Hadamard

|0〉out

|1〉out

Mirror

|0〉in

|1〉in

4.2.1 Classical perspective

Example 4.1. A plane electromagnetic wave of unit amplitude impinges on a
beam splitter from the left

Ein = yei(x−t), Bin = zei(x−t)

. The beam is split to two outgoing waves, one right

Ert = (by − az)ei(x−t), Brt = (ay + bz)ei(x−t)

and one up

Eup = (dx− cy)ei(z−t), Bup = (cx+ dy)ei(z−t)

The boundary conditions across the beam splitter are that B⊥ and E‖ are con-
tinuous.

• Explain.

• Show that the boundary conditions imply

c = 1− b, d = −a

• Determine b for a 50% beam splitter

• Did you get Hadamard?
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4.3 Half and Quarter wave plates

On a length scale which is much larger than atomic spacing, a crystal looks
homogeneous but un-isotropic. On such scales the dielectric constant can be
represented a symmetric matrix. In the frame of its principal axis the matrix
looks like

ε =

 εxx 0 0
0 εyy 0
0 0 εzz


It follows that plane wave propagating in the z direction will have different speed
for x and y polarization if εxx 6= εyy . Since the frequency ω is determined by the
source (laser) the different propagation speeds imply different wave lengths for
the two polarizations. A plate of of width ∆z will cause a phase shift between
the two polarizations

α = (kx − ky)∆z = ω∆z

(
1

cx
− 1

cy

)
We choose the x and y polarizations to correspond to the |±〉 basis. In this
basis the plate is described by the unitary

eiαZ/2 = 1 cosα/2 + iZ sinα/2

Since H transforms between the X and Z basis, the plate is represented in the
Z basis by the gate

HeiαZ/2H = 1 cosα/2 + iHZH sinα/2

= 1 cosα/2 + iXHH sinα/2

= eiαX/2

With α = π/2 this rotates the Bloch sphere by π/2 about the X axis. It converts
circular polarization to linear polarization. This is a quarter wavelength plate.
With α = π it rotates the Bloch sphere by π and interchanges |R〉 to |L〉.

Exercise 4.2. In what way eiπX/4 is similar to and different from H?

Exercise 4.3. In 3D movies, the pictures projected into your two are are filtered
according to two orthogonal polarizations. Since people, especially in India, tilt
their heads when watching movies, the filtering is by circular polarizations. In
practice, filters are always linear polarizers. How would you design a filter for
circular polarization?

4.4 Spin gates

If the qubit is a spin 1/2 with Magnetic moment µ then applying a magnetic
field B is associated with the Hamiltonian

H =
µ

2
B · σ
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Schrödinger equation says that this generates the evolution

iU̇ = H(t)U, , U0 = 1

If H is time independent
U(t) = e−iHt

This rotates the Bloch sphere at constant rate about the direction B.

Exercise 4.4. Calculate the rate of rotation of the Bloch sphere, in the magnetic
field of the earth, 1 Gauss, and for 1 T , for nuclear spin 1/2 and electronic spin
1/2, where H = µs ·B and µ the magnetic moment.

Consider now a pulsed Hamiltonian with

B(t) = Φδ(t)

The corresponding unitary is

U = e−iΦ·σ/2

4.5 Mach-Zehnder interferometer

Mach-Zehnder is made with two beam splitters, each represented by H and two
mirrors that, we assume, act like the identity1.

The Mach-Zehnder interferometer can be represented by circuit

H eiαZ/2 H

There is some freedom in decorating the diagram with |0〉 and |1〉 along the
path. and I have chosen |0〉 to represent the blue (lower) path and the |1〉 the
upper path. α is the difference in optical lengths between the two paths.

Exercise 4.5. Suppose α = 0. If the incoming photon is in the |0〉 state, what
is the state of the outgoing photon?

1Alternatively, if the mirrors are represented a s an X gate then one can stick with hori-
zontal propagation being identified with |0〉 and vertical with |1〉.
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|0〉

|1〉

Figure 4.2: Mach-Zehnder interferometer. The two red arcs are detectors. The
red slanted lines are beam splitters. The black slanted lines are mirrors. The
multiple paths of the photon are shown in blue and green. The green lines
represent the channel |1〉 and the blue |0〉. The two arms in the interferometer
may have different optical paths expressed in the relative phase eiα.
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Chapter 5

Quantum tricks I

5.1 Random number generator

Random numbers are a basic primitive in many applications.

• Lottery

• Algorithms in computer science.

• Integration of high dimensional functions (Monte Carlo)

• Cryptography

• Computer simulations.

• Economics

Unfortunately, as a matter of principle, there are no true random numbers
in classical physics, simply because classical physics is deterministic. What
appear to be random numbers is an expression of incompete knowledge: If your
adversary knows more than you your random numbers may not be as random to
him. Security in cryptography requires random sequence that are unpredictable.
Since you do not know who your opponent is, or what he knows, it is best to
assume that he knows all that can be known.

Example 5.1 (Coin toss). In some science museums you can find deterministic
coin tossing machines: You can tune the machine so that in every coin too the
coin will land on the face it showed initially. Lets go though this example:

• You see the initial face of the coin

• The coin, with radius a, is kicked at the rim

• You can estimating the hight of a coin toss h to better than πa/8

• When the coin hits the table it comes to rest without bouncing

39



40 CHAPTER 5. QUANTUM TRICKS I

• Are allowed to choose head or tail after you saw how high the coin went

• You can then tell if it is going to be head or tail.

The center of mass orbit is a parabola and the angular rotation is constant

x = −1

2
gt2 + vt, θ = ωt

You do not know the initial conditions v, ω. But, if the motion of the coin is
due to a kick at the rim of a coin of radius a you know:

δp = mv, δN = aδp = Iω =
ma2ω

2
=⇒ 2v = ωa

The hight of the coin toss
2gh = v2

determines the initial velocity v. The number of turns of the coin makes till its
center of mass is back at x = 0 is

θ = 2ω
v

g
=

4v2

ga
=

8h

a

The number of turns is
θ

2π
=

4h

πa

If this number is close to an integer or close to half integer you can tell head
from tail.

Figure 5.1: You can compute the (relative) area of a complicated shape by
counting the number of points that fall insider the shape, when the points are
uniformly distributed in the unit square.

Randomness in QM shows up not because of incomplete knowledge, but
rather as a fundamental feature of reality. Hence, in principle, only QM can
provide truly random sequences.

Some of classical algorithms that have, or are being used, to generate random
numbers are amusing.
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• During the second world war the Russian had units of soldiers assigned to
throwing dice. The human random number generators could not produce
random numbers at the rate the army needed and the army had to recycle
the list. This is something you do not want to do in cryptography.

• In 1955 RAND corporation published a list called: A million random
digits. This is of course not a good list for cryptography, but it can be
useful for algorithmic purposes such as Monte Carlo integration.

• Casinos use roulette table to generate, what gamblers believe, are random
numbers. Roulettes are deterministic mechanical devices. Casino allow
you to look at the roulette and place your bet after it starts spinning,
provided, of course, the wheel is spinning. If you are clever and quick
enough, you can guess the initial position and velocity by observing the
wheel. C. Shannon used an early version wearable computer, to recompute
probabilities after the wheel start spinning so that his chances of winning
were better than the house. He was good enough for the house to throw
him out.

• The industrial way of making random numbers is by deterministic algo-
rithms known as pseudo-number generators for example, the Linear Shift
Feedback Register. The basic scheme is

– You need a register with n bits with n is large.

– The register is updates deterministically

x 7→ f(x), x = x1x2 . . . xn︸ ︷︷ ︸
binary rep

∈ {0, . . . N − 1}

with f a standard and known function

– f(0) = 0

– (f ◦ f . . . )(x) goes through all x 6= 0 configurations for x 6= 0.

– The last bit xn is the output

– You can not tell the current state of the register x by observing the
last n outputs.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The trouble with all these methods, is that either they are obviously pre-
dictable, like pseudo-number generators, or in principle predictable, as any clas-
sical mechanical device must be.

http://en.wikipedia.org/wiki/Generalised_feedback_shift_register
http://en.wikipedia.org/wiki/Generalised_feedback_shift_register


42 CHAPTER 5. QUANTUM TRICKS I

In QM we trust

001110 |+〉|0〉|+〉|+〉|1〉|1〉

1 QubitCoin

Figure 5.2: Quantum banknote

Here is a quantum circuit that produces bona fide random numbers

|0〉 H

The Hadamard gate generates deterministically |+〉. But the measurement in
the computational basis, gives 0 or 1 with probability 1/2:

Prob(0) =
1 + x̂ · ẑ

2
=

1

2
, P rob(1) =

1− x̂ · ẑ
2

=
1

2

The procedure is deterministic but the outcome is random. Unlike classical
physics, QM randomness is not the result of incomplete knowledge. No super
being can predict the result. (We shall say more about why we believe hat this
is the case when we discuss hidden variables.)

The Achilles heel of QM is the measurement devices, which, by definition,
are classical. So, if an adversary gets access to the measurement apparatus, he
may be able to tinker with it and corrupt the random numbers.

5.2 Quantum money

Quantum information was born in about 1970 when S. Wiesner, a grad student,
proposed the idea of quantum money. His paper was repeatedly rejected and
only appeared in 1983. Wiesner proposed money that can not be counterfeited
in principle. In fact, any attempt to make a copy of the paper would result is
erasing the original legitimate banknote.

Protocol:

• The bank issues bank notes that carry an n-digit classical binary serial
number x ∈ Zn2 that all can see, and a secret quantum serial number,
q(x) ∈ Zn2 made from n-qubits.
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• The bank uses a true random number generator to assign to x ∈ Zn2 the
secret q(x) ∈ Zn .

• The bank uses a true random number generator to assign to x ∈ Zn2 a
secret random number whose entries are b(x) ∈ {Z,X}n .

• If the j-th binary digit, bj(x) = Z the j-qubit is written in the Z basis.
That is, qj 7→ |qj〉, If bj(x) = X the j-qubit is written in the X basis.
That is qj 7→ H|qj〉.

• The bank can reliably verify the quantum serial number: {|0〉, |+〉, |1〉, |−〉}
and the verification does not alter the qubits.

• Someone who does not have access to the secret table will need to guess
the basis. He will make, with high probability, a n/2 wrong guesses about
the choice of basis. Reading in the basis he guessed he will make about n/2
errors in reading the secret q(x) and the note he will forge will be easily
identified as forgery and in addition he had ruined his own legitimate bank
note.

This, of course, raises the question if it is possible to copy unknown quantum
information without reading it. We shall see that this not possible.

5.3 Vaidman Elitzur Bomb

The story, like a typical news item from the middle east, starts with bombs:
You have a collection of them. They have a quantum trigger which makes them
explode when a photon is reflected from the trigger. Some of the bombs are
duds: Their trigger is stuck and the photon is reflected and the mirror does
not measure anything. Can you find bombs that are guaranteed to be alive?
This brings up the issue of quantum non-demolition: Can you make a quantum
measurement that will allow you to learn something you did not already know
about a quantum system, without modifying it?

Place the bomb so that the trigger is a mirror in Mach Zehnder. Suppose
the bomb is dead. A circuit representing a dead bomb is made with unitary
gates:

|0〉 H 1 H

and 1 represents the bomb. It does nothing. The incoming state is the same as
the outgoing. Hence, only the detector C (on the right) clicks. Put this bomb
in a stockpile marked “Dead and Alive”.

Now suppose the bomb is alive. It acts like a measurement device: It is a
which path detector. The circuit that represents this is

|0〉 H H

The measurement, represented by a meter, prepares one of two states: |1〉 rep-
resents the path that went through NW mirror and |0〉 the path via SE mirror
which is the trigger of the bomb.
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C

D

|0〉

|1〉

Figure 5.3: The Elitzur Vaidman Bomb testing apparatus is built around a
Mach-Zehnder interferometer. The two paths represent the computational basis
|a〉. If the bomb is dead, and the photon comes in at |0〉, it comes out as |0〉 and
only the detector C clicks. If the bomb is alive, then then it determines the path
the photon took. If the photon took the upper arm, the bomb did not explode
and there is 50% chance that detector D will click. This allows to identify the
bombs which are alive.

Suppose the measurement determines that the particle went through the SE
mirror. The trigger was activated, the bomb explodes, and you need a new lab.

However, the curious thing about QM is that the which path measurement
done by the bomb placed at SE mirror will in half the cases determine that the
particle went the other way, through the NW mirror. In this case, the bomb does
not explode. Instead, it prepared the system in state |1〉 and the corresponding
right half of the circuit (following the meter) is replaced by

|1〉 H

In this case, there 50% chance that the C-detector will click and 50% that
the D-detector will. Since the D detector never clicks for dead bombs, you know
that the bomb is alive, and you put it in the pile “Alive Only”.

5.4 Quantum key distribution

5.4.1 Encryption and decryption

A key is a sequence of bits

k = {k1, . . . kn}, kn ∈ {0, 1}
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which Alice and Bob share. The message m = {m1, . . . ,mn} is another sequence
of bit of the same length. Alice encrypts the message e = E(m, k) and broadcast
it which Bob then has to decrypt to get m. A simple encryption-decryption
scheme is:

• Encryption: bitwise addition (mod 2)

m 7→ E(m, k) = {m1 ⊕ k1, . . . ,mn ⊕ kn}

• Decryption:

D 7→ D(E(m, k), k) = {m1 ⊕ k1 ⊕ k1, . . . ,mn ⊕ kn ⊕ kn} = m

The space of all messages has 2n messages. Similarly, the space of all keys has
2n elements and so does the space of all encryptions.

5.4.2 Security

What do we mean by saying that an encryption scheme is secure? A definition,
going back to Shannon, is:

Definition 5.2. The encryption e = E(m, k) of a message m is secure if in-
tercepting the encryption e gives no information on m:

P (m|e) = P (m)

where P (m) is the probability of the message m and P (m|e) is the conditional
probability for the message m given the encryption e.

In a secure encryption, the message and its encryption are independent

P (m, e) = P (m|e)P (e)︸ ︷︷ ︸
Bayes

= P (m)P (e)

where P (m, e) is the joint probability for the message m and the encryption e.
This implies that the key must be chosen independently of the message.

5.4.3 One time key pad

In a one time key pad the key is chosen independently of the message with
uniform distribution:

P (m, e, k) = δ(e = m⊕ k)P (m, k) = δ(e = m⊕ k)P (m)2−n

It follows that

P (m, e) =
∑
k

δ(e = m⊕ k)P (m)2−n = P (m)2−n
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and
P (e) =

∑
m

P (m)2−n = 2−n

is uniformly distributed and

P (m, e) = P (m)P (e)

We can write this as

P (m, e) = P (m)P (e) = P (m|e)P (e) =⇒ P (m|e) = P (m)

We have therefore proved:

Theorem 5.3 (Shannon). One time pad encryption is secure.

Note that P (m) may have any distribution. For example, Bob is allowed to
ask Alice to encrypt for him the single single message

War starts tomorrow at 08:00

The point is that one Alice encrypts the message a second time, Bob will not
be able to decipher it.

Exercise 5.4. Suppose a message m has correlations between consecutive bits
expressed by unequal probabilities of the various two-bit words

P (0, 0) > P (0, 1) > P (1, 0) > P (11)

Show that encryption with one time pad of identically distributed bit erases the
correlations.

The one time pad is secure if used once. If you use the same key for two
(binary) messages m and m′ then you know everything about m⊕m′. You have
half the information about the two messages.

The weakness of the one-time pad is the absence of a reliable method for key
sharing: If you have a secure way to transmit the key you can use it to transmit
m.

Figure 5.4: From Left: A 360×360 image; A random array of black (rgb=0,0,0)
and white (rgb=1,1,1) pixels; The encrypted image; The decrypted image.
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Example 5.5. A Mathematica program that generates the figure
qi=ImageData[Graphics[Text[Style[QI,80]]]];

ran=Table[RandomInteger[{0,1}]{1.,1.,1.},{j,1, 360},{k,1,360}];
encript=Mod[ran+qi,2]; decript=Mod[encript+ran,2];

GraphicsRow[{Image[qi],Image[ran],Image[encript],Image[decript]},
Frame→ All]

5.4.4 Quantum key distribution (BB84)

Quantum mechanics provides a secure way to share a (classical) key.

• Alice chooses a (random classical binary) sequence bA = {Z . . . ,X . . . } of
length 4n.

• Alice chooses random key k of (classical) bits 0,1 of length 4n

• Alice encoded k in qubits in the (random) base b taken from X,Z and
send the qubits to Bob.

• Bob measures his qubits in a randomly chosen basis bB = {Z . . . ,X . . . }

• Bob and Alice broadcast the bases bB and bA

• Alice and Bob trash the bits where their basis elements disagree (about
1/2)

• Alice or Bob broadcast (a random) half of the un-trashed bits to check for
eavesdropping.

• If there is perfect agreement, they use the remaining (approximately) n
bits as private key, and they are confident no one was eavesdropping

• If Eve is eavesdropping, she would most likely use the wrong basis for
half of the qubits she intercepted. As a consequence a quarter of the
(intercepted) bits will disagree.

• If Alice and Bob suspect eavesdropping, they try again.

Remark 5.6. This is not a proof of security. I did not specify how much power
the eavesdropper (Eve) has. I have assumed that Alice prepares her qubits in
pure states and Bob receives pure states. What is Eve is allowed to mess up Alice
preparation? What if Alice qubits are actually entangled with Eve’s qubits? I
will not address this here since we still have not learned about entanglement.
The actual proof of security of BB84 is actually difficult.
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Chapter 6

Alice and Bob

6.1 Two bits

Two classical bits allow us to count to 4:

ab︸︷︷︸
binary

= 2× a+ b, a, b ∈ 0, 1

Geometrically, 2 bits can be represented by the unit square in 2-dimensions.
Two classical bits are just that, two single classical bits. We shall see that two

H1,1L

H0,0L

Figure 6.1: 2 bits correspond to the 4 corners of the unit square

qubits are more than what you would naively expect from two single qubits.

49
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6.2 Hilbert space of two qubits: Tensor prod-
ucts

The Hilbert space of two qubits is C4 with a special structure that pays attention
to who owns the qubits:

C4 = C2︸︷︷︸
Alice

⊗ C2︸︷︷︸
Bob

A vector in the Hilbert space, in the computational basis, takes the form

|ψ〉 =
∑

a,b∈0,1

ψab|a〉A ⊗ |b〉B

Think of the subscript ab as a binary representation of a number.
The the unit sphere in C4 is S7:

1 = 〈ψ|ψ〉 =
∑

a,b∈0,1

|ψab|2

Since |ψ〉 is physically equivalent to eiγ |ψ〉 the space of physically distinct (pure)
states is six dimensional

S7/S1

This the space is known as CP (3). It is the space of rank one projections,
|ψ〉〈ψ|. It is clearly compact and six dimensional. (It is, however, not S6.) It
has interesting geometry.

The first thing to notice is that CP (3) is larger than what you’d expect
classically. The space of pure states of a qubit is S2. Classically you’d expect
the pure states of 2 qubits to be S2⊗S2. But it is not. It has 6 dimensions not
4.

6.3 Computational basis

The computational basis is the common eigenvectors of

Z ⊗ Z, Z ⊗ 1, 1⊗ Z

These observables are mutually commuting and so can be measured simultane-
ously. Measuring them Alice and Bob to prepares one of the 4 computational
basis states:

|a〉A ⊗ |b〉B a, b,∈ 0, 1

We shall use several shorthands

|a〉A ⊗ |b〉B = |ab〉AB = |2a+ b〉 a, b,∈ 0, 1

and

|00〉 =


1
0
0
0

 , |01〉 =


0
1
0
0

 , |10〉 =


0
0
1
0

 , |11〉 =


0
0
0
1



http://en.wikipedia.org/wiki/Complex_projective_space
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6.4 Pure product states

Definition 6.1. The state |ψ〉 ⊗ |φ〉, (equivalently, the associated projection,
|ψ〉〈ψ| ⊗ |φ〉〈φ|), is called a pure product state.

Pure product states can be identified with a point on two Bloch spheres:
Alice’s and Bob’s. They are similar to classical states.

Pure product states are mapped to pure product states under local oper-
ations where Alice and Bob each each make their qubit go through a unitary
gate

|0〉A U U |0〉A

|0〉B V V |0〉B

This is expressed by

(UA ⊗ VB) |ψ〉A ⊗ |φ〉B = UA|ψ〉A ⊗ VB |φ〉B

This means that Alice and Bob can rotate their qubits anywhere on their re-
spective Bloch spheres.

If Alice and Bob have a pure product state and do any single qubit mea-
surement on their qubits, they will still get a pure product state. This follows
from

|ψ〉 ⊗ |φ〉 7→ PA ⊗ PB |ψ〉 ⊗ |φ〉 = PA|ψ〉 ⊗ PB |φ〉

Product states describe the situation where Alice qubit is independent of
Bob’s qubit. For example, the probability that Alice finds her qubit pointing in
the m̂ direction and Bob finding his pointing in the n̂ direction is

Prob(P (m̂)⊗ P (n̂)|φ⊗ ψ) = Prob(P (m̂)|φ)Prob(P (n̂)|ψ)

= 〈ψ|P (m̂)|ψ〉〈φ|P (n̂)|φ〉

where

P (m̂) =
1 + m̂ · σ

2

To kick |ψ〉 ⊗ |φ〉 out of the space of pure product Alice and Bob need to do
a bona fide 2-qubit operation. For example, they need to measure X⊗X where
the assocciated projection is

P =
1 +X ⊗X

2

This is not something Alice and Bob can do by measuring the two qubits indi-
vidually. They need to do something on the pair.
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6.5 The algebra of tensor products

In the computational basis

(A⊗B) |jk〉 = A|j〉 ⊗B|k〉

=
∑
m

Amj |m〉 ⊗
∑
n

Bnk|n〉

=
∑
m,n

AmjBnk|mn〉

=
∑
m,n

(A⊗B)mn;jk|mn〉

|jk〉 is vector, with indices that runs on the binaries 00 to 11. The matrix A⊗B
is the 4× 4:

(A⊗B)mn;jk = AmjBnk

Example 6.2.

1⊗X =

(
X 0
0 X

)
, X ⊗ 1 =

(
0 1

1 0

)
,

Note that
(A⊗B)† = A† ⊗B†

Exercise 6.3. Show that in the computational basis,

A⊗B =

(
A00B A01B
A10B A11B

)
,

A simple, yet often useful, result is: X ⊗ X, Y ⊗ Y , and Z ⊗ Z are all
mutually commuting.

6.5.1 Partial trace

Definition 6.4 (Partial trace). The partial traces of A⊗ Y are defined by

TrA
(
A⊗B

)
= B TrAA, T rB

(
A⊗B

)
= A TrBB

and then extended by linearity to
∑
Xj⊗Yj for any linear operator on HA⊗HB.

Alternatively, if the operator D on the joint space has matrix elements
Dαβ;α′β′ with α labeling the basis in Alice Hilbert space and β is Bob’s then its
partial trace has matrix elements:

(DA)αα′ =
∑
β

Dαβ;α′β

It follows that
TrH1⊗H2 (A⊗B) = (TrH1 A) (TrH2 B)

It is also easy to verify that

Proposition 6.5. Partial trace maps positive operators (on the total space) to
positive operators (on Alice space) and is trace preserving.
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6.6 The state of subsystems

Suppose Alice and Bob share ρAB . We would like to introduce a notion of a state
ρA that captures what Alice know about her qubit if Bob’s qubit is inaccessible
to her. Alice observables are of the form

A⊗ 1

since Bob is doing nothing on his qubit. The expectation values for any of here
observables is

TrA⊗ 1 ρAB =
∑

Aαα′δββ′ρα′β′;αβ

=
∑

Aαα′ρα′β;αβ

= TrA
(
AρA

)
(6.1)

where
ρA = TrB (ρAB)

The reduced density matrix ρA encodes the results of measurements Alice can
do on her qubit.

Remark 6.6. Partial trace is the analog of marginals in probability: The joint
probability distribution p(x, y) is the analog of ρAB. It describes the knowledge
of Alice and Bob about the joint system. The marginals

p(x) =
∑
y

p(x, y)⇐⇒ ρA = TrBρAB

express what Alice knows about her subsystem.

Exercise 6.7. Compute the partial traces ρA and ρB for

ρ =
1

4

∑
ρµνσµ ⊗ σν , ρµν ∈ R, ρ00 = 1 (6.2)

Suppose you are told that ρA and ρB are fully mixed. What does this imply on
ρµν?(Answer: ρµ0 = 0).

6.7 Purification

Purification is the converse of partial tracing: We can always purify a density
matrix at the price of adding an auxiliary system, known as ancilla (Latin for
“maid”).

Given a density matrix of the system S represented as a convex sum of pure
states

ρS =
∑
j

pj |ψj〉〈ψj |︸ ︷︷ ︸
not necessarily orthogonal

https://www.google.co.il/search?q=ancilla&oq=ancilla&aqs=chrome..69i57j0l2j69i60l2j0.2366j0j4&sourceid=chrome&es_sm=119&ie=UTF-8
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The corresponding pure state of the joint system+ancilla is

|Ψ〉 =
∑
j

√
pj |ψj〉S ⊗ |j〉A, 〈j|k〉A = δjk

One verifies that
ρS = TrA|Ψ〉〈Ψ|

6.8 Tomography of two qubits

A basis in the space of 4× 4 matrices is

σµ ⊗ σν , µ, ν ∈ {0, 1, 2, 3}

Any trace normalized state can be written as

ρ =
1

4

1 +
∑
µν 6=00

ρµνσµ ⊗ σν

 , ρµν ∈ R

If we have a black box that spits out copies of an unknown ρ we can determine
ρ by measuring 15 observables, e.g.

ρµν = Tr(ρ σµ ⊗ σν)

In practice it is often natural to replace the observables

1, X, Y, Z

by observables that are projections. One reason to do that is that projections
represent detector counts. A set of linearly independent projections is, for ex-
ample

1 +X

2
,

1 + Y

2
,

1 + Z

2
,

1− Z
2

From these you can construct 42 = 16 pairs of correlations between detectors.
The price you have to pay is that to determine ρµν in the σµ ⊗ σν basis you
need to solve a linear algebra problem.

Exercise 6.8. Suppose you are told that the state is pure. How many and which
correlations would suffice to determine the state.

6.8.1 Gauge invariance

Suppose Alice and Bob agree on the Z direction. The freedom to choose an
arbirtary phase in the computational basis is expressed as gauge freedom

|ab〉′ = U |ab〉, U =


eiφ1 0 0 0

0 eiφ2 0 0
0 0 eiφ3 0
0 0 0 eiφ4
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Under gauge transformation the tomography changes by

ρµν 7→ ρµνe
i(φµ−φν)

The diagonals are gague invariant, and the absolute values of the off diagonal
elements are gauge invariant. Moreover, the phase for a product of any cosed
cycle is guage invariant

ρ12ρ23ρ31 7→ ρ12ρ23ρ31
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Chapter 7

Entanglement

Most vectors |ψ〉 ∈ C4 are not pure products: |ψA〉 ⊗ |ψB〉. This follows from a
simple counting argument:

dim(2 qubits pure states) = 6, dim(2 qubits pure product states ) = 4

Pure states that are not pure products are called entangled.
The mother of entangled states are Bell states. There are four of them. Here

is one √
2|β0〉 = |0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B (7.1)

It may not always be obvious if a state is or is not pure product. For example

1

2
(|00〉+ |01〉+ |10〉+ |11〉) = |+〉 ⊗ |+〉 (7.2)

the lhs is a superposition in the computational basis, but the rhs shows that,
in suitable basis, it is is a pure product. In the next section we shall describe a
mathematical tool that will decide if a pure state is entangled on not.

The fact that most pure states are entangled does not mean that it is nec-
essarily easy to make them. If Alice and Bob start from a pure product state
|ψA〉 ⊗ |ψB〉 and all they are allowed to do are local operation, the state will
transform to another pure product state:

|ψ〉A U |ψ′〉A

|φ〉B V |φ′〉B

7.1 Schmidt decomposition

How can one tell if a (pure) state shared by two parties is entangled or not?
When is general 2-parties state pure product:∑

a,b,∈0,1

ψab|a〉 ⊗ |b〉? =?|ψ〉 ⊗ |φ〉

57
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The representation on the left depends on the choice of single qubit basis, as we
have seedn in Eq. 7.2. How can we choose an optimal basis so that the number
of terms in the superposition is minimal? The Schmidt decomposition selects
the optimal basis adjusted to the state.

The basic idea is similar to diagonalization of a normal matrix: An N ×N
normal matrix is encoded in the N eigenvalues, if we chose the optimal basis–the
basis of eigenvectors.

The coefficients ψab can be organized as a 2 × 2 matrix. The matrix of
coefficients need not be Hermitian. For example,

|0〉 ⊗ |1〉 ↔ ψab =

(
0 1
0 0

)
The singular value decomposition, that we shall now describe, allows to to
represent any N × N , matrix, not necessarily normal, by N entries, known as
singular values, that are natural generalizations of the eigenvalues of Normal
matrices.

To see how this comes about recall the polar decomposition of a complex
number z = reiθ. This simple fact has an analog for (square1) matrices:

Theorem 7.1. Every square matrix A can be written as a product of a unitary
and a positive matrix:

A = U |A|, U† = U−1, |A| =
√
A†A

(uniquely).

Example 7.2.

A =

(
0 1
0 0

)
=

(
0 1
1 0

)
︸ ︷︷ ︸
unitary

(
0 0
0 1

)
︸ ︷︷ ︸
positive

This leads to the singular values decomposition (SVD):

Theorem 7.3 (SVD). Every square matrix A can be written in terms of the
product of two unitary matrices U,W and a diagonal positive matrix D

A = (unitary)(diagonal)(unitary) = W DU

where

Dnm = δn,mEigenvaluen

(√
A†A

)
Dn are known as “singular values”. The decomposition is unique up to reorder-
ing of the singular values in D and the freedom to multiply D on the left by a
diagonal unitary and on the right by its inverse).

1Append columns or rows of zeros if not square.
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Proof: Since |A| is a positive matrix, we can write

|A| = V DV †

with V unitary and D diagonal and positive. Combined with the polar decom-
position gives the result. SVD has numerous applications.

SVD leads to

• Any state partitioned between Alice and Bob can be brought into canonical
form ∑

mn

ψmn|m〉 ⊗ |n〉 =
∑
m

λm|ψm〉 ⊗ |φm〉︸ ︷︷ ︸
canonical

(7.3)

with

〈ψm|ψn〉 = δmn 〈φm|φn〉 = δmn

• λm are called the Schmidt coefficients.

• The number of non-zero Schmidt coefficients is called the Schmidt rank.

• A state is a product state if its Schmidt rank is 1 and is entangled it its
Schmidt rank is larger than 1.

• A state is maximally entangled if all |λm| are equal.

Note that in the lhs of Eq. (7.3) different terms are orthogonal because one of
the factors |m〉 ⊗ |n〉 is orthogonal whereas in the rhs both factors |ψm〉 ⊗ |φm〉
are mutually orthogonal. This allows to identify when a state is in Schmidt
form.

Proof:

N∑
j,k=1

ψjk|j〉 ⊗ |k〉 =
∑
jkm

WjmDmV
†
mk|j〉 ⊗ |k〉

=
∑
m

Dm

∑
j

Wjm|j〉

⊗(∑
k

V †mk|k〉

)

=

N∑
m=1

Dm W |m〉 ⊗ V ∗|m〉︸ ︷︷ ︸
unitary change of base

(7.4)

The λm can be chosen non-negative. (The Schmidt coefficients give the equiv-
alence class of states that are related by local unitary operations.) Clearly

〈Wm′|Wm〉 = 〈m′|W †W |m〉 = δmm′

http://en.wikipedia.org/wiki/Singular_value_decomposition
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7.2 Bell pairs

The Bell states, named after John Bell whom we shall meet again later, are the
2-qubits states given by:

|βµ〉 =
1√
2

1∑
a,b=0

(σµ)ab|ab〉, µ ∈ 0, . . . , 3, , a, b ∈ 0, 1

Explicitly √
2|β0〉 = |00〉+ |11〉,

√
2|β1〉 = |10〉+ |01〉

i
√

2|β2〉 = |10〉 − |01〉,
√

2|β3〉 = |00〉 − |11〉

• Being in Schmidt form Bell states are maximally entangled.

•

〈βµ|βν〉 =
1

2
Tr(σµσν) = δµν

• Bell states are an orthogonal basis for C2.

• My notation differs from Nielsen and Chuang by the overall phase in |β2〉.

Exercise 7.4. Show that

√
2|ab〉 =

∑
µ

(σµ)ba|βµ〉︸ ︷︷ ︸
Note ordering of ab

Exercise 7.5. Purify the two qubits state

ρ = p|β0〉〈β0|+ (1− p)1
4

(Hint: Write the resolution of the identity in terms of Bell states).

7.2.1 Syndrome

Often, interesting wave functions turn out to be quite complicated and you do
not learn much by looking at the wave function. Instead, you can characterizer
them by enough commuting observables. Since

X ⊗X, Y ⊗ Y, Z ⊗ Z

are mutually commuting, have eigenvalues ±1, and satisfy(
X ⊗X

)(
Y ⊗ Y

)(
Z ⊗ Z

)
= (XY Z)⊗ (XY Z) = −1⊗ 1



7.3. GENERATING BELL PAIRS 61

The four Bell states correspond to the eigenvalues:

|β0〉 : {1,−1, 1}
|β1〉 : {1, 1,−1}
|β2〉 : {−1,−1,−1}
|β3〉 : {−1, 1, 1}

Exercise 7.6. Show that

|β0〉〈β0| =
1

4
(1⊗ 1 +X ⊗X − Y ⊗ Y + Z ⊗ Z) =

1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 ,

|β3〉〈β3| =
1

4
(1⊗ 1−X ⊗X + Y ⊗ Y + Z ⊗ Z) =

1

2


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 ,

Similarly, for the projections on the remaining Bell states

|β1,2〉〈β1,2| =
1

2


0 0 0 0
0 1 ±1 0
0 ±1 1 0
0 0 0 0


7.2.2 Rotations: Bell singlet

The generator of the joint rotation of the two qubits is

J =
1

2
(σ ⊗ 1 + 1⊗ σ)

and explicitly

2Jz = Z ⊗ 1 + 1⊗ Z, 2Jx = X ⊗ 1 + 1⊗X, 2Jy = Y ⊗ 1 + 1⊗ Y.

The Bell state |β2〉 is an eigenstate of the total angular momentum with eigen-
value 0. It follows that it is invariant under rotations and so is isotropic. It is
also known as the singlet.

7.3 Generating Bell pairs

Consider a quantum dot, where the excited state
∣∣e2h2; J = 0

〉
is a bound pair

of two electrons and two holes with total angular momentum J = 0. The dot
has a degenerate intermediate level |eh; J = ±1〉 which is optically connected to
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top state. The ground state is an empty dot |0; J = 0〉. The first e-h pair can
recombine to emit a red photon. It can do that in one of two paths. QM doess
not chose a path–it uses both∣∣e2h2; J = 0

〉
7→ |eh, J = −1〉 ⊗ |L〉+ |eh, J = 1〉 ⊗ |R〉

This state has the dot is entangled with the red photon. The remaining electron-
hole pair can recombine to leave the dot in its ground state while emitting a
blue photon.

|eh; J = −1〉 ⊗ |L〉+ |eh, J = 1〉 ⊗ |R〉 7→ |0; J = 0〉︸ ︷︷ ︸
empty dot

(
|R〉 ⊗ |L〉+ |R〉 ⊗ |R〉

)
The dot and the photons are in a product state. But, now the two photons are
entangled.

J = 0

J = 0

J = −1 J = 1

Figure 7.1: A three level system. The top state has J = 0 and decays to a ground
state, also with J = 0, through intermediate levels with J = ±1, emitting two
photons in th process. The first photon is red and the second photon is blue.
There are two decay paths. The right arm emits |L〉 ⊗ |R〉 where R,L denote
the circular polarization of the photons. The left arm emits |R〉 ⊗ |L〉

7.4 Dense coding

An interesting feature of Bell states is their non-locality: Alice can affect Bobs’
qubit even if she has no direct access to it: Either Alice or Bob can turn any
Bell state to any other Bell state by local operations

σµ ⊗ 1|β0〉 = |βµ〉, 1⊗ σtµ|β0〉 = |βµ〉

(The annoying transpose only affects σ2 and is just an overall sign.) In other
words, starting with one Bell state, Alice can generate all Bell states, which
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span a basis in the Hilbert. This is not possible in the computational basis for
Alice can not chage |00〉 to the vector |11〉.

Transmission of a single qubit of a Bell pair from Alice to Bob is equivalent
to the transmission of two classical bits between them.

Protocol:

• Alice and Bob share |β0〉.

• Alice wants to transmit µ ∈ {0, 1, 2, 3}

• Alice acts on her qubit by σµ. This turns the state to |βµ〉.

• Alice sends Bob her qubit.

• Bob measures X⊗X and Z⊗Z (syndrom) on the Bell pair and determines
µ.

The one qubit Bob got from Alice is worth 2 classical bits to Bob.

7.5 Entanglement = incomplete knowledge about
subsystems

If Alice and Bob share a pure state |Ψ〉AB with Schmidt decomposition

|Ψ〉AB =
∑
m

λm|ψm〉 ⊗ |φm〉

then Alice system has the density matrix

ρA =
∑
m

|λm|2|ψm〉〈ψm|

and Alice is entangled with Bob iff ρA is mixed and is maximally entangled if
her state is fully mixed. Only if |Ψ〉AB = |ψ〉 ⊗ |φ〉 is pure product then Alice
system is in a pure statee: TrB |Ψ〉AB〈Ψ| = |ψ〉〈ψ| is a projection.

The result is interesting as it illustrates a basic difference between the quan-
tum and the classical worlds. In classical physics, if you know all there is to
know about Alice and Bob, you also know all there is to know about Alice. This
is not true for entangled states. In fact, if the state is fully entangled then Alice
knows nothing about her qubit.

If Alice and Bob share a Bell pair, then Alice knows nothing about her qubit:
The state is fully mixed:

ρA = TrB |βµ〉〈βµ| = 1
21

Only pure product states behave like classical systems.
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Exercise 7.7. Show that if Alice and Bob are maximally entangled, Alice’s
qubit is a perfect balanced coin in the sense that measurement of the qubit in
any direction m of the Bloch sphere has

〈βµ|(m · σ)⊗ 1|βµ〉 = 0

7.6 Perfect correlations and total ignorance

As we have seen when Alice and Bob share a Bell state Alice knows nothing
about her own qubit. And so does Bob. Interestingly, the two coins are never-
theless perfectly correlated. Consider for simplicity the case that Alice and Bob
share |β2〉:

ρ0 = |β2〉〈β2| =
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 (7.5)

The probability that Alice finds her qubit pointing in the m direction and Bob
finds his pointing in the n direction is:

Prob(P (m)⊗ P (n)|β2) = 〈β2|P (m)⊗ P (n)︸ ︷︷ ︸
projections

|β2〉 =
1−m · n

4
, (7.6)

where

P (m) =
1 + m · σ

2
, |m| = 1

The conditional probability, conditioned on Alice finding her qubit in m, is

Prob(P (m)⊗ P (n)|β2)

Prob(P (m)⊗ 1|β2)
=

1−m · n
2

The correlations are perfect when m = −n where the rhs is 1 so that Bob’s
qubit becomes a faithful slave of Alice’s qubit.

Exercise 7.8. Show that

〈βµ|(m · σ)⊗ (n · σ)|βµ〉 = Tr (Pµ (m · σ)⊗ (n · σ))

=


m1n1 −m2n2 +m3n3 µ = 0

m1n1 +m2n2 −m3n3 µ = 1

−m1n1 −m2n2 −m3n3 µ = 2

−m1n1 +m2n2 +m3n3 µ = 3

7.7 Correlations and signaling

Contrary to a popular myth, correlations do not imply signaling. Bell likes to
tell the story of his friend Bertlesman, who always wears one red sock and one
blue. But chooses right and left randomly. If Alice lifts Bertlesman hose on the
left foot, she knows the color on both feet. But her knowledge has not been
transmitted to Bob at the other leg.



7.8. REMOTE STATE PREPARATION, HERALDING 65

7.8 Remote state preparation, Heralding

Protocol

• Alice and Bob share the singlet Bell state,

|β0〉 = |0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B

• Alice measures her qubit in the computational basis.

• Alice tells Bob what she found.

• Bob now knows that his qubit is in the same state as Alice’s without
actually measuring it.

• Alice prepared Bob’s qubit at a distance.

You should worry how does a state change instantaneously upon measuring
a remote part of the system and if there is conflict with relativity. There no
problem with this because

• Alice measurement gives a probabilistic result so her measurement does
not transmit information to Bob who has no idea what the result has been.

• Heralding is deterministic provided Alice has a classical channel to trans-
mit her result to Bob. Since classical transmissions have finite propagation
speed relativity is safe. Heralding is not a method to signal faster than
light.

7.9 Separable and entangled states

So far we have discussed entanglement for pure states. Let us now extend the
notion of entanglement to mixed states.

Let us start with pure product states

ρ = ρA ⊗ ρB

The operator PA ⊗PB with PA and PB projections represent the occurrence of
the event that Alice prepares the state PA and Bob prepared PB . If Alice and
Bob share the state ρ this occurs with probability

Prob(PA ⊗ PB |ρ) = Tr (ρPA ⊗ PB)

= TrA (ρAPA) TrB (PBρB)

= Prob(PA|ρA)Prob(PB |ρB) (7.7)

This means that Alice and Bob probabilities are independent.
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Consider now the case that the quantum state of Alice and Bob is a mixture
of product states:

ρ =
∑
j

pj(ρA)j ⊗ (ρB)j , 1 ≥ pj ≥ 0 (7.8)

One way to think about this state is to imagine that Alice has a pool of states
(ρA)j and Bob has a pool (ρB)j . Alice and Bob prepare ρ by throwing a dice.
If the dice gives j they pick (ρA)j and (ρB)j . The do that many time and use
the state to make various measurements. ρ is the state they prepared on the
average.

Since Alice and Bob use a the same dice, they are correlated. These corre-
lations are classical. This motivates the definition of special class of of states,
called separable states.

• A state is separable if it is of the formEq. 7.8.

• The separable states are a convex subset of the set of all states.

• The fully mixed state is separable:

1A ⊗ 1B
2n+m

• There are density matrices ρ ≥ 0 that are non-separable.

• A density matrix that is not separable is called entangled.

As we shall see this definition generalizes the definition of entanglement that
we gave for pure states.

The definition of separability suggests that entangled states can not be de-
scribed by classical probability theory–they have non-classical correlations. We
shall see that this is indeed the case.

7.10 Bell states for q-dits

Let Cd be the Hilbert space of Alice with the computational basis |n〉, n ∈ Zd.
Define

S|n〉 = ω|n〉, T |n〉 = |n− 1〉, ω = e2πi/d

Then, the d@ states

|βjk〉 =
1√
d

d∑
n=1

T j |n〉 ⊗ Sk|n〉

are maximally entangled and mutually orthogonal. They are the generalization
of Bell states to q-dits.

Exercise 7.9. Show this.
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7.11 Partial transpose

Given a bipartite partition, the partial transpose P is the linear operation de-
fined on the base vectors of the partition σµ ⊗ σα by(

σµ ⊗ σα

)P
= σµ ⊗ σtα

Since σy is anti-symmetric while σx and σz are symmetric:

σty = −σy, σtx = σx, σtz = σz

In particular, if ρ ≥ 0 is separable:

ρ =
∑
j

pj(ρA)j ⊗ (ρB)j (7.9)

with (ρA)j ≥ 0, (ρB)j ≥ 0 then also ρP is also a (positive) state ρP ≥ 0 and is
also separable:

ρP =
∑
j

pj(ρA)j ⊗ (ρB)tj , (7.10)

since (ρA)j ≥ 0 and (ρB)tj ≥ 0.

The set of states that satisfies ρP ≥ 0 is a convex set.

Exercise 7.10. Show that the partial transpose of the projection on the Bell
state |β0〉〈β0| is the swap.

Remark 7.11. Transpose is basis dependent in the following sense

A 7→ At ⇐⇒ U†AU 7→ (U†AU)t 6= U†AtU

7.11.1 Time reversal

For self-adjoint operators transpose is the same as complex conjugation

A 7→ At = (A†)t = (Āt)t = Ā

Complex conjugation has an interesting interpretation. Namely, time reversal
in quantum mechanics is related to complex conjugation. This can be seen in
several ways. For example, under time reversal

x 7→ x, p 7→ −p

To preserve the uncertainty principle2

[pj , xk] = −i~δjk
2More precisely, this says that time reversal is (an anti-linear) operator made from a unitary

times complex conjugation: U∗.
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we need to replace i by −i. The same argument works for the angular momen-
tum commutation

[Jj , Jk] = −i~εijkJi
Yet another way to see this is to look at Schrödinger equation

−i~∂t|ψ〉 = H|ψ〉 =⇒ −i~∂t|ψ〉 = H|ψ〉 =⇒ i~∂t
∣∣ψ̄〉 = H̄

∣∣ψ̄〉
is like flipping time.

7.12 Peres test

The truly remarkable fact about the partial transpose is that it is, in general,
not a complete positivity preserving map. By this I mean that there are positive
ρ ≥ 0 such that ρP is not positive. This leads to Peres test:

If a density matrix ρ ≥ 0 has a partial transpose that is non-positive, then ρ
is entangled.

The case of two-qubits is special in that:

• The test is both necessary and sufficient condition for entanglement. (I
shall not prove this.)

• ρP has at most one negative eigenvalue.

• The absolute value of the negative eigenvalue is called negativity. It is a
measure of entanglement.

7.13 Consistency of the definitions of entangle-
ments for pure and mixed states

Let us now show that the notion of entanglement as the complement of the set
of separable states generalizes the notion of entanglement for pure states.

For pure states we defined entanglement through Schmidt decomposition:

|Ψ〉 =

M∑
j=1

λj |j〉 ⊗ |j〉, λj > 0

|Ψ〉 is entangled if M ≥ 2.
The density matrix associated with the state |Ψ〉 is

|Ψ〉〈Ψ| =
∑
j,k

λjλk|j〉〈k| ⊗ |j〉〈k|

Its partial transpose is

(|Ψ〉〈Ψ|)P =
∑
j,k

λjλk|j〉〈k| ⊗ |k〉〈j|

It is not too difficult to guess the eigenvectors of (|Ψ〉〈Ψ|)P .
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• There are M eigenvectors, namely, |m〉 ⊗ |m〉 with positive eigenvalues
λ2
m > 0

• There are
(
M
2

)
eigenvectors3with eigenvalues ±λnλm, namely:

|φ±〉 = |n〉 ⊗ |m〉 ± |m〉 ⊗ |n〉

Indeed

(|Ψ〉〈Ψ|)P |φ±〉 =
∑
j,k

λjλk
(
δknδjm ± δkmδjn

)
|j〉 ⊗ |k〉

= λnλm
∑
j,k

(
δknδjm ± δkmδjn

)
|j〉 ⊗ |k〉

= ±λmλn|φ±〉

This shows that pure states which are entangled by Schmidt decomposition, are
also entangled by the Peres test. The notion of entanglement for mixed states
therefore generalizes the notion of entanglement for pure states.

7.14 Entangled photons from a quantum dot

In semiconductors4 the conductance band is made form atomic s orbitals and
the valence band is made of atomic p orbitals. As a consequences, there is one
type of electron, with spin ±1/2, denoted |↑〉, |↓〉 and two types of holes: Those
with spin ±1/2, called light, and ±3/2, called heavy. We denote the heavy holes
|⇑〉, |⇓〉5.

A dot may be populated by electrons and holes. The ground state is an
empty dot. The excited states associated an electron-hole pairs are called exci-
tons. An exciton level is called bright if the the electron-hole pair can recombine
effectively to emit a photon and leave the dot empty. This happens if the exci-
ton has unit angular momentum. The two bright exciton levels are made with
heavy holes 6:

|↑⇓〉 ± |↓⇑〉

which is a superposition of angular momentum ±1 states.

Since a p orbital is like x + iy, the two superpositions have the geometry
of two antennas one is x oriented and the other y oriented. As a consequence
when the electron and hole recombine to emit a photon the radiation from the
two levels are H and V polarized respectively. Consider first the left path: The

3Clearly,
(1
2

)
= 0 since you can not choose 2 terms from a list with one term.

4The situation is reversed in topological insulators.
5|⇑〉 = |p〉 ⊗ |↑〉h|φ(r)〉 where |p〉 is the atomic orbital and |φ(r)〉 a slowly varying envelop.

The light holes are more complicated.
6The ± from of the eigenstates is dictated by time reversal.
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e2h2

H

H

V

V

Empty dot

eh
eh

Figure 7.2: Level diagram in quantum dot. Two electron hole pairs make the
top level (biexciton). When a pair recombines a (red) photon is emitted and
the dot relaxes to the intermediate exciton with the remaining eh pair. This
can happen in two paths aince there are two intermediate exciton states. The
two exciton levels (green) are not exactly degenerate and may be thought of as
having the geometry of an antenna that is either x or y oriented. This implies
that the the emitted photon is H polarized in one path and V polarized in the
other. When the second pair recombines a second photon–blue–is emitted and
the dot is empty. One decay path emits two horizontally polarized photons and
one two vertically polarized.

wave function of the emitted photon pair with horizontal polarization is

|H,RH〉︸ ︷︷ ︸
first

⊗ |H,BH〉︸ ︷︷ ︸
second

= |H〉︸︷︷︸
Polarization

⊗ |RH〉︸ ︷︷ ︸
color

⊗ |H〉︸︷︷︸
Polarization

⊗ |BH〉︸ ︷︷ ︸
color

= |H,H〉︸ ︷︷ ︸
polarization

⊗ |RH , BH〉︸ ︷︷ ︸
colors

And similarly for the decay path on the right, but with H replaced by V . Thus,
the emitted photon pairs are in an entangled state

|H,H〉 ⊗ |RH , BH〉+ |V , V 〉 ⊗ |RV , BV 〉√
2

The state of the polarization qubits is obtained by tracing over the color. This
gives the density matrix (in the basis HH,HV, V H, V V )

ρ =
1

2


1 0 0 c
0 0 0 0
0 0 0 0
c∗ 0 0 1

 , c = 〈RV , BV |RH , BH〉

It represents an entangled state if c 6= 0.
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pairs, in contrast to the case of classically correlated photon pairs
emitting into random bases, for which the average degree of
correlation should be less by a factor of 2.
To fully measure the two photon polarization state, a quantum

state tomography scheme was used23,24. The procedure, detailed in
the Methods section, constructs the two photon polarization density
matrix from a linear combination of cross correlation measurements
using 16 different polarization combinations.
The real component of the two photon polarization density matrix

for the reference dot A is shown in Fig. 3a. The stronger elements all
lie on the diagonal, with the strongest outer elements indicating
polarization correlated emission. The inner diagonal components are
due to uncorrelated photon pair emission, from background counts
and dephasing of the exciton state. The form of this density matrix is
consistent with imperfect polarization correlated photon pair emis-
sion seen previously7–9, and illustrated by the example density matrix
of Fig. 3f. The density matrix for the degenerate dot shown in Fig. 3b
has similar diagonal elements, but now shows significant outer, off
diagonal elements. This is a feature associated with polarization
entangled photon pairs, illustrated by the predicted density matrix of
Fig. 3g.
A similar density matrix is obtained for dot C, tuned to zero

splitting by magnetic field, as shown in Fig. 3d. This again suggests
that the photon pair emission has entangled character.When the field
is increased to 5 T, the splitting increases to 19 meV, and the corre-
sponding density matrix measured is shown in Fig. 3e. As expected,
the off diagonal elements are suppressed, and the dot reverts to
emitting polarization correlated photon pairs. A similar result is
found if the field is reduced to 0 T, where the splitting is 28meV as
shown in Fig. 3c. The imaginary components of the density matrices

were all found to be zero with experimental error, in agreement with
predictions.
The measurements presented above clearly suggest that dots with

small exciton splitting emit entangled photons. We now discuss the
factors limiting the degree of entanglement. In spectroscopy, our
measurements show that the background due to dark counts and
emission from layers other than the dot contributes on average 49%
of the coincidence counts; this is unusually large owing to the
proximity of the dot to the wetting layer, which is necessary to select
dots with zero splitting. If we correct our measurements by removing
the projected number of background counts from the correlation
data, the density matrices of the degenerate and magnetically tuned
dots more closely resemble the ideal entangled case, and the largest
eigenvalues are 0.48 ^ 0.08 and 0.58 ^ 0.04, respectively. The latter,
for which the splitting is minimal, violates the 0.5 limit for classical
correlation in an unpolarized source25. The remaining deviation
from ideal behaviour is attributed to scattering between the two
intermediate exciton spin states7,8. From previous publications where
strong background and entanglement were not present, we estimate
an exciton scattering time similar to the,1 ns radiative lifetime. This
yields a maximum possible eigenvalue of 0.63, in rough agreement
with these measurements.
This suggests that the degree of entanglement may be increased by

resonant optical16,26 or electrical6 excitation in order to increase the
scattering time, or by reducing the radiative lifetime through Purcell
enhancement27,28, or by using dots with larger oscillator strength such
as those formed by interface fluctuations18. Such improvements
could lead to the realization of a semiconductor source of triggered
entangled photon pairs that would be robust and compact, and allow
electrical injection of the carriers14.

METHODS
Sample fabrication and characterization. Samples containing a low density
layer of InAs quantum dots (,1.6 monolayers thick) were grown by molecular
beam epitaxy. A GaAs l cavity containing the dot layer was surrounded by
AlAs/GaAs distributed Bragg reflectors, with 14 (2) repeats in the bottom (top)
mirror, to increase light collection efficiency. A metal shadow mask containing
apertures of,2 mmdiameter was fabricated to isolate the emission of individual
dots. Samples with a range of InAs thicknesses differing by up to ,2% were
characterized in a standard micro photoluminescence system operating at
,10K. Optical excitation was provided by ,100-ps pulses from a 635-nm
laser diode operating at 80MHz. The emission lines are inhomogeneously
broadened by charge fluctuations to ,50 meV, a consequence of the non-
resonant excitation scheme29. Horizontally ([110]) and vertically ([1210])
polarized exciton and biexciton emission was fitted with lorenzian line shapes
to locate the centre energy of each transition. The exciton level splitting can be
determined both from the difference between the horizontally and vertically
polarized exciton or biexciton photons. Taking the average of these two values
removed systematic error associated with changing the polarization optics, and
the splitting S was measured with an estimated precision of ,0.5meV.
Selection of suitable dots. By measuring the splitting of 200 quantum dots, a
relationship of decreasing splitting with increasing emission energy was found20.
For dots emitting at,1.4 eV, the splitting was,0 ^ 10meV. Thus quantum dots
with splitting less than the homogeneous linewidth of ,1.5meV were selected
first by identifying dots emitting close to 1.4 eV, then measuring their splitting.
For dots emitting .1.4 eV, the splitting was inverted, and the lowest energy
exciton line is horizontally polarized. For these dots, the configuration of the
exchange energies and g-factors allows reduction of the splitting with an applied
in-plane magnetic field, driven by partial mixing of optically active and inactive
exciton states30. Thus dots suitable for tuning to zero splitting are conveniently
identified by their emission energy. The proportion of dots that have, or can be
tuned to, zero splitting is ,30%, which could be improved by better growth
control. The proportion of suitably isolated single dots could be improved by
fabrication of smaller microstructures.
Photon pair counting. Quantum dots were optically excited, with the power
adjusted to give optimumphoton pair detection rate to background ratio. At this
power, the biexciton intensity is around half that of the exciton. A 50/50 beam
splitter divided the emission into two spectrometers, set to transmit at the XX
and X photon energies respectively, with,0.5meV bandwidth. Polarizing beam
splitters were placed after the spectrometers, and three single photon detectors

Figure 3 | Density matrices for the biexciton–exciton two-photon cascade
from conventional and degenerate quantum dots. a–e, Real parts of
measured density matrices corresponding to reference dot A with
polarization splitting, S ¼ 50 meV (a), dot B with S < 0 meV at 0 T (b), and
dot C, with S tuned by the magnetic field to be 28meV (c), 0meV (d) and
19 meV (e). The imaginary components are not shown, and were zero within
experimental error. Density matrices b and d feature strong outer off
diagonal elements associated with entangled photon pair states, which are
not present in the reference case (a). f, g, Density matrices representing the
predicted state for ideal classically correlated (f) and entangled (g)
photon pairs, including 50% contribution from uncorrelated background
light.
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Figure 7.3: The shown two qubit tomography from a Nature article claims ev-
idence for entanglement. The authors did not know about the Peres test for
entanglement and invented their own bogus test which says that the non-zero
corners of the density matrix imply entanglement. In this case it does not be-
cause of the large entries on the diagonal. The journal Nature is a business
enterprise and not an non-for-profit organization. Do not build up high expec-
tation with regard to honesty.

Exercise 7.12. Two tomographies of a qubit pair (photon polarization) are
shown below. One published in Nature and one in PRL. Both claim evidence
for entanglement. Determine, using Perese test, which of the two claims is
correct and which is wrong.

If the colors give no information about the decay path |c| = 1 and the
polarization is fully entangled. The case c = 0 is when the colors give complete
“which path” information on the decay path. In this case the polarization is
mixed but not entangled. |c| = 1 if the two exciton states were degenerate. In
practice the degeneracy is split. If the split is small compared to the line width
then |c| ≈ 1. If the degeneracy lifting is large compared with the natural width,
then c ≈ 0. The colors give “which path” information if c = 0.

This is the description if the state was pure. In real systems the state of
the system is never a pure state, and is contaminated my mixtures. This means
that the 0 in the table are replaced by non zero entries. You can then use Peres
to determine entanglement.

Exercise 7.13. Two tomographies of a qubit pair (photon polarization) are
shown below. One published in Nature and one, from Gershoni’s lab, in PRL.
Both claim evidence for entanglement. Determine, using Perese test, which of
the two claims is correct and which is wrong.
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open slits we obtained j!j2 ! j"j2 ! 0:50" 0:02 and
#0 ! 0:03" 0:04# i$0:00" 0:04%. This agrees with the
estimate of j#0j ! !=2" & 0:03. With closed slits we
obtained j!j2 ! j"j2 ! 0:50" 0:04 and #0 ! 0:05"
0:05# i$0:17" 0:05% hence j#0j ! 0:18" 0:05 is signifi-
cantly different from zero. The photon pairs of the biexci-
ton cascade are therefore entangled with confidence level
greater than 3 standard deviations of the measurement
uncertainty. Substituting j#0j in Eq. (3) gives 2:13" 0:07
which violates Bell’s inequality.

While the above analysis holds for photon pairs emitted
from the same radiative cascade, one can also ask whether
the raw correlations show evidence for entanglement [30].
The answer depends on the measurements’ temporal win-
dow width. The events in a wide window will be dominated
by distinct cascades with uncorrelated polarizations. In a
sufficiently narrow time window, however, same-cascade
events will dominate, and the two photon state should be
entangled. For a temporal window of 0.6 nsec, centered
around the antibunching notch [Fig. 2(b)], we minimize the
number of events from distinct cascades while maintaining
reasonable same-cascade statistics. The density matrix
obtained from the raw correlations in this case has partial
transpose with negative eigenvalue of '0:14" 0:06,
clearly satisfying Peres criterion for entanglement.

The measured data points at 25 $eV and 200 $eV are
in quantitative agreement with the calculations shown in
Fig. 4. This supports the absence of significant which path
information in the final state of the QD.

The entangled photons generated in this work are not
event ready for two reasons: first, we used continuous
excitation and, second, the erasure introduces randomness.
However, neither is fundamental. The excitation can be
triggered on demand and the randomness can be overcome
by spectrally monitoring the discarded photons without
demolishing the entangled pair. Reducing the detuning
[21] and increasing the radiative width through the
Purcell effect [13,27] is also a possibility.

In summary, we have demonstrated that the biexciton-
exciton radiative cascade in single semiconductor quantum
dots is a source for entangled photon pairs. The quantum
tomography data satisfy the Peres criterion for entangle-
ment and violate Bell’s inequality. We show that the which
path information residing in the photons color can be
erased and that there is no remanent which path informa-
tion left in the quantum dot.

We acknowledge support by the Israel Science and by
the US-Israel Binational Science Foundations.
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FIG. 3 (color online). The measured two photons’ density
matrix for photon pairs from a biexciton cascade:
(a) [(b)] obtained with spectral window of 200 [25] $eV.
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Figure 7.4: Two qubit tomography from a PRL (Akopian et. al.) with evidence
for entanglement since the corner entries are larger than those on the diagonal.

7.15 The geometry of two qubits

The space of states of 2 qubits is 15 dimensional, and difficult to visualize.
Consider the 3-dimensional cross section7

ρ =
1

4

(
1 +
√

3
(
xX ⊗X + yY ⊗ Y + zZ ⊗ Z

))
Since

Spectrum(X ⊗X) = ±1

and
Z ⊗ Z = −(X ⊗X) (Y ⊗ Y )

the four eigenvalues of ρ are given by

Spectrum(ρ) =
1

4
+

√
3

4

(
xη + yη̃ − zηη̃

)
, η, η̃ = ±1

It follows that ρ ≥ 0 provided

xη + yη̃ − zηη̃ ≥ − 1√
3

7The reason for the strange
√

3 normalization is consistency with Eq. ??.
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Each of the four conditions forces (x, y, z) to lie in a half-space. Since there are
four conditions for η = ±1, η̃ = ±1 the region in R3 that satisfies all 4 conditions
is a tetrahedron. By symmetry, it is the regular tetrahedron.

Now, Peres test is both necessary and sufficient for two qubits. Since the
Peres test flips the sign of Bob’s Y we have

ρP =
1

4

(
1 +
√

3
(
xX ⊗X−yY ⊗ Y + zZ ⊗ Z

))
It follows that ρP ≥ 0 if

xη−yη̃ − zηη̃ ≥ − 1√
3

This gives 4 additional half-spaces. It follows that the set of separable states is
the octahedron shown in the figure.

2√
3

Figure 7.5: The figure shows the tetrahedron of states. The 4 maximally
entangled Bell states at 4 of the 8 corners of a cube whose vertexes are
(±1,±1,±1)/

√
3. The separable states are the octahedron, which is the in-

tersection of two tetrahedra. It is shown in blue.



74 CHAPTER 7. ENTANGLEMENT

7.16 Witnesses

Definition 7.14. An observable W is called a witness if for every pure product
state

A〈ψ| ⊗ B〈φ|W |ψ〉A ⊗ |φ〉B ≥ 0

It follows that if W is a witness then for any separable state ρs

Tr (ρsW ) ≥ 0

Hence if for some state

Tr (ρeW ) < 0

then ρe is necessarily entangled. Any positive operator is a witness, but a boring

Seprabale

Witnesses

Figure 7.6: You may think of Tr Wρ as scalar product between W and ρ. Wit-
ness have a positive scalar product with separable states, but have a neagative
product with some, not all, entangled states.

one since it does not identify any entangled state. An witness is effective if it
identifies some entangled states.

Example 7.15. Swap is an effective witness

Indeed, it is a witness since

A〈ψ| ⊗B 〈φ|Swap|ψ〉A ⊗ |φ〉B = (A〈ψ| ⊗B 〈φ|) (|φ〉A ⊗ |ψ〉B) = |〈ψ|φ〉|2 ≥ 0

It is effective since it identifies the Bell singlet as entangled:

Swap (|01〉 − |10〉) = − (|01〉 − |10〉)

we have

(〈01| − 〈10|)Swap (|01〉 − |10〉) = −2

Exercise 7.16. Show that the partial transpose of the projections on any Bell
states is an effective witness.
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7.17 Whose wave function is it anyway?

Classical probability distributions do not describe the system, but describe our
imperfect knowledge about it. If I know more than you do about a given system,
then I would assign a different probability distribution. For example you assign
p(x) for the voters for Trump and Clinton, i.e. x = {Trump,Clinton}, and
I assign p(x, y) with y = {Male, Female}. I know more, and your p(x) is a
marginal of my p(x, y). There is nothing wrong with one system with multiple
properties being described by various probability distributions.

What about a quantum state. Is it OK for me and you to assign different
states to a given system depending on our knowledge of it, or is the state a
property of the system? It turns out that the answer is basically the same as in
the classical case: It is OK provided we agree on the marginals.

Suppose Alice and Bob are separated by 1/2 light second and share |β2〉 at
t = −1. They agree beforehand that Alice will measure her qubit at t = 0.
Alice finds |0〉A. What states would Alice and Bob assign at t = 1?

• Bob knows that Alice measured her qubit but does not know what result
she got. He assigns the states

ρAB = 1
2 (|01〉〈01|+ |10〉〈10|) , ρA = ρB = 1

21

Alice knows more than Bob and assigns

ψAB = |01〉, ρA = |0〉A〈0|, ρB = |1〉A〈1|

There is no problem with Alice and Bob assigning different states, since
states carry only statistical information and both assignments would agree
if they repeat the experiment many times.

• Alice tells Bob what she found. Both agree that the state is

ψAB = |01〉, ρA = |0〉A〈0|, ρB = |1〉A〈1|



76 CHAPTER 7. ENTANGLEMENT

x

t

|β2〉

|01〉

Figure 7.7: The blue line on the left represents Alice qubit. The blue line on
the right Bob’s. In the shaded triangle Alice and Bob assign different wave
functions to the joint system.



Chapter 8

Two qubits gates

A two qubit gate is a unitary U which acts on the computational basis by

U |a〉 ⊗ |b〉 =
∑
cd∈0,1

Ucd;ab︸ ︷︷ ︸
4×4matrix

|c〉 ⊗ |d〉 (8.1)

Graphically
|a〉

U

|b〉
U |a〉 ⊗ |b〉

(8.2)

8.1 CNOT

This is the basic two qubit gate. It acts on the second qubit as NOT (i.e. X)
conditioned on the first qubit being |1〉. It is defined by

CNOT |a〉 ⊗ |b〉 = |a〉 ⊗ |a⊕ b〉, a, b ∈ 0, 1 (8.3)

Alternate representations of CNOT:

CNOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X

=

(
1 0
0 X

)

=


1

1
0 1
1 0


=

•

Evidently:
(CNOT )2 = 1, CNOT ∗ = CNOT

77
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Building a practical and reliable CNOT gate is a challenge of quantum engi-
neering. Building a CNOT with ion traps was one of the major achievements of
D. Wineland, who got the Nobel in 2012. He used a scheme of Cirac and Zoller,
who got the Wolf prize in 2013 for it.

8.2 CNOT: A Classical Xerox machine

CNOT is a (classical) Xerox machine: It copies the states in the first register
given in the computational basis, to the empty scratch-pad on the second register

CNOT |00〉 = |00〉, CNOT |10〉 = |11〉

|a〉 • |a〉

|0〉 |a〉

,

with a ∈ {0, 1}. However, as we shall see there is no quantum Xerox machines
that copies general qubit states, i.e. superpositions, |ψ〉:

��������������|ψ〉 • |ψ〉

|0〉 |ψ〉

8.3 Entangling gate

The gate

ENT =

H •

maps the computational basis to (a permutation of) the Bell basis. Indeed

|ab〉 H−→ 1√
2

∑
c

(−)ac|c〉 ⊗ |b〉

CNOT−−−−→ 1√
2

∑
c

(−)ac|c〉 ⊗ |c⊕ b〉

=
|0〉 ⊗ |b〉+ (−)a|1〉 ⊗ |b⊕ 1〉√

2

The right hand side is manifestly in Schmidt form, so is maximally entangled.
Since the basis is the computational basis, it is the Bell basis. Explicitly,

|00〉 7→ |β0〉, |01〉 7→ |β1〉, |10〉 7→ |β3〉, |11〉 7→ |β2〉,
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The order is spoiled in the last two entries. This is not a big deal and can be
fixed easily: Since CNOT interchanges 10↔ 11 the improved circuit

|a〉 • H •

|b〉
|βab〉

maps the computational basis to the Bell basis, preserving the order: |ab〉 7→
|βab〉.

Some other ways to write ENT

ENT =
1√
2

(
1 1

X −X

)

=
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0


8.4 Bell states detector and post-selection

Suppose someone sells you a black box that he claims emits |β0〉 on demand.
But, he charges you for every state you get from the box. You could verify his
claim by tomography, but this will cost you a lot. However, with CNOT gates
and Hadamard you can make a single test, using the circuit:

|βab〉
• H • |a〉

|b〉

If the claim is right, you should get the output |00〉 with no error.

8.5 Swap

Swap interchanges the states of the two qubits.

Swap|ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉

There are two ways to do that: Simply interchange the physical two qubit:
A second way to view swapping is not as a physical interchange, but an

interchange of quantum state. This offers greater flexibility because it allows
Alice and Bob to have different carriers for the qubit, for example, Alice qubit
could be a photon and Bob’s could be a nuclear spin.

The swapping circuit is

• •

•
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|ψ〉

|φ〉

Figure 8.1: Physical interchange of qubits.

This is seen by applying Eq. 8.3

CNOT1 CNOT2 CNOT1 |a〉 ⊗ |b〉 = CNOT1 CNOT2 |a〉 ⊗ |b+ a〉
= CNOT1 |a+ b+ a〉 ⊗ |b+ a〉
= |b+ 2a〉 ⊗ |2b+ 3a〉
= |b〉 ⊗ |a〉

and the fact that for binaries 2a = 0, 3a = a
As an operator in the computational basis

Swap =
∑

a,b∈0,1

|a〉〈b| ⊗ |b〉〈a|

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


The circuit

• H • H •

Z

swaps the states of the two qubits with no physical interchange if the media.
Alice qubit may be a nuclear spin and Bob’s a photon. After swap they still
posses the same physical object but the quantum state has been swapped.

8.6 C(Z)

C(Z) is

C(Z)|ab〉 = (−)ab|ab〉 ⇐⇒ C(Z) =
1 + Z

2
⊗ 1 +

1− Z
2
⊗ Z (8.4)
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You might first think that being a gauge transformation this can not be an
interesting gate. However, from the fact that HZ = XH we have

C(Z) =
(
1⊗H

)
C(X)

(
1⊗H

)
so if you can construct C(Z) and Hadamard you have got CNOT , and vice
versa.

Exercise 8.1. Show that with T 4 = Z

•

Z
=

• •

T T−2 T

8.6.1 C(Z) and controlled quantum evolutions

It follows from Eq. 8.4 that

2C(Z)− 1⊗ 1 = 1⊗ Z + Z ⊗ 1︸ ︷︷ ︸
Zeeman term

− Z ⊗ Z︸ ︷︷ ︸
spin-spin interaction

The terms on the right can be interpreted as interactions with physical inter-
pretation: The first two terms on the right describe interaction of the a spin
1/2 with an external magnetic field. The third term describes mutual spin-
spin interaction. To physically realize such a Hamiltonian you need to tune the
magnetic field so that its strength matchers the spin-spin interaction.

Using the fact that (C(Z))2 = 1

e−itH = eit(1 cos 2t− iC(Z) sin 2t)

If you can control the the system so that the Hamiltonian is only effective for
0 ≤ t ≤ π/4 the Hamiltonian evolution gives a C(Z) gate up to an overall phase.
C(Z) can and has been implemented in NMR and in Ion traps. .

8.7 Conditioning

In quantum gates the conditioning bit depends can sometimes be shifted. For
example, from the definition of C(Z) Eq. 8.4, it is obvious that:

Z

•
=

•

Z
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The control point, has been shifted around. Now, using HX = ZH we imme-
diately get for CNOT

•

X

=

•

H Z H

=

Z

H • H

=

H X H

H • H

Thus, we have interchanged the conditioning bit from the first to the second at
the price of making unitary transformations H, in this case, on the input and
on the output.

8.8 “Which path detector”

In a Mach-Zehnder interferometer you measure the top qubit (as usual, in the
computational basis), and want to use this information to learn about the control
phase φ. Maximal visibility means that by changing φ the probability P (0) can
be changed from 0 to 1. If, in contrast, P (φ) is independent of φ the interference
is lost.

It is a basic principle that if you try to monitor which path the quantum
particle took you destroy the interference. The detection reduces a superposition
to a mixture. Lets see how this works out in a quantum circuit.

We append to the Mach-Zehnder interferometer a second qubit that operates
like “which path” detector. This is represented by the circuit

|0〉 H • eiφZ H

|0〉 eiαX

The first Hadamard gate creates a superposition in the computational basis. φ
is the “difference in optical lengths” between the two computational basis states.
The control gate is the “which path” detector. α measures how effective is the
second qubit in monitoring the path: When α = 0 the guard is asleep. When
α = π/2 the guard is fully alert and raises a flag if the first qubit uses the path
|1〉. The control gate in this case is CNOT.
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Disregarding normalization:

|0〉 ⊗ |0〉 7→︸︷︷︸
H

|+〉 ⊗ |0〉 7→︸︷︷︸
Control

|0〉 ⊗ |0〉+ |1〉 ⊗ eiαX |0〉

7→︸︷︷︸
Phase gate

eiφ|0〉 ⊗ |0〉+ e−iφ|1〉 ⊗ eiαX |0〉

7→︸︷︷︸
H

eiφ|+〉 ⊗ |0〉+ e−iφ|−〉 ⊗ eiαX |0〉

When α = 0, the guard is asleep. The (correctly normalized) output is a pure
product state:

1√
2

(
eiφ|+〉+ e−iφ|−〉

)
⊗ |0〉

The probability amplitude of finding the first qubit in |0〉 is cosφ. It is sensitive
to φ, which means that we can see interference.

When α = π/2 the guard is alert, it reacts to the state of the top qubit. The
output state is

1√
2

(
eiφ|+〉 ⊗ |0〉+ ie−iφ|−〉 ⊗ |1〉

)
The probability to find the first qubit in the state |0〉 is the norm of the vector
obtained by the projection of the first qubit to |0〉:

1

2

(
eiφ|0〉 ⊗ |0〉+ ie−iφ|0〉 ⊗ |1〉

)
= |0〉 ⊗ eiφ|0〉+ ie−iφ|1〉

2

Since the vector is a superposition of two orthogonal vectors its norm, by
Pythagoras is 1/2 independent of φ. This means that if you want to get in-
formation on the path (measured by second qubit) you loose the interference
pattern in the first. The interference has been erased.

Exercise 8.2. Derive the same result by computing instead ρA obtained by
tracing over the second qubit.

8.9 C(U) from single qubit unitaries and CNOT

Any C(U) gate can be built from CNOT and single qubit unitaries. Recall first
that any U can be written as three Euler rotations

U = Rz(α)Ry(β)Rz(γ)

Define

Wz = Rz(α), Vy = Ry(β/2), Uz = Rz((γ − α)/2)
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We claim that the circuit

• •

Rz(α)Ry(β/2) Ry(−β/2)Rz(−α)Rz
(
(α− γ)/2

)
Rz((γ − α)/2)

To see this note first that if the control bit is 0 the circuit is the the identity.
This follows from

|0〉 • • |0〉

|a〉 WzVy V −1
y W−1

z U−1
z Uz |a〉

where
Wz = Rz(α), Vy = Ry(β/2), Uz = Rz((γ − α)/2) (8.5)

To see that it applies U on the second qubit when the control is 1 write

U = WzVyX
(
V −1
y W−1

z U−1
z

)
X Uz

= WzVy
(
X V −1

y X
)(
XW−1

z X
)
(
(
XU−1

z X
)
Uz (8.6)

Now X is a rotation by π around the x axis: flips the y and z axis. This means

Uz = XU−1
z X, Vy = XV −1

y X

Hence

U = WzVy
(
X V −1

y X
)(
XW−1

z X
)
(
(
XU−1

z X
)
Uz

= WzV
2
yWzU

2
z

= Rz(α)Ry(β)Rz(γ) (8.7)

We have thus shown that CNOT, H and T are universal for 2 qubits. It turns
out that they are universal for n-qubits too, but I will not show that.



Chapter 9

Hilbert space is big

Three things make quantum mechanics different from classical physics

• The theory is fundamentally probabilistic: Complete knowledge does not
allow to predict everything.

• Superpositions: Cats can be both dead and alive.

• The Hilbert space is big: It grows exponentially with the number of qubits
n.

In classical waves we have superpositions without probability and with no
growth of the configuration space (it stays 3 dimensional); In classical statis-
tical physics we have probability and exponentially many configurations but
no superpositions and with n classical bits we can count to 2n but have no
superpositions and no probability.

9.1 n bits

With n bits you can count from 0, 1, . . . , N − 1. Here and throughout

N = 2n (9.1)

Different representations of n bits:

• Arithmetically: The integers {0, . . . , N − 1}: In binary notation

anan−1 . . . a1

• Geometrically: The vertexes of the unit cube in n dimensions:

(a0, . . . , an), aj ∈ {0, 1}

85
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Figure 9.1: The unit cube in n dimensions has N = 2n vertexes corresponding
to the N numbers (0, 0, . . . , 0) to (1, 1, . . . 1) .

• Combinatorially: The number of different subsets of the set of n elements.
For example with n = 2

{}, {0}, {1}, {01}

Remark 9.1. The space of functions is monstrously large: There are 4 func-
tions of a single bit

f0(a) = 0, f1(a) = 1︸ ︷︷ ︸
even

, f3(a) = a, f4(a) = 1⊕ a︸ ︷︷ ︸
odd

where ⊕ is bit addition mod 2. In general, there are 2N different functions of n
arguments, each taking values in {0, 1}. For n = 8 the number is comparable to
the number of atoms in the visible universe.

Remark 9.2. The unit cube in n dimensions is increasingly anisotropic when
n is large: The diagonal has length

√
n.

Exercise 9.3. Show that the number of d dimensional (cubic) faces of the unit
cube in n dimensions built on the vertex (0, 0, . . . , 0) is

(
n
d

)
. (Hint: Check this

for the square and the cube and generalize.)

Exercise 9.4. Show that the total number of d ≤ n dimensional cubes in the
unit cube in n dimensions is 2n−d

(
n
d

)
.

Exercise 9.5. The Euler characteristics is the alternating sum χ = V ertices−
Edges+ Faces− . . . . Show that χ(cube) = 1.

9.2 Classical systems can be efficiently simulated

The state of n classical particles is uniquely specified by a point in phase space:
R6n i.e. by the 6n (generalized) coordinates

(q1, . . . , q6n)

http://www.wolframalpha.com/input/?i=N%5B%282%5E6%29%5E%282%5E6%29%5D%3EEstimated+number+of+atoms+in+visible+universe
http://en.wikipedia.org/wiki/Hypercube
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The number of coordinates grows linearly in n.

# Coordinates O(n)
# Differential equations O(n)
# Terms in each equation O(n2)
# Total number of terms O(n3)

The evolution of a classical system of n particles is governed by 6n ordinary
differential equations. The common physical forces are pair interactions and
hence the number of terms in each equation is O(n2).

This means that the complexity of simulating a classical system grows poly-
nomially with the number of particles, e.g. O(n3). This is why classical systems
can be efficiently simulated on classical computers.

Example 9.6. With a 10 Giga bytes of RAM memory you can simulated 104

particles, assuming that the complexity scales like O(n3) and the all constants
(e.g. the number of bits you use to approximate real numbers) are O(1)

9.3 Hilbert space blows up exponentially with n

The state of n qubits is fully specified by a vector in Hilbert space whose di-
mension is

dimH = N = 2n

The dimension of the Hilbert pace grows exponentially faster than the dimension
of classical phase space.

Pure states of n qubits are represented by N = 2n complex amplitudes:

|Ψ〉 =
∑
aj∈0,1

ψa1...an︸ ︷︷ ︸
amplitude

|a1, . . . , an〉︸ ︷︷ ︸
computational basis

where the N amplitudes can be written in two alternative notations:

ψ00...00 = ψ0, ψ00...01 = ψ1, ψ11...11 = ψN−1

The state |Ψ〉 evolves by Schrödinger equation

i
d|Ψ〉
dt

= H|Ψ〉

where H is an N ×N complex matrix.

# Coordinates O(N)
# Differential equation 1
# Terms in equation O(N2)
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This implies that a quantum system of n qubits can not be simulated ef-
ficiently on a classical computer. The number of bits you need to simulate n
qubits grows exponentially with the input.

This was Feynman’s original motivation for proposing to build quantum
computers: Unlike bits, qubits simulate qubits efficiently.

Example 9.7. The number of PC world-wide is estimated to be 109, if each
PC has 10 Gigabytes of RAM, the total RAM world wide is 1019 ≈ 260 Bytes.
This will allow you to represent a single wave function of not quite 60 qubits.
(Assuming all constants, including the number of bits used to approximat a real
number, to be O(1).) If the qubits are spin in a 3 dimensional lattice, it is the
state of not quite 4× 4× 4 spins. Not a very large lattice.

9.4 Geometry of pure states

The space of distinct pure state is the complex projective space CP (N − 1)

CN/C

where we identify two vectors in the Hilbert space that differ by normalization
and overall phase. CP (N − 1) is a compact set whose dimension is

dimCP (N − 1) = 2(N − 1)

# qubits dimCP (N − 1)
1 2
2 6
3 14

9.5 Geometry of states

Any mixed state can be written as a convex combination of pure states1:

ρ =
∑

pj |ψj〉〈ψj |, pj ≥ 0,
∑

pj = 1

Since |ψj〉〈ψj | is a projection, it is a positive matrix. And since pj are proba-
bilities they are all positive numbers. Hence pj |ψj〉〈ψj | is a positive matrix. A
sum of positive matrices is a positive matrix so we have shown that

ρ ≥ 0

1One may take this as a definition of pure states.

http://www.wolframalpha.com/input/?i=Solve%5B10+2%5En%3D2%5E%2860%29%2Cn%5D
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Moreover, by linearity

Tr ρ = Tr

(∑
pj |ψj〉〈ψj |

)
=
∑

pjTr

(
|ψj〉〈ψj |

)
=
∑

pj〈ψj |ψj〉

=
∑

pj

= 1

The density matrix is therefor an N ×N positive matrix with unit trace. Ge-
ometrically, the space of density matrices is a convex body whose dimension
is

N2 − 1

The pure states as its extreme points, i.e. they all lie on the boundary.

Figure 9.2: Convex sets and their extreme points. For the disk all the boundary,
the circle, is made of extreme points. For the triangle the extreme points are
the three vertexes. The space of states is intermediate: The extreme points
are a set of relatively low dimensions. Only for a single qubit all the boundary
corresponds to pure states.

# qubits dimCP (N − 1) dim ρ
1 2 3
2 6 15
3 14 63

The extreme points of the set of states are the pure states. (Extreme points
are the points that can not be represented as a weighted sum of other points.)
Since the pure states are a 2(N − 1) dimensional set, when n is large, they are
an exponentially small part of the boundary of the set of states which is N2− 2
dimensional.

9.6 The Pauli basis

Let σµ, µ ∈ {0, 1, 2, 3} be the Pauli matrices (σ0 = 1). Write

σα = σα1
⊗ · · · ⊗ σαn , αj ∈ {0, . . . , 3} (9.2)
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Figure 9.3: A schematic diagram of the space of states of three qubits. The black
circle is the bounding sphere of unit radius where pure states lie. The greenish
ellipse represents the space of states D3. Since the pure states are a relatively
tiny set a typical cross section will not reach the unit circle. The three bluish
ellipses in represent the three bipartite separable states. Their intersection is
the fully separable set of states.

for the n tensor product. The N matrices σα provide a basis for the N × N
Hermitian matrices over the reals.

σα are elements of a group (Pauli group), are all of order 2 and either
commute or anti-commute:

σ2
α = 1, σασβ = ±σβσα, (9.3)

The basis is orthogonal with scalar product

Tr (σασβ) = δαβN =⇒ Tr (σα) = δα,0N, (9.4)

9.7 Geometry of states of n qubits

We shall denote by Dn the space of trace-normalized states, represented in
RN2−1:

Dn =
{

r |r ∈ RN
2−1, ρ ≥ 0

}
(9.5)

where r and ρ are related by

ρ =
σ0

N
+

√
N − 1

N

N2−1∑
α=1

rασα, (9.6)

For n = 1 this is the Bloch ball. Hence Dn is the higher dimensional analog
of the Bloch ball.
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The Hilbert space distance is proportional to the Euclidean distance in
RN2−1:

N dist2(ρ, ρ′) = N Tr (ρ− ρ′)2

= (N − 1)(r− r′)2

= (N − 1) dist2(r, r′) (9.7)

Similarly, the scalar products are related by

N Tr (ρρ′) = 1 + (N − 1)(r · r′) (9.8)

9.8 Qualitative features of Dn

The Bloch ball is not always a good guide to the geometry of the space of states
Dn in high dimensions. Dn is not a ball, in general. It is not even reflection
symmetric, and it is not true that the pure states are the boundary of Dn.

Here is what is true:

1√
N

Figure 9.4: The figure shows a schematic 2-D section of the space of states in
RN2−1. The section goes through the origin (the fully mixed state). The black
circle the intersection with the unit sphere. This is where all the pure states lie.
Since the pure states are a set of relatively low dimension a generic 2-D section
will miss all pure states. The intersection with Dn is the green ellipse. It will
be close to spherical and small; The diameter is O(1/

√
N).

1. Dn is a convex body.

2. dimDn = N2 − 1.

3. 0 ∈ Dn since the origin is a state: the fully mixed state.
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4. {Pure states} ⊆ S1 where S1 is the unit sphere in RN2−1 centered at the
origin.

To see this recall that pure state satisfy ρ2 = ρ. Since Tr ρ2 = Tr ρ = 1
by Eq. 9.8 the pure states satisfy

N = 1 + (N − 1)(r · r)

which is the unit sphere.

5. Dn ⊆ B1 where B1 is the unit ball centered at the origin.

This is because the extreme points, the pure states, all lie on the unit
sphere.

6. The diameter of Dn, i.e. the largest distance between two points that
belong to Dn, is approximately

√
2 for n large, and more precisely

diameter (Dn) =

√
2N

N − 1

This follows from Eq. (9.7) and

Tr(ρ− ρ′)2 = Trρ2 + Trρ′2 − 2Trρρ′ ≤ 2(1− Trρρ′) ≤ 2

The two inequalities are saturated for two pure orthogonal states.

7. The set of pure states is not symmetric under inversion r 7→ −r for n ≥ 2.

This follows from the fact that diameter(Dn) < 2 for n ≥ 2 and hence
antipodal points on the unit sphere can not both be states.

8. Dn is not inversion symmetric unless n = 1.

This follows from the previous assertion.

9. Dn is reflection symmetric under flipping σy 7→ −σy.

This follows from the fact that if ρ is a state so is ρt.

10. The angle between two orthogonal pure states is

cos θ = − 1

N − 1

This follows from Tr ρρ′ = 0 for orthogonal pure states, and Eq. 9.7.

For a qubit, where N = 2, the angle is π and orthogonal states are an-
tipodal, when N →∞ the angle is π/2.

11. Although the shape of Dn is complicated, one can compute the average
raduis: 〈

r2
〉

=

∫
D r2dr∫
D dr

=
N + 1

N2 + 1
(9.9)

I do not show this computation.
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Figure 9.5: A typical cross section will miss all the pure states and so will not
touch the unit sphere. The figure shows a cross section that is constrained to
hit a pure state. It looks a bit like a needle.

Figure 9.6: The figure shows a schematic section of Dn, n ≥ 2, shown in light
green, which goes through two generic orthogonal pure states. The black circle
is the sphere of radius 1 which is the locus of pure states. The straight (red)
line connecting the pure states lies on the boundary of Dn since the mixture of
two pure states does not have a full rank if n ≥ 2. The two (blue) arcs delineate
the region that is at distance

√
2 from the two pure states.

9.9 2-D Cross sections

A two dimensional cross section of Dn along the Pauli coordinate planes corre-
sponds to the matrices ρ(x, y):

Nρ(x, y) = σ0 +
√
N − 1(xσα + yσβ), α 6= β (9.10)

By Eq. (9.3) σα,β either commute or anti-commute.
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• {σα,σβ} = 0: Since

(xσα + yσβ)2 = (x2 + y2)1, T r(xσα + yσβ) = 0

It follows that

Spectrum (xσα + yσβ) = ±
√
x2 + y2

and ρ(x, y) ≥ 0 provided

x2 + y2 ≤ 1

N − 1
(9.11)

The cross section is a disk which is exponentially small as n is large.

• [σα,σβ ] = 0 (This requires n ≥ 2):

Since the matrices commute they have common eigenvectors and

Spectrum(xσα + yσβ) = {±x± y,±x∓ y}

It follows that ρ ≥ 0 if

± x± y < 1√
N − 1

, ±x∓ y < 1√
N − 1

(9.12)

The cross section is a square which is exponentially small when n is large
.

2/
√
N − 1

Figure 9.7: Any two dimensional cross sections of the space of states of n qubits,
Dn, along the plane of Pauli coordinates, σα − σβ is either a tiny square of a
tiny disk both of size 1/

√
N − 1.
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9.10 Clifford algebras

Clifford matrices γj are defined by

{γj , γk} = 2δjk

The Pauli matrices σj are a two dimensional example. Dirac γµ matrices are a
four dimensional example.

One can construct high dimensional Clifford matrices by the following iter-
ative procedure: Starting with the Pauli matrices construct the tensor product

γj = σ1j = σ1 ⊗ σj , j ∈ {1, 2, 3}, γ4 = σ30 = σ3 ⊗ 1

One readily check that γj together with γ5 = γ1 . . . γ4 are all Clifford.
The Clifford matrices define an algebra: You can add and multiply linear

combinations of them.
Among N2 − 1 matrices σα there are m Clifford matrices γj where

m =

{
2n n even

2n+ 1 n odd

9.11 Clifford cross sections are balls

Consider an m dimensional cross section of Dn of the form

Nρ(r) = σ0 +
√
N − 1

∑
α

rασα (9.13)

where σα are Clifford matrices. Note that when n is large, this is a relatively
“low dimensional” cross section of a much higher dimensional body Dn.

For Clifford matrices (∑
rασα

)2

= r2

It follows that the density matrix ρ is positive if

0 ≤ Nρ = 1 +
√
N − 1

m∑
α=1

rασα, rα ∈ R (9.14)

This is the case provided

r2 ≤ 1

N − 1

Note the agreement with the average radius Eq. 9.9 to leading order in N .
This result is closely related to a what mathematicians call measure concen-

tration and the Dvoretzy-Milman theorem.
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2/
√
N − 1

Figure 9.8: An O(n) dimensional cross section of Dn along the direction of the
Clifford matrices in σα is a tiny ball of radius 1/

√
N . This is, in a sense, the

generic behavior.
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Quantum tricks: II

10.1 No cloning

An unknown quantum state |ψ〉 can not be cloned (copied). In fact, one can
not even clone three states

|0〉, |1〉, |ψ〉 = cosψ|0〉+ sinψ|1〉, ψ 6= 0,±π/2, π

|ψ〉

C

|ψ〉

|0〉 |ψ〉

|0〉 |φ〉
Proof: Assume you can then

C |ψ〉︸︷︷︸
original

⊗ |0〉︸︷︷︸
blank register

⊗ |0〉︸︷︷︸
internal state

= |ψ〉 ⊗ |ψ〉︸ ︷︷ ︸
two copies

⊗ |φψ〉︸︷︷︸
fax final state

We allow the final state of the copier to depend on the state to be copied.
By linearity:

cosψC|000〉+ sinψC|100〉 = cosψ|00φ0〉+ sinψ|11φ1〉︸ ︷︷ ︸
by linearilty

= |ψ,ψ, φψ〉︸ ︷︷ ︸
by ansatz

= cosψ|0ψφψ〉+ sinψ|1ψφψ〉

Compare the rhs of the first line and the third line by projection on the com-
putational basis of the first qubit:

���cosψ(|0φ0〉 − |ψφψ〉) = 0, �
��sinψ(|1φ1〉 − |ψφψ〉) = 0

97
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since, by assumption cosψ, sinψ 6= 0. Now, comparing the next factor gives a
contradiction:

|0〉 = |ψ〉 = |1〉
We conclude that we can only copy the computational basis, and can make only
classical fax machine (Section 8.2).

Exercise 10.1. If the state |ψ〉 is known, it can be cloned. Explain.

10.2 Cloning allows for superluminal signaling

Another way to see that cloning should be impossible is to observe that if one
could clone states in two non-orthogonal basis, say the computational Z basis
and in the X basis, then one could signal instantaneously. Quantum mechanics
would then be in conflict with the principle that the propagation speed of signals
is finite.

Protocol (assuming cloning):

• Alice and Bob share a singlet.

• Alice measures her qubit in the X basis if she wants to transmit 0 and in
the Z basis otherwise.

• Alice and Bob agree that Alice will measure at 08:00

• Bob knows that his qubit is in one of the 4 possible states at 08:01

|0〉, |1〉, |+〉, |−〉

• Bob clones his state
|ψ〉

C

|ψ〉

|0〉 |ψ〉

|0〉 |ψ〉

• Bob makes a tomography of the ensemble |ψ〉 on the right. If he finds |±〉
he got the bit 0 and if he finds |0〉 or |1〉 he got the bit 1.

This requires Bob to clone in two non-orthogonal bases X and Z which fortu-
nately is not possible.

Remark 10.2. Note that in order for Bob to do tomography it is important
that his qubits are in a product state of identical states:

|ψ〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉︸ ︷︷ ︸
3n copies

= |ψ〉 ⊗ · · · ⊗ |ψ〉︸ ︷︷ ︸
n copies

⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉︸ ︷︷ ︸
n copies

⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉︸ ︷︷ ︸
n copies

Bob can then measure the expectation of X for the first n qubit, Y for the next
n qubits and Z for the remaining n to get a tomography of |ψ〉.
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10.3 Function gates

A function
f : x ∈ Zn2 7→ f(x) ∈ Z2

is, in general, not invertible. How can we represent such functions by unitary
gates, which are, of course, invertible. We do that with redundancy: add an
extra memory bit to the output:

Uf |x〉 ⊗ |b〉 = |x〉 ⊗ |b⊕ f(x)〉

To evaluate the function on the input a we feed in blank b = 0:

Uf |x〉 ⊗ |0〉 = |x〉 ⊗ |f(x)〉

As a circuit:

|x〉
Uf

|x〉

|b〉 |b+ f(x)〉
=⇒

|x〉
Uf

|x〉

|0〉 |f(x)〉

Uf is its own inverse:
UfUf = 1

10.4 Phase kickback

In the computational basis a function gate appears to act on the bottom qubit
and leave the top register idle. This is actually a basis dependent property–If
the second qubit is in the |−〉 basis and the first register is in the computational
basis then the result is an overall phase which we can assign as we please:

Uf |x〉 ⊗ |−〉 = |x〉 ⊗ |f(x)〉 − |1⊕ f(x)〉√
2

= (−)f(x)|x〉 ⊗ |−〉

It is conventional to append the sign to the first register

|x〉
Uf

(−)f(x)|x〉

|−〉 |−〉

This is phase kickback. We shall presently see how we can make good use of
this.

10.5 Deutsch algorithm

The Deutsch algorithm (1992) is perhaps the simplest algorithm that shows
that a quantum machine can be more powerful than the corresponding classical
machine.
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We say that f : {0, 1} → {0, 1} is even if f(0) = f(1) and odd otherwise.
We denote this by πf , the parity of f :

πf = f(0)⊕ f(1) =

{
1 f odd
0 f even

The Deutsch task:

• You are given the function gate Uf

• You do not know what f is.

• You are requested to determine the parity πf with minimal queries of Uf

Classically, to determine πf you need to compute f twice. But with a quantum
gate one query suffices. The claim is that

|0〉 H

Uf

H ±|πf 〉

|1〉 H |−〉

(10.1)

The top qubit gives the parity of the function f with one query.
Here is why:

|0〉 ⊗ |1〉 H⊗H−−−−→ |+〉 ⊗ |−〉 =

(
1√
2

∑
a∈0,1

|a〉

)
⊗ |−〉

U−→

(
1√
2

∑
a∈0,1

(−)f(a)|a〉

)
⊗ |−〉

H⊗1−−−→ 1

2

 ∑
a,b∈0,1

(−)f(a)+ab|b〉

⊗ |−〉
We made use of phase kickback in the second line. The brackets in the last line
is

1

2

∑
a,b∈0,1

(−)f(a)+ab|b〉 =

(∑
a∈0,1

(−)f(a)

)
︸ ︷︷ ︸

±πf⊕1

|0〉+

(∑
a∈0,1

(−)f(a)+a

)
︸ ︷︷ ︸

±πf

|1〉 (10.2)

Note that if f(a) is odd then f(a)⊕ 1 is even and vice versa. Hence∑
a∈0,1

(−)f(a) = 0︸ ︷︷ ︸
f odd

,
∑
a∈0,1

(−)f(a)+a = 0︸ ︷︷ ︸
f even
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So, finally,

1

2

∑
a,b∈0,1

(−)f(a)+ab|b〉 = ±|πf 〉 (10.3)

A measurement of the top qubit in the computational basis gives the parity of
f : If a = 0 then f is even and if a = 1 then f is odd.

This algorithm makes use of QM in several ways:

• Quantum parallelism: The first Hadamard gate allows to evaluate f for
the a = 0, 1 simultaneously.

• Interference: The second Hadamard makes constructive interference to
produce the correct answer with enhanced probability.

• Collapse: Measurement in the computational basis reveals the parity with
probability 1.

Remark 10.3. . There is an extension of this trick known as Deutsch-Josza
algorithm where the gain is not 2 but 2n. Consider a function

f : Zn2 → Z2

f is promised to be either balanced or constant, where

N−1∑
0

f(j) =

{
±N constant

0 balanced
, N = 2n

To determine if f is balanced of constant you need to evaluate it at least (N/2)+1
times. With a quantum circuit you can evaluate it once. You gain exponentially
in the number of bits. The gates and proof is essentially the same.

10.6 Teleportation

QM does not allow for cloning an unknown quantum state. It does, however,
allow for teleportation: The transfer of the unknown quantum state |ψ〉 from
Alice to Bob. It is like a quantum fax except that the original is destroyed so
no cloning is still respected.

Unlike teleportation of science fiction, quantum teleportation is not the
transfer of material quantum qubits it is the transfer of the “information” en-
coded in the wave function.

Teleportation protocol:

• Alice has a qubit in an unknown state |ψ〉 which she wishes to teleport to
Bob

• As a resource Alice and Bob need to share the Bell state |βµ〉 (so Alice
has in total two qubits)

HTTP://EN.WIKIPEDIA.ORG/WIKI/QUANTUM_TELEPORTATION
http://en.wikipedia.org/wiki/Quantum_teleportation
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• Alice measures her pair of qubits in the Bell states.

• Alice calls Bob and tells him which Bell state she found, say |βν〉.

• Bob puts his qubit through a single, unitary, qubit gate Uµν = σtµσν .

• The output of the gate changes Alice preparation of Bobs qubit to |ψ〉

Remark 10.4.

• No quantum particles are exchanged.

• Two bits of classical information are exchanged: The number ν ∈ {0, 1, 2, 3}

• Asher Peres said that what is being teleported is the soul of the quantum
particle not its body.

Theorem 10.5 (Teleportation identity due to O. Kenneth).

|ψ〉A ⊗ |βµ〉AB =
1

2

∑
ν

|βν〉AA ⊗ |Uµνψ〉B , Uµν = (σµ)tσν (10.4)

If Alice measures her two qubits in the Bell basis she will find one of the bell
states, say βν and thus remotely prepare Bob’s qubit

|ψ〉A ⊗ |βµ〉AB −−−−−−−−−−→Alice measures
|βν〉AA ⊗ |Uµνψ〉B −−−−−−−−−−−−−→remote preparation

|Uµνψ〉B

Remark 10.6.

• Before Alice inform Bob of the results of her measurement, Bob does not
know if his qubit is |ψ〉 or one of 4 unitary transformations of it: Uµν |ψ〉

• There is no superluminal propagation of quantum information. Alice needs
to make a phone call

• The qubits did not move, only the quantum state was transfered.

• Since the outcome of Alice measurement is ν ∈ 0, 1, 2, 3, the information
she needs to sends Bob is equivalent to 2 bits

• There are 4 normalized and orthogonal states on the right of Eq. 10.4 and
one on the left. This explains the factor 2.

• Uµν is unitary. The specific form is not terribly important, what is impor-
tant is that Bob knows µ. the Bell state they initially share, and he needs
to know ν. He get this from Alice.

• Bob gets ν ∈ {0, 1, 2, 3} which is equivalent to two binary digits from Alice.
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It is enough to show the identify for β0 and for the |a〉 in the computational
basis, i.e.:

2|a〉A ⊗ |β0〉AB =
∑
ν

|βν〉AA ⊗ |σνa〉B (10.5)

The case of general ψ follows by linearity,

2|ψ〉A ⊗ |β0〉AB =

3∑
ν=0

|βν〉AA ⊗ σν |ψ〉B

and for general Bell state by Bob local operations 1⊗σtµ that permute the Bell
states.

It remains to prove the identity for µ = 0 and the computational basis

√
2|a〉A ⊗ |β0〉AB =

∑
b∈0,1

|a〉A ⊗ |bb〉AB

=
∑
b∈0,1

|ab〉AA ⊗ |b〉B

Now express Alice pair in the Bell basis using Exercise 7.4

√
2|ab〉 =

3∑
ν=0

(σν)ba|βν〉

to get

2|a〉A ⊗ |β0〉AB =

1∑
b=0

3∑
ν=0

(σν)ba|βν〉AA ⊗ |b〉B

=

3∑
ν=0

|βν〉AA ⊗
1∑
b=0

(σν)ba|b〉B

=

3∑
ν=0

|βν〉AA ⊗ σν |a〉B

In the last line I used Eq. 2.1.
A circuit that implements teleportation is

|ψ〉A • H •

|0〉A

|0〉B H • X Z |ψ〉

• The two upper wires belong to Alice. The lowest wire is Bob’s.

• The first two gates create the Bell state |β0〉 that Alice and Bob share

HTTP://EN.WIKIPEDIA.ORG/WIKI/QUANTUM_TELEPORTATION
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• The next two gates are the Bell analyzer of Alice. They transform the
four Bell states to the computational basis.

• The meters represent Alice measurement of her two qubits in the compu-
tational basis.

• The double lines are the classical (phone) channels where Alice tells Bob
what she finds

• The results condition the gates that Bob needs to apply to retrieve |ψ〉

Exercise 10.7. Suppose that the Bell state shared by Alice and Bob is contam-
inated with the identity, i.e.

|β0〉〈β0| 7→ p|β0〉〈β0|+ (1− p)1
4
, 0 < p < 1

Show that the teleported state is contaminated with the identity

|ψ〉〈ψ| 7→ p|ψ〉〈ψ|+ (1− p)1
2
, 0 < p < 1

(Hint: Use linearity and the fact that
∑
|βµ〉〈βµ| = 1.)

Exercise 10.8. Show the teleportation identity for qdits

|ψ〉 ⊗ |β00〉 =
1

d

d∑
j,k=1

Sk ⊗ T j ⊗ Ujk|β00〉 ⊗ |ψ〉, Ujk = T jS−k

where

|β00〉 =
1√
d

d∑
n=1

|n〉 ⊗ |n〉

10.7 Entanglement transfer

Suppose Alice and Bob share an entangled pair and Bob and Charlie share a
(different) pair, e.g.

|β0〉AB ⊗ |β0〉BC
Alice and Charlie can use Bobs services to get entangled. The basic identity of
entanglement transfer is:

|β0〉AB ⊗ |β0〉BC =
1

2

∑
µ

|βµ〉BB ⊗ |βµ〉CA (10.6)

This means that if Bob measures his pair of qubits in the Bell basis, he prepares
a Bell state for himself and also for Alice and Charlie. The price he pays is that
he is not longer entangled with anybody. Entanglement is monogamous.
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To show this start with

|β0〉AB ⊗ |β0〉BC =
1

2

∑
a,b∈0,1

|aa〉AB ⊗ |bb〉BC

=
1

2

∑
a,b∈0,1

|a〉A ⊗ |ab〉BB ⊗ |b〉C

=
1√
8

∑
a,b,µ

|a〉A ⊗ (σµ)ba|βµ〉BB ⊗ |b〉C

=
1√
8

∑
a,b,µ

|a〉A ⊗ |βµ〉BB ⊗ (σµ)ba|b〉C (10.7)

Now simply reorder the tensor product putting Bob upfront

|β0〉AB ⊗ |β0〉BC =
1

2
√

2

∑
µ

|βµ〉BB
∑
ab

σµba|b〉C ⊗ |a〉A

=
1

2

∑
µ

|βµ〉BB ⊗ |βµ〉CA

Exercise 10.9. Repeat the exercise in the case that the initial state is

|βµ〉AB ⊗ |βν〉BC

10.8 Monogamy of entanglement

In applications Alice and Bob may want to be sure that their qubits are not
entangled with the eavesdropper Eve.

Suppose they were. Let |Ψ〉ABE denote the 3-parties state. Then

ρAB = TrE |Ψ〉ABE〈Ψ|, ρE = TrAB |Ψ〉ABE〈Ψ|

If Alice and Bob were entangled with Eve then by the Schmidt decomposition
ρAB must be mixed. It follows that if Alice and Bob can be sure that they
prepared and possess a (pure) Bell state, this gives them a guarantee they are
not entangled with Eve. This is (a special case of) monogamy.

Exercise 10.10. Suppose Alice and Bob each have 2 qubits. Show that the 4
states

1

2

∑
ω2a+b|ab〉 ⊗ |ab〉, ω ∈ ±1,±i

are maximally entangled and orthogonal. Construct the corresponding Bell states,
i.e. 16 maximally entangled orthogonal states.
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10.9 Schrödinger cat: Fragile entanglement

Schrödinger’s cat is a putative macroscopic object which is put into superposi-
tion of being both dead and alive. We do not encounter macroscopic objects in
superposition. Why?

Consider the state

|ψ〉 =
|0〉⊗n + |1〉⊗n√

2

If the number of qubits, n, is large you can view this as a superposition of two
macroscopic states.

This entanglement is fragile in the following sense: Suppose one qubit, say
the last one, gets lost. Then remaining qubits are described by

ρA = Trlast qubit|ψ〉〈ψ| =
(
|0〉〈0|

)⊗(n−1)
+
(
|1〉〈1|

)⊗(n−1)

2

This is a separable state which describes a cat that is either dead or alive.

In the famous Schrödinger cat experiment, it is enough for a single photon
to be lost so as to converted the quantum super-position of dead and alive can
to classical mixtures of dead or alive cat.

10.10 Classical vs quantum computers

A classical computer is a finite machine that accepts a program π and input
x ∈ Z and outputs y ∈ Z:

π : x 7→ y, x, y ∈ Z

A computer is universal if any program that runs on some finite machine can be
translated to an equivalent program, which I shall still call π, on the universal
computer. Since π is a finite sequence of bits it can be identified with an integer
in π ∈ Z.

Remark 10.11. A deep result of Turing is that not all functions can be realized
as programs on a universal computer. For example, there is no program that
will accept any program as input and will determine if the program halts or not.

Turing machine is a model of a universal computer:

T : (π, x) 7→ y, π, x, y ∈ Z

Turing did not require machines to be reversible, but it turns out that there
is no loss in requiring reversibility. We may then represent a classical Turing
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machine as a QM circuit:

|a〉
U

|a′〉

|b〉
V

|b′〉

|c〉 |c′〉

The circuit must have the following special properties in order that it represents
a classical Turing machine:

• Finiteness: It must be a collection of finite number of quantum gates each
operating on a finite number of qubits.

• Classical: The machine takes any input in the computational basis to
an output that is also in the computational basis. It does not generate
superpositions.

A quantum computer is almost the same thing except that we drop the condition
that the output y is a state in the computational basis. y may be any state in
the Hilbert space. The gates may create superpositions.

This makes it clear that a classical computer is a very special case of a
quantum computer. In particular, a quantum computer can not do less than a
classical computer.

|a〉
U

|b〉
V

|ψ〉 =
∑
ψa′b′c′ |a′〉 ⊗ |b′〉 ⊗ |c′〉

|c〉

In general, a quantum computer will not not give you a definite answer. The
output y is a superposition. If you measure the output, always in the computa-
tional basis, you will find |a′b′c′〉 with probability |ψa′b′c′ |2.

|a〉

U

|b〉

V

|c〉

The art of quantum computing is to design algorithms so that through inter-
ference |ψa′b′c′ |2 ≈ 0 for most wrong/bad values, and |ψa′′b′′c′′ |2 ≈ 1 for the
good/right values. We shall see an example for that in the next section.
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Chapter 11

Quantum correlations

11.1 Hidden variables

Classical physics is deterministic. QM is not. Hidden variables is an attempt
to embed QM within a deterministic setting. Namely, hidden-variables is the
attempt to claim that the wave function gives an incomplete description of the
system. There are hidden variables that we have not yet learned how to detect
and measure and if we knew them, we would also know deterministically how
the system evolves. The statistical aspects of QM therefore reflect our ignorance
of these variables.

11.2 Counterfactual

Suppose you could make one of two measurements: X or Y . You choose one,
say X. What about the measurements you did not perform? In classical physics
we assume that also Y has a value, but it is unknown. Assigning values to the
measurements you did not make is called counterfactual.

In standard QM X and Y are represented by matrices and the measurement
does not reveal pre-existing values. Rather, facts emerge from random picking
from the eigenvalues of the matrix. In particular, Y has no value if you chose
to measure X.

11.2.1 Counterfactual spins

It is actually not possible to assign values for non-commuting observables con-
sistent with QM.

In QM the commutations of angular momentum

[Jx, Jy] = iJz (11.1)

forces the relations

2j ∈ {0, 1, . . . ,∞}, Jk ∈ {−j, . . . , j}, J · J = j(j + 1) (11.2)

109
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Since [Jk, J · J ] = 0 the pair can have simultaneous values.
Is it possible to assign values also to the remaining components Jm?
Consider j = 3/2. Then if J1, J2, J3 all have values, by Eq. 11.2, they all

have to satisfy:

Jx, Jy, Jz ∈ {±3/2,±1/2}︸ ︷︷ ︸
values

, J · J = J2
x + J2

y + J2
z =

3× 5

4︸ ︷︷ ︸
sum rule

But this is not possible:

J · J ∈
{

3× 9

4
,

2× 9 + 1

4
,

2× 1 + 9

4
,

3

4

}
=

{
27

4
,

19

4
,

11

4
,

3

4

}
63 15

4

Hence Jx, Jy, Jz can not be assigned values consistent with Eq. 11.2.

Exercise 11.1. What about j = 1/2 and j = 1?

11.3 The GHZ game

QM does not attempt to assign values to counterfactuals while classical physics
does. This gives QM more freedom and can lead to correlations that are classi-
cally impossible1.

To see this consider the following cooperative game that Alice, Bob and
Charlie play against the house. The rules are:

• They are allowed to make preparations and decide on a common strategy.

• Once the game starts, they are not allowed to communicate.

• Each participant is asked one of two questions: Question X or a question
Y from a pool of 4 questions

Q1 = XAXBXC ; Q2 = XAY BY C ;

Q3 = Y AXBY C ; Q4 = Y AY BXC (11.3)

• The legal response of Alice Bob and Charlie to the question is ±1 and the
answer of the team is the product of their answers.

• The participants win if the products of their responses satisfy

q1 = −1; q2 = q3 = q4 = 1 (11.4)

• The participants do not know what questions the other participants were
asked, and what they answered.

1This is also called quantum pseud-telepathy
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11.3.1 No classical strategy can always win

A classical strategy assigns to {XA,B,C , YA,B,C} numerical values in ±1. It
then determines the answers to all 4 questions (even though in a given round
only one question is asked). There is no classical strategy that wins for all
4 questions. The 4 equations 11.4 with 6 numerical unknowns {xj , yj} ∈ ±1
admit no solution. To see this, consider the table:

Alice Bob Charlie Win

xA xB xC -1
xA yB yC 1
yA xB yC 1
yA yB xC 1

1 1 1 ±1

The product of all the entries in the table is +1 as you can see by first
multiplying columns. However, to win all the times the product of all entries
must be -1 as you can see by first multiplying rows.

It follows that there is no classical strategy that wins every time.

Exercise 11.2. Show that a random flipping between strategies can not out-
preform the best strategy.

11.4 A Bell inequality

If we assign values to numerical values to the questions XA,B,C and YA,B,C that
take values in ±1 then the the answers to the 4 questions are determined and
satisfy

q1q2q3q4 = 1 (11.5)

which violates the product of the last column.
QM does not attempt to assign numerical values to the questions. Instead it

assigns matrices, and more explicitly, the corresponding Pauli matrices. Alice,
Bob and Charlie are then allowed to measure the operator corresponding to the
question on a 3 qubits state the prepared ahead of time. Since the spectrum
of Pauli matrices is ±1, this means that if Alice, Bob and Carlie make the
corresponding measurement it always yields a legitimate answer ±1.

The 4 questions are now represented by four 8× 8 matrices:

Q1 = XA ⊗XB ⊗XC , Q2 = XA ⊗ Y B ⊗ Y C ,
Q3 = Y A ⊗ Y B ⊗XC , Q4 = Y A ⊗XB ⊗ Y C

Note that the four questions are mutually commuting

[Qj , Qk] = 0
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and satisfy the operator equality

Q1Q2Q3Q4 = −1 (11.6)

This means that the right hand column of the table is automatically satisfied
(and the order does not matter).

I shall call the conflict, expressed by the fact that 4 quantum measurements
necessarily gives −1 while the classical assignment necessarily satisfied +1 a
Bell inequality.

This is the conflict between quantum mechanics and any classical theory
(such as hidden variables) which assigns (commuting) values also to questions
that have not been asked.

11.4.1 The GHZ state

There are 4 commuting questions Qµ with Q2
µ = 1. This means that

Spect(Qµ) = {±1}

The 4 questions are related by one relation, Eq.11.6. So three questions are
independent. Since Qµ are 8 × 8 commuting matrices we can find the eight
joint eigenvalues corresponding to all all ±1 eigenvalues to three questions. In
particular, it follows that there is an eigenvector, which we call |GHZ〉 named
after Greenberger-Horn-Zeilinger, such that

Q1|GHZ〉 = −|GHZ〉,
Q2|GHZ〉 = Q3|GHZ〉 = Q4|GHZ〉 = |GHZ〉 (11.7)

Using

Z|a〉 = (−)a|a〉, X|a〉 = |a+ 1〉, Y |a〉 = iXZ|a〉 = i(−)a|a+ 1〉

one verifies that

|GHZ〉 =
|000〉 − |111〉√

2

The four questions have deterministic values in the GHZ state.
This happens without assigning sure values to (the four) questions that have

not been asked, such as

XA ⊗XB ⊗ YC , . . . , YA ⊗ YB ⊗ YC
Exercise 11.3. Show that the circuit

|0〉 H • •

|0〉

|0〉
generatess GHZ.

Exercise 11.4. Find the state that will answer wrongly all 4 questions.
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11.4.2 Winning the game with GHZ

Alice, Bob and Charlie prepare a GHZ state (a fresh one for every round of
questions): Alice takes with her, to her separate room, the first qubit, Bob the
second and Charlie the third. Upon being asked a question x or y each measures
the corresponding observable X or Y . The result of each measurement is, of
course, ±1 and is random.

ABC are guaranteed to win by the fact that GHZ is an eigenstate of the
four questions by Eq. 11.7.

It is important to observe that the answers Alice, Bob and Charlie give are
random. For a given question, there are 4 possible winning responses (and four
losing ones). ABC will give all possible correct answers with equal probability.

Exercise 11.5. Show that the probability that Alice answers + to question X
in GHZ state is 〈

GHZ

∣∣∣∣1±X2
⊗ 1⊗ 1

∣∣∣∣GHZ〉 =
1

2

and similarly for question Y

Exercise 11.6. Show that

2|GHZ〉 = |+〉⊗ |+〉⊗ |−〉+ |+〉⊗ |−〉⊗ |+〉+ |−〉⊗ |+〉⊗ |+〉+ |−〉⊗ |−〉⊗ |−〉

What do you learn from that about the possible answers to question Q1?

Exercise 11.7. Show that

〈GHZ|(1 + αX)⊗ (1 + βX)⊗ (1 + γX)|GHZ〉 = 1− αβγ

and
〈GHZ|(1 + αX)⊗ (1 + βY )⊗ (1 + γY )|GHZ〉 = 1 + αβγ

Exercise 11.8. Mermin-Peres square. (Wikipedia)

11.5 Sharing secrets with partners you mistrust

Suppose Alice wants to send Bob and Charlie a message, the bit b. Say part
of a key to safe. She does not trust either Bob or Charlie and wants to send a
message that can be deciphered only when both cooperate. Classically this can
be done by Alice choosing randomly a and sending Bob a+ b and Charlie a and
tell them to add their messages:

b→ {b+ a, a} → b+ 2a = b

The weakness of this is that Alice needs a private channel to transmit the
messages to each partner. She can not broadcast.

If ABC share a GHZ state Alice can transmit the secret by broadcasting.



114 CHAPTER 11. QUANTUM CORRELATIONS

Protocol:

• Alice measures X and finds x = ±1.

• She broadcast to Bob and Charlie to both measure X or Y according to:

Xδx,−1 + Y δx,1︸ ︷︷ ︸
to transmit 0

, Xδx,1 + Y δx,−1︸ ︷︷ ︸
to transmit 1

(depending on what she found and the bit she wants to transmit).

• The secret is the parity of the product of Bob and Charlie’s results.

11.6 The Quantum view of reality

Quantum mechanics departs from classical physics. Classical physics assumes
that there is an objective reality which, in principle at least, can be discovered
by the observer. In quantum mechanics, the act of observations prepares the
system, in general, in a new state and it is not possible to tell what has been the
state of the system before the measurement. The Copenhagen view of quantum
mechanics is that there is no reality independent of observation. The position
of a quantum particle takes its value once the position is measured. Prior to
the observation the position is an operator and has no value. The uncertainty
principle prevents the system to be in a well defined state of non-commuting
observable. This strange view of reality was challenged by Einstein who asked:
Do you believed that the moon is there only when you look?

11.6.1 Hidden variables

Hidden variables attempt to reconcile QM with the classical view of an objective
reality (realism). QM is viewed as an effective theory of a more fundamental
theory which is deterministic and realistic involving variables that we have not
yet learned how to measure and control. These are the hidden variables. The
probabilistic nature of QM then arises from our ignorance of these variables.

John Bell showed that the hypothesis of Hidden variables can be tested
experimentally under appropriate assumptions. The test involves measurements
of correlations of qubits in an entangled state.

11.6.2 Bell inequalities

The simplest Bell test is the CHSH inequality (the initials of those who found
it). Consider an experiment with a pair of qubits illustrated in Fig. 11.1. The
test involves a pair of qubits in each run and is repeated many times. Alice
chooses to measure her qubits in one of two directions labeled by α = ±1 and
similarly Bob picks two directions labeled by β = ±1 to measure his qubits. In
each run Alice finds aα = ±1 and Bob find bβ = ±1.
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α = 1

α = −1

β = 1
β = −1

Figure 11.1: An entangled pair is generated at the red dot. Alice and Bob receive
one qubit each. Alice chooses randomly one of two directions to measure her
qubit and so does Bob. The experiment is repeated many times and statistics
of correlations is made.

11.6.3 CHSH

The hidden variables view of the CHSH setting is as follows: The correlations
between the measurements of Alice and Bob arise from the way the two qubits
have been prepared at the source. The Hidden variables λ encode this informa-
tion. We denote by P (λ) their distribution.

Alice and Bob actually make 4 different experiments

{α, β}, α, β = ±1 (11.8)

In world that is realistic, a1 and a−1 coexist even though only one of them is
measured in any given experiment. In a world that is also deterministic, this
means that there are 24 functions

aj(λ, α, β) ∈ ±1, bj(λ, α, β) ∈ ±1 (11.9)

that describe the reality underlying the 4 possible experiments.
Since 0 = b21 − b2−1 = (b1 + b−1)(b1 − b2−1) one term in the product must

vanish. It follows that in all 4 experiments, for any value of the hidden λ

a1(λ, α, β)
(
b1(λ, α, β) + b2(λ, α, β)

)
+ a2(λ, α, β)

(
b1(λ, α, β)− b2(λ, α, β)

)
= ±2

The equality can not be tested experimentally because it involves counterfactu-
als: In any given experiment only one term among the four is measured, namely

aα(λ, α, β)bβ(λ, α, β) = ±1 (11.10)

If we would take the four terms from four different experiments then the ±2 on
rhs is replaced by 0,±2,±4.

We can formally take the expectation with respect to λ, α, β to get the CHSH
inequality

− 2 ≤ E(a1b1) + E(a1b2) + E(a2b1)− E(a2b2) ≤ 2 (11.11)

The trouble with this inequality is that the average is over both real and imag-
ined measurements and it is not clear how to relate it to what one can actually
measure.
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To proceed we examine the functions aj , bk more closely. The functions
aj and bk are supposed to take the value of actual measurement, had such a
measurement been carried out. This means that aj must take the same value
for α = ±j and similarly for bk. This can be written as

aj(λ, α, β) = aj(λ, β), bk(λ, α, β) = bk(λ, α) (11.12)

and hence
aj(λ, α, β)bk(λ, α, β) = aj(λ, β)bk(λ, α) (11.13)

The rhs still depends on αβ and therefore the average involves both real and
imagined measurements. To proceed we make the physical assumption that the
theory is local. This means that the the measurment of Alice is independent of
what Bob chooses to measure and vice versa. This means:

aj(λ, α, β)bk(λ, α, β) = aj(λ, β)bk(λ, α) = aj(λ)bk(λ) (11.14)

This guarantees that the observable take the same values in real and imagined
experiments and we can then apply CHSH to the actual experimental correla-
tions.

11.7 Tsirelson bound

Let T be the observable

T = A1 ⊗ (B1 +B2) +A2 ⊗ (B1 −B2) (11.15)

where Aj and Bj satisfy A2
j = B2

k = 1. A computation gives

0 ≤ T 2 = 4 1⊗ 1 + i[A0, A1]⊗ i[B0, B1]

Since
−2 ≤ i[A1, A2] ≤ 2

it follows that
0 ≤ T 2 ≤ 8 =⇒ −2

√
2 ≤ T ≤ 2

√
2 (11.16)

11.7.1 Observables that Saturate Tsirelson bound

We can saturate the Tsirelson with:

A1 = H, A2 = ZHZ, B1 = Z, B2 = X = HZH (11.17)

A computation gives
T =

√
2
(
Z ⊗ Z +X ⊗X

)
(11.18)

Since Z ⊗ Z and X ⊗X commute and their spectra are ±1 and therefore

Spect(T ) =
√

2{±2, 0} (11.19)
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b2

b1

a1a2

Figure 11.2: The angle between the unit vectors is such that aj ·Bj = cosπ/4
except for a2 · b2 = − cosπ/4. This saturates the Bell inequality since a1b2 +
a1b1 + a2b1 − a2b2 = 2

√
2

saturates the bound Eq. 11.16.
Moreover, since the Z × Z and X ×X are syndromes of the Bell states the

maximal and minimal eigenvector of T must be Bell states. In fact

T |β2〉 = −2
√

2|β2〉, |β2〉 =
|01〉 − |10〉√

2

T |β0〉 = 2
√

2|β0〉, |β0〉 =
|00〉+ |11〉√

2
(11.20)

They maximally violates the Bell inequality:

〈β0|T |β0〉 = −〈β2|T |β2〉 = 2
√

2 (11.21)

11.7.2 Geometric picture

For the Bell singlet

〈β2|σj ⊗ σk|β2〉 = −δjk
It follows that

〈β2|a · σ ⊗ b · σ|β2〉 = −a · b (11.22)

and therefore QM is in conflict with hidden variables if we can find unit vectors
so that

|a1 · (b1 + b2) + a2 · (b1 − b2)| > 2

Observe that with bj unit vectors, b1 ± b2 are orthogonal vectors whose maxi-
mal length

√
2.

To maximize the violation of Bell inequalities we then want b1 ± b2 to be
parallel to a1 and a2. This gives the vector in the figure 12.4 which saturate
the Tsirelson bound.

Exercise 11.9. Show that separable states satisfy the CHSH inequality.
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11.7.3 The CHSH Game

The rules of the game are

• Alice and Bob can not communicate but are allowed to share a Bell pair.

• Alice is asked a question A ∈ {0, 1} to which she answers a ∈ {0, 1}

• Similarly, Bob is asked a question B ∈ {0, 1} to which he answers b ∈ {0, 1}

• They win the game if the responses match the questions according to

a⊕ b⊕ 1 = A ·B (11.23)

In words Alice and Bob need to choose opposite bits except if both were
asked A = B = 1.

You can not satisfy Eq. 11.23 in all cases. Suppose you could satisfy Eq.
11.23 then summation Mod 2 over all cases on the rhs gives:

1 =
∑

A,B∈0,1

A ·B

=
∑

A,B∈0,1

a(A)⊕ b(B)⊕ 1

=
∑
B∈0,1

(
a(0)⊕ b(B)⊕ 1

)
⊕
(
a(1)⊕ b(B)⊕ 1

)
=
∑
B∈0,1

(
a(0)⊕ a(1)

)
= 0

Alice and Bob must therefor fail on at least one question. They may, for ex-
ample, agree that Alice always chooses 0 while Bob always chooses 1. If all
questions are asked with equal probability their win-loss ratio is at best 3:1.

Exercise 11.10. Give an argument why a random strategy will not help (Hint:
Use convexity)

If Alice and Bob share Bell pairs, they can improve their winning ratio to
about 85%.

• Depending on A ∈ 0, 1 Alice measures her qubit in the direction as in Fig.
11.2.

• The measurement determines Alice response

• Similarly for Bob.
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By Eq. 7.6

Prob(±∓ |A,B, β2) =
1 + A ·B

4
, P rob(±± |A,B, β2) =

1−A ·B
4

so the probability that Alice and Bob give the same answer when they measure
in the A , B directions is

Prob(opposite|A,B, β2) =
1 + A ·B

2
, P rob(same|A,B, β2) =

1−A ·B
2

For the directions in Fig 11.2

Prob(opposite|Aj,Bk, β2) =
1 + cosπ/4

2
, j · k = 0

and

Prob(same|A1,B1, β2) =
1 + cosπ/4

2
We see that for all 4 questions the winning probability is the same. Hence

Theorem 11.11. If Alice and Bob share a Bell state, and follow the above
recipe they win the CHSH game with probability

1 + cos(π/4)

2
≈ .85

This beats the classical optimum .75.

11.8 QM is non-signaling

Let
P (a, b|A,B)

denote the (conditional) probability that if Alice chooses to make the test A
and Bob B she gets the result a ∈ ±1 and he b ∈ ±1. In the CHSH setting A
and B are the two directions.

Definition 11.12. The conditional probability P (a, b|A,B) is called non-signaling
if the marginal

P (a|A,B) =
∑
b

P (a, b|A,B)

is independent of B (and similarly for (a,A)↔ (b, B)).

In words, by looking at her data, Alice gets no information on the experiment
Bob choose to make.

Alice and Bob choose directions a and b to measure their qubits. The prob-
abilities for a given event (±,±) is given by the associated projection, namely:

P (±,±|a,b) = Tr

 1±a · σ
2︸ ︷︷ ︸

projection

⊗ 1±b · σ
2︸ ︷︷ ︸

projection

ρ



http://www.wolframalpha.com/input/?i=%281%2B+Cos%5BPi%2F4%5D%29%2F2
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with a, b ∈ ±1. Evidently∑
±
P (±,±|a,b) = Tr

(
1±a · σ

2
⊗ 1ρ

)
is independent of b. Alice can not tell what Bob chose to measure by col-
lecting only statistics of her qubit. We have therefore shown that projective
measurements on 2 qubits are non-signaling.

11.9 Popescu Rohrlich box

Popescu and Rohrlich asked the question: Suppose you accept the principle
that correlations do not allow (superluminal) signaling. Does this impose a
constraint on the correlations? In other words, does the QM bound of ±2

√
2

on correlations follow from a “No signaling” principle. The answer turns out to
be no. Moreover, correlations and signaling are not directly related.

The Popescu-Rohrlich box is an oracle that answer the four questions of the
game in section 11.4 without mistake2 :

a1b1 = a1b2 = a2b1 = 1, a2b2 = −1 (11.24)

In particular, Tsirelson inequality is violated:

a1b1 + a1b2 + a2b1 − a2b2 = 4

Does this imply signaling? To investigate this consider the table of probabilities

B1 B2

1 -1 1 -1
A1 1 p 0 q 0

-1 0 1-p 0 1-q
A2 1 p 0 0 q

-1 0 1-p 1-q 0

By Eq. 11.23 it indeed maximally violates Tsirelson inequality

〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉 = 4

It is signaling for p 6= q but non-signaling if p = q. Rohrlich was then forced
to conclude that the principle of non-signaling does not lead to the Tsirelson
inequality and you can not derive QM from the principle of non-signaling. But,
of course, QM is consistent with the principle of no-signaling as we have seen.

2There is no way to assign values to to all aj and bj simultaneously so that Eq. 11.24
holds, as can be seen by multiplying the four equalities.
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Grover search algorithm

12.1 Searching an ordered data base

In the old days we used to have telephone books. The book had many names,
say one million, ordered lexicographically. Each name X is written in n bits,
say n = 20, in one column and in the next column, is Y (X), the phone number.

People searched telephone numbers using the method of divide and conquer:
You’d need to turn about 20 pages to find a number 1. You open the book in
the middle, at the 2n−1 entry, and compare with the name X. to determines
if X is in the first half of the phone book or the second half. Repeating the
procedure you locate the number in O(n) steps.

Figure 12.1: Divides and conquer: You isolate the red point in log2N queries.

12.2 Unstructured data base

If you have a phone number and want to find the name an ordinary phone book
is not very useful. (It is best to call and ask, hoping they will tell you.) The
answer is buried in the phone book. The book “knows” the answer, but it is
not clear how to search it.

You can try and read the entire phone book. If you are lucky, you succeed
in the first entry. If you are unlucky it will be the last. If you decide on making
random queries of the phone book, the probability that in m queries you still
guessed wrong is

(1− 1/N)m =
(
(1− 1/N)N

)m/N → e−m/N

1210 = 1024 =⇒ 220 > 106.

121
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In either case, the search will have a finite success probability with m = O(N).
The fact that each query of the phone book is quick does not help because you
need many queries.

12.2.1 Oracles and one way functions

You may think of the phone book as an oracle: It will give you quickly the
number associated to the name, but will refuse to give you the name associated
to a number. If you phrase the question right the oracle tells you an answer. A
phone book is like a one way function

phone book : name 7→ phone number

It is easy to compute the function and much more difficult to compute its inverse.

12.2.2 Complexity for kids

Complexity is the heart of computer science. It classifies problems according to
how hard they are.

A problem is easy if a (classical) computer can give an answer in polynomial
time in the the number of digits of the input, n. For example, adding two
numbers is easy. So is multiplying them. Euclid algorithm for finding GCD(p, q)
is a more fancy example. All these problems are said to be in P.

NP is a class of hard problems. It is a little unfortunate that NP does not
stand for Non-Polynomial, but rather for Nondeterministic polynomial. This
means (roughly) that these are problems that can be solved in polynomial time
given an ”oracle”. NP problems are the class of problems where finding a
solution is hard (for this you need the oracle) but verifying the solution (given
by the oracle) can be done in P.

Searching in unstructured data is NP.

12.2.3 Every problem is a search problem

Suppose you have a problem that has a solution that could be verified by a
computer program. This means that there is a function δ so that for a proposal
Y the function gives δ(Y ) = True if Y is the solution and δ(Y ) = False if it is
not. Finding the solution is a search problem

Find Y so that δ(Y ) = True

A stupid strategy is to examine all Y with n digits sequentially. This involves
O(N) operations. This is as bad as it gets.

Exercise 12.1. Formulate the problem of searching the name associated with a
phone number as a search problem.
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12.2.4 Quantum Oracle

The oracle is a unitary gate that we are allowed to query. It tells you if X is
the solution to the problem and is represented by the circuit:

|Y 〉 /
δX

/ |Y 〉
|0〉 |0⊕ δX,Y 〉

The flag in the second qubit. It flips if the input Y = X right. It is promised that
X is one of the basis vectors in the computational basis, e.g. |a1 . . . an〉, aj ∈
0, 1.

By the phase kickback trick

|Y 〉 /
δX

/ (−)δXY |Y 〉
|−〉 |−〉

We can write the circuit also with the bottom qubit set to be |1〉:

|Y 〉 /
δX

/ (−)δXY |Y 〉

|1〉 H H |1〉

All three gates, 2 Hadamard and the function gate act like the controlled reflec-
tion gate C(RX) with the control set to be on:

|Y 〉 RX (−)δXY |Y 〉

|1〉 • |1〉
where

RX = 1− 2|X〉〈X|

This is the oracle we are allowed to use.

12.3 The search problem

You are given the oracle that performs the unitary gate operation

RX = 1− 2|X〉〈X|

for some unknown vector |X〉 is the computational basis. You are not told what
X is. Your task is to find X.

With n qubits X could take any one of N = 2n values. You could try all
entries 0, 1, . . . , N − 1 one by one, and look for the flag in the second qubit to
wave. This will take you O(N) queries of the gate to find X.

Grover made the remarkable discovery that with O(
√
N) operations you can

find X with high probability.
This problem is of the same type as searching in an unstructured data base.

Grover algorithm does not make hard problems (NP) easy (P), but gives a
substantial gain nevertheless.
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12.3.1 The Democratic superposition

When we do a quantum search we are given one piece of (important) informa-
tion: Namely, the requisite item X is not any vector in the Hilbert space, but
rather one of the basis vectors in the computational basis, i.e.

|X〉 = |a0 . . . an〉, aj ∈ 0, 1

Grover stars with the following simple observation. The democratic super-
position

|D〉 =
1√
N

N−1∑
j=0

|j〉

overlaps with X by

〈X|D〉 =
1√
N

Grover makes use of this
√
N . Of course, if we measure we fall back to the

classical result since the success probability is

Prob(D|X) = |〈X|D〉|2 =
1

N

as in a classical search.
Grover idea is to try and increase the overlap by a series of

√
N unitary

rotations that turn Y towards X.

12.3.2 Reflections and rotations

Definition 12.2. An orthogonal transformations R is called a rotation if detR =
1. It is called a reflection if Eigenvalues(R) = {−1, 1, . . . 1}. The eigenvector
associated with the eigenvalue −1 is the axis of reflection. Its orthogonal com-
plement is the reflection hyperplane. In particular, for a reflection detR = −1
and the product of two reflections is a rotation.

Exercise 12.3. What rotation is the product of the reflection of the X and Y
axis in three dimensions.

Consider the product of two reflections about the axis of two (different, real,
unit) vectors X and Y :

R = RYRX , RX = 1− 2 |X〉〈X|︸ ︷︷ ︸
PX

, RY = 1− 2 |Y 〉〈Y |︸ ︷︷ ︸
PY

where

〈X|Y 〉 = cos θ 6= ±1

This must be a rotation. We want to determine what rotation it is.
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|X〉

Figure 12.2: Reflection about the |X〉 direction.

|X〉 and |Y 〉 span a 2-dimensional plane. An orthogonal basis in this plane
is

|a±〉 =
|X〉 ± |Y 〉√
2(1± cos θ)

The projection on this plane is given by

P = |a+〉〈a+|+ |a−〉〈a−|,

It is clear that R acts trivially on 1− P and must be a rotation of this plane.

|X〉

|Y 〉

|a+〉

|a−〉

Figure 12.3: Construction of a basis in Range X ⊕Range Y

The non-trivial part of R namely PRP can be viewed as a 2 × 2 rotation
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matrix in two dimensions. Any such matrix can be written as(
cosφ sinφ
− sinφ cosφ

)
The angle φ can be computed in terms of θ by comparing the traces

2 cosφ = Tr (PRYRXP ) (12.1)

Using

〈a±|RYRX |a±〉 = 1− 2|〈a±|X〉|2 − 2|〈a±|Y 〉|2 + 4〈a±|X〉〈X|Y 〉〈Y |a±〉
= 1− (1± cos θ)− (1± cos θ)± 2(1± cos θ) cos θ

= −1 + 2 cos2 θ

= cos 2θ

We see that
Tr (PRYRXP ) = 2 cos(2θ)

and the angle of rotation is φ = 2θ. This is illustrated in the figure.

|Y 〉

RX |Y 〉

RYRX |Y 〉

−RYRX |Y 〉

|X〉

θ

2θ

π − 2θ

Figure 12.4: Two reflections make a rotation by twice the angle between the
axes.

12.4 Grover box

We have seen that the product of two reflections is a rotation by 2θ. The trouble
is that it is a rotation that does not rotate Y to X but rather Y away from X.
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This can be easily fixed by an overall minus sign. So, lets define the Grover box
by

GX = RX −RD
This gives a rotation by

π − 2θ = 2
(π

2
− θ
)

rotating Y towards X.
Now take Y = D to be the democratic superposition and X is the searched

item

|D〉 =
1√
N

N−1∑
j=0

|j〉

Here

〈D|X〉 =
1√
N

= cos θ

The democratic superposition is almost orthogonal to the searched item X if N
is large: θ is very close to π/2

θ ≈ π

2
− 1√

N
=⇒ π

2
− θ ≈ 1√

N

The Grover gate then gives rotation that is close to

π − 2θ ≈ 2√
N

from the direction of D towards the unknown X. It follows that⌊
π
√
N

4

⌋
applications of Grover gate rotate the democratic state close to the unknown
state |X〉, i.e. within an angle

O

(
1√
N

)
The probability that measuring the output in the computational basis yields
the correct answer is very close to 1:

Prob(success) =

(
1−O

(
1√
N

))2

≈ 1−O
(

1√
N

)
It is not important to make precisely π

√
N

4 . For example, for success proba-
bility of say p = 1/2 we need to rotate by π/4 rather than π/2 and this requiters⌊

π
√
N

8

⌋
applications of the gate.



128 CHAPTER 12. GROVER SEARCH ALGORITHM

|X〉

|D〉

RX |D〉

−RDRX |D〉 Grover

Figure 12.5: The two Grover reflections −RDRX rotate the initial democratic
superposition towards the solution by an angle O(2/

√
N)

Exercise 12.4. Show that the circuit implements RY for two qubits.

H X • X H

H X • X H

|−〉

Remark 12.5 (No fixed point). Since R is a rotation it has no fixed point. A
consequence of this is a not-so-nice feature of Grover, namely, that the solution
|X〉 is not a fixed point of R: You should not apply R too many time; if you do

you overshoot the solution. With π
√
N

2 you are again almost orthogonal to |X〉.

Remark 12.6 (Multiple solutions). If the search problem has several solutions
then take |X〉 to be the superposition of all of them.

Exercise 12.7. What happens if there is no solution?

Remark 12.8. If there are lots of solutions, O(N), the problem is easy and
you do not need any fancy algorithm.

Exercise 12.9. if you believe that P 6= NP then, according to Bennett, Bern-
stein, Brassard and Vazirani Grover is optimal. If you explain this result to me
you’ll get bonus points.
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RSA for pedestrians

13.1 Public key

RSA is a public key encryption system that allows anyone to encrypt a message,
but only the owner of the key to decipher. It has a public key that allows
anybody to encrypt and a private key that allows only the owner to decrypt.

It is named after Rivest, Shamir and Adleman. Shamir is at WIS, the other
two are in MIT, where the algorithm was developed in 1977. I think it made
them rich.

Clifford Cocks, an English mathematician, working for the British intel-
ligence, had developed an equivalent system earlier, in 1973, but it was not
declassified until 1997.

The story is nicely told in Simon Singh book Codes. Wikipedia will tell you
what RSA has to do with drinking too much Manischwitz wine on Passover.

You can use RSA also to sign: Using your private key you can sign a random
message while anybody can read and verify your signature using the public key.

RSA is a practical method in the sense that it does not guarantee security
forever, it only guarantees security for any finite time you care about, say one
year.

13.1.1 RSA challenge

The security of RSA rests on the presumed difficulty of factoring semi-primes—
numbers of the form N = pq, p, q ∈ N. You only need N to encrypt, but to
decipher you need to know the factors.

RSA assumes that if you made public a semi-prime with few hundred digits,
the factors q and p are still secret for all practical purposes, ie. it will take, say,
a year to find the factors.

RSA is not more difficult than factoring. It is not known if it is as difficult,
i.e it is not known if one can break RSA without factoring.

Security depends on what resources you grant the adversary. Of course if
the adversary can access your computer you are in trouble. Shamir showed that

129
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RSA is compromised if the adversary is are allowed to listen to the noises the
hard drive of the decrypting computer.

13.1.2 Quantum threat

In 1994 Shor gave an efficient algorithm for factoring integers that has a quantum
subroutine. To run this subroutine we need a quantum computer. If one could
be built that could handle few hundred qubits then RSA would be insecure.
Quantum computers, if they exist, compromise RSA. I do not know if it the
algorithm made Shor rich. It definitely made him famous.

It is not known if there is a classical algorithm that factors semi-primes
quickly. None is known.

13.2 Number theory

The fundamental theorem of arithmetic, going back to Euclid (300 BC1), states
that any integer N ≥ 2 has unique factorization into prime factors.

N = pn1
1 . . . pnnn , pj ∈ Primes, nj ∈ Z

13.2.1 GCD

Definition 13.1. r and s are relatively prime if GCD(r, s) = 1

Euclid algorithm computes GCD efficiently, more precisely, if r, s are two n
digit numbers, then GCD costs O(n2).

A basic fact is that GCD(r, s) = 1 implies that r has an inverse mod s. In
particular, if p is a prime then GCD(r, p) = 1 for all r 6= 0 mod p and so every
such r has n inverse.

For example, since 7 is prime

5× 3 = 15 = 1 + 14 = 1 Mod 7 =⇒ 5−1 Mod 7 = 3

To understand how RSA works we shall need:

Theorem 13.2 (Fermat little theorem). If x ∈ Z and p prime

xp = x mod p (13.1)

If x 6= 0 mod p we also have

xp−1 = 1 mod p (13.2)

1Roughly the times of Alexander the great. Between the Persian and Greeks in Jewish
history

http://en.wikipedia.org/wiki/Peter_Shor
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Fermat, as usual, gave no proof. A proof, by induction, taken from Wikipedia,
goes like this: Observe first that if p is a prime then for 1 ≤ n < p(

p

n

)
︸︷︷︸
integer

=
p!

(p− n)!n!
= p

(p− 1)!

(p− n)!n!︸ ︷︷ ︸
Unique factorization

= 0 mod p, (13.3)

Since the denominator can not cancel p the result follows from unique factor-
ization.

We shall now prove by induction that xp = x mod p. The induction as-
sumption holds for x = 0:

xp = x mod p, x = 0

By Eq. 13.3 for any integer k

(k + 1)p = kp + 1 mod p

By the induction hypothesis

kp + 1 = k + 1 mod p

This proves the first half of the theorem. The second follows from the fact that
j 6= 0 mod p has an inverse.

In fact, for RSA makes use of a special case of a stronger result known as of
Fermat-Euler theorem. The special case we shall need is:

Suppose x is not divisible by p or q then

x(p−1)(q−1) = 1mod pq (13.4)

Exercise 13.3. Show this using Fermat little theorem and the identity
(
sp−1

)q−1
=(

sq−1
)p−1

)

http://en.wikipedia.org/wiki/Proofs_of_Fermat%27s_little_theorem
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13.3 RSA

13.3.1 Encryption

Encryption algorithm2

• You broadcast (N, e). N = PQ is large semi-prime and e can be a prime,
say e = 3.

• The factors P,Q are kept secret and you chose e so that it has a inverse
mod (P − 1)(Q− 1). This is automatic if e is prime.

• The message M , an integer, is encrypted as

E(M) = MeMod N

• E(M) is broadcasted publicly.

Example 13.4. Suppose I put on my web site the public key (N, e) = (187, 3)
and keep secret the fact that

187 = 11× 17︸ ︷︷ ︸
secret

,

You want to transmit to me your secret KABALA = 137 (also the inverse of
the fine structure constant). You broadcast the encrypted message

E(137) = 1373 = 103 mod 187

13.3.2 Decryption

The message M is deciphered with the private key (N, d) which is kept secret.
The pair of keys (N, e) and (N, d) are chosen so that (e, d) are modular inverses

ed = 1 Mod (P − 1)(Q− 1)

Note that (e, d) are inverses Mod (P − 1)(Q− 1) not Mod N .
Using Euclid extended GCD you can efficiently find d even for large N . Since

only you know the number (P −1)(Q−1), no one else can figure out the private
key (N, d).

The deciphering is done just like the encryption, but with the private key 3

D(E(M)) =
(
E(M)

)d
Mod N

= (Me)d Mod N

= Med Mod N

= M1+k(P−1)(Q−1) Mod N, k ∈ Z
= M Mod N

2I will use notation where capital letter denote large integers.
3The trivial case M = 0 mod N needs to be dealt with separately.
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and Euler-Fermat, Eq. 13.4, was used in the last step 4.

Example 13.5 (Continued). Continuing the example:

d = 107︸ ︷︷ ︸
private key

, Ed(m) = 103107 = 137 mod 187︸ ︷︷ ︸
deciphering

Remark 13.6 (Private-Public keys). The private and public keys can be inter-
changed, of course.

Exercise 13.7 (Toy RSA). Write a computer program for making RSA with p
and q primes with say 30-40 digits.

• Mathematica picks random primes p with 30 decimal digits with:
RandomPrime[{1030, 1031}]

• Choose randomly an odd (prime) e and accept this choice as a public key
if GCD(e, ϕ(N)) = 1. This will succeed with finite probability.

• Compute5 the private key d = e−1 Mod (P − 1)(Q − 1). d is your secret
key for decoding the messages. Keep it safe. d may turn out to be huge.

• When you encrypt and decipher use PowerMod[m,e,N]. If you use instead
Mod[sd,N] with d large you will get an overflow.

Remark 13.8 (Primality test). You may worry that the difficulties in making
public and private keys are comparable to the difficulties in breaking them. This
is a legitimate worry, and the step to worry about is how do you (randomly)
choose really large primes p, q? Of course, it is easy to choose a large random
integer N , and the probability that by chance you picked a prime is 1/ logN is
not too small, even for very large N . But, to verify that the number you picked
is a prime you need to find its factors, which is the same difficulty as breaking
the key. What saves RSA is an efficient test (due to Miller and Rabin) that
guarantees primality. If Riemann hypothesis holds the test is sure. If not, it is
probabilistic.

4Recall that m is assumed not be divisible by p and q.
5Mathematica command: PowerMod[e,-1,M]
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Chapter 14

Factoring

14.1 Breaking RSA

You break RSA once you gain access to the factors of N = PQ. In principle,
since N is public, by the unique factorization, P and Q are determined by N .
So, if one can factor large semi-primes efficiently, RSA is compromised. This
appears to be hard.

14.2 Complexity for pedestrians

14.2.1 Resources

Complexity theory classifies problems according to the growth of resources you
need to solve a problem with the number input bits. The resources can be time,
space, hardware etc. For example, how many operations you are allowed to
make, how much memory you are allocated, etc.

14.2.2 Poly(n)

There is a common belief among Computer Scientists (something they call The-
sis) that if a problem is solved by one Turing machines in time Poly(n), it will
be solved by in time poly(n) by any other reasonable Turing machine.

Let us look at some standard algorithms and how the number of operations
scale with the input . Given two numbers of with n digits adding or subtracting
them has complexity that is linear in n. Schoolbook long multiplication has
complexity of n2. Amusingly, these are sophisticated multiplication algorithms
that scale almost like n.
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Operation Complexity
add two n digits numbers n
schoolbook multiplication of two n digits numbers n2

Schonhagen-Strassen multiplication n log n log log n
GCD n2

14.2.3 Exp(Poly)

Tasks that diverge exponentially with the number of digits are hard. Here are
some examples.

Operation Complexity
list all integers with n digits 2n

list all primes with n digits (2n)/n

14.3 Poly(n) versus Exp(Poly)

Complexity deals with the limit n→∞. A problem in poly(n) that runs in time
2100n is more difficult, than one with running time 2n for n ≤ 100. However,
eventually, when n ≥ 100 the second becomes harder.

Example 14.1. Suppose your computer has a clock of GHz and you are willing
to complete a task that takes a year. The number of operations of your computer
is of order

3× 107︸ ︷︷ ︸
sec in year

×109 = 3× 1016≈ 255

This is your available resources.

Now consider tasks that scale with the size of the input n like

2n
α

=


2n α = 1, exponential

2
√
n sub− exponential

2n
2

super − exponential
n3 α = 0, polynomial

(14.1)

How long an input can you feed in? Assuming that all factors are O(1) is

n =


55 α = 1, exponential

3025 sub− exponential
7 super − exponential
227 α = 0, polynomial

(14.2)

For polynomial complexity, you can feed essentially infinitely long inputs. But
in the exponential case the input is modest.

http://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm
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14.4 Factoring

Silly factorization of large N = O(2n) has complexity of

√
N × (logN)2

You test all integers less than
√
N if they divide N . The cost of division is

(logN)2 and there are
√
N such tests.

You can do a little better if you use the fact that the number of primes less
than N is asymptotically

π(N) ≈ N

×
logN

and it is enough to test primes. This improves the complexity to
√
N logN

Mathematicians put a lot of effort into factoring. Sophisticated method for
factoring large integers have sub exponential complexity, e.g.

e(logN)1/3

and are collectively known as number sieve. These can be effectively applied to
numbers with about hundred digits. This sets the size of RSA keys.

The basic idea behind several methods of factorization goes back to Fermat.
Write

N = PQ =

(
P +Q

2

)2

−
(
P −Q

2

)2

= R2 − S2

If N is an odd semi-prime, p and q are odd, r and s are integers. Factoring is
now reduced to finding integers

R2 = S2 mod N, R± S 6= 1 mod N

One needs a method to effectively search for R and S.

14.5 Functions that are hard to compute

If you could figure out directly (P − 1)(Q − 1) from N = PQ, then you could
efficiently compute the private key d from the public key e:

ed = 1 mod (P − 1)(Q− 1)

This function has name: Euler totient function ϕ(N). It counts the number of
divisors of N and has the desired property

ϕ(PQ) = (P − 1)(Q− 1)

Unfortunately, Euler totient function is one of those functions that are hard to
compute.
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Example 14.2. Certain functions that are easy to invert over the reals are
difficult to invert in modular arithmetic. For example the square root and the
discrete logarithm are hard to compute.

For example, with P = 5, the square and power are easy to compute but the
root and log are hard to compute:

n 0 1 2 3 4 missing in range

n2 0 1 4 4 1 2,3
2n 1 2 4 3 1 0√
n 0 1, 4 − − 2, 3

log2 n − 0,4 1 3 2

14.6 Order

As we shall see, the key to Shor algorithm is that there are functions that are
hard to compute on a classical computer, but easy to compute on a quantum
computer. One such function that helps in factoring is order finding.

Definition 14.3 (Order). Given an integer x and a positive integer N with
GCD(x,N) = 1, the multiplicative order of x modulo N is the smallest positive
integer R with

xR = 1 mod N

Example 14.4. P = 2× 5

x 1 2 3 4 5 . . . order

1 1 1 1 1 . . . . . . 1
2 2 4 8 6 2 . . . not defined
3 3 9 7 1 . . . . . . 4
5 5 5 . . . . . . . . . . . . not defined
7 7 9 3 1 . . . . . . 4
9 9 1 . . . . . . . . . 2

The sequence

x, x2, x3 . . . , xN , mod N

takes at most N (different) values. If x is invertible, then 0 is not in the list
and therefore for some 1 < m ≤ N one must encounter a (non-zero) value
encountered before

xj = xm mod N, N ≥ j < m ≥ 1

Since x has a multiplicative (modular) inverse x−1

xm−j = 1 mod N

R = m− j is the smallest solution to xR = 1 Mod N .



14.7. FACTORIZATION WITH ORDER FINDING ORACLE 139

From Euler- Fermat, Eq. 13.4, we have for N = PQ semi-prime

x(P−1)(Q−1) = 1 mod PQ, GCD(x, PQ) = 1

It follows that R is a divisor of (P − 1)(Q− 1).
In the example above where PQ = (2− 1)(5− 1) = 4 the periods are 4 (for

x = 3) and 2 (for x = 9).
Order finding is an arithmetic operation that has no efficient algorithm: to

find the order of j you need to make the table jx with x = 1, . . . , N and search
for the first time 1 shows up in the table.

14.7 Factorization with order finding oracle

If one had on oracle that would determine the order, one could factorize integers.
The method goes back to Fermat. Write

1 = xR modN =⇒ (xR − 1) = 0 mod N

Suppose the period R of x is even then, for N = PQ semi-prime

(xR−1) = (xR/2−1)(xR/2+1) = 0 mod N =⇒ (xR/2−1)(xR/2+1) = k1k2PQ

for some integers k1,2. Comparing sides we get the following possibilities

(xR/2 − 1) =


k1 GCD(xR/2 − 1, N) = 1

k1P GCD(xR/2 − 1, N) = P

k1Q GCD(xR/2 − 1, N) = Q

k1PQ

The last line does not happen, since it implies xR/2 = 1 mod PQ, but, by
assumption R was the shortest period. The first line does not teach us anything,
but the second and third lines give us a factor. It turns out that the good case
occurs with profitability of O(1).

Remark 14.5 (What can fail). In the bad cases you did not succeed factoring.
(This can all happen as the example below show). The method works because
there is a finite success probability. Showing this (you may argue that this is the
interesting part of the algorithm) is the business of people who do probabilistic
number theory. I will not address this.

Example 14.6. In the example with PQ = 2 × 5, x = 3 has period R = 4 so
xR/2 − 1 = 32 − 1 = 8 and GCD(8, 10) = 2 is the factor.

We conclude that one could solve factoring efficiently if one had an effective
tool to find the order. But finding an order is finding the period of a periodic
function. Finding periods is something that Fourier transform does. So, we
conclude that if we had an effective way to compute Fourier transforms, we
might be able to crack the factoring problem.
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Chapter 15

Fourier

15.1 Fourier transform

This section is a review of Fourier transforms. I use QM notation partly because
this is a physics class and you are familiar with it and partly to emphasize that
functions may be viewed as vectors in Hilbert space.

To a Physicists the Fourier transform1

〈p|ψ〉︸ ︷︷ ︸
p−rep

=

∫
dx〈p|x〉〈x|ψ〉 =

∫
dx√
2π

e−ipx 〈x|ψ〉︸ ︷︷ ︸
x−rep

is a map from coordinate space to its dual, the momentum space. But, if you
forget about the fact that x and p have different dimensions, or, more precisely
change units so that x and p are dimensionless, i.e. x 7→ x/

√
~ and p 7→ p/

√
~

you can then identify the two spaces and the Fourier transfrom may be viewed
as a unitary change of bases in one Hilbert space. Mathematicians think of
course of Hilbert space, L2(R), as dimensionless.

Fourier is intimately related to shift Tξ and boosts Sη. They act in coordinate
space by

〈x|Tξ|ψ〉 = 〈x− ξ|ψ〉, 〈x|Sη|ψ〉 = e−ixη〈x|ψ〉

and in momentum space by

〈p|Sη|ψ〉 = 〈p− η|ψ〉, 〈p|Tξ|ψ〉 = eipξ〈p|ψ〉

15.2 Discrete FT

A matrix analog of the Fourier transform on an N dimensional vector space is:

1In units where ~ = 1.
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Figure 15.1: The 8-th root of unity

Definition 15.1. The Fourier transform is defined by

F |j〉 =
1√
N

N−1∑
k=0

ωjk|k〉, ω = e2πi/N

ω the N − th root of unity and j, k are counted modulo N .

ωjk is the discrete analog of the continuous eipx.
The simplest example isN = 2 then the Fourier transform is simply Hadamard:

F = H

Exercise 15.2. Show that with ω the N-th root of unity ωN = 1,

N−1∑
j=0

ωjm = Nδm,0 (15.1)

Fω is unitary. This follows from writing F in matrix form and observing
that its rows are columns form an orthonormal basis.

This follows by inspection as the columns of F are mutually orthogonal and
normalized.

Exercise 15.3. Show that

(Fω)† = (Fω)∗ = Fω∗

15.3 Discrete translations and boosts

Definition 15.4 (Modular translation). Define the (modular) translation T by

T |k〉 = |k + 1〉,

with k counted modulo N .
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The shift is diagonalized by the Fourier transforms

FT = SF (15.2)

where S is the diagonal matrix

S|j〉 = ωj |j〉

Indeed

FT |j〉 = F |j + 1〉

=
1√
N

∑
k

ω(j+1)k|k〉

=
1√
N

∑
k

ωjkS|k〉 =

= S

(
1√
N

∑
k

ωjk|k〉

)
=

= SF |j〉

We shall make much use of this fact.
An amusing property of the Fourier transform is that it square to the inver-

sion, i.e
F 2|j〉 = |−j〉

Exercise 15.5. Show this.

Since inverting twice is the identity we get:

Theorem 15.6 (Spectrum). The spectrum of the Fourier transform is the set
{±1,±i}.

Each eigenvalue is, of course, highly degenerate when N is large.

15.4 Cost

The computational cost in evaluating the Fourier transform from the definition
is large: Each component requires N multiplications and N additions of complex
numbers. This involves at least

O(N2) = O
(
22n
)

operations. A lot.
You can not do better than N because this is the price to write the N

amplitudes.
It seems that the computation of Fourier transform is a hard problem, as

it scales exponentially with the number of qubit n. How could then Shor ever
hope to factor efficiently using Fourier?
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Figure 15.2: The spectrum of Fourier

15.5 Fourier as Spectral analyzer

Suppose we have a vector that has a period R, namely2

|ψ〉 =

N−1∑
j=0

ψj |j〉, ψj = ψj+R,

The index j is counted mod N .
Assume that R is a divisor of N . This is a bad assumption to make in

general, but we shall make it because the general case is too messy for me.
The shift T operates on the basis vectors by

T |j〉 = |j + 1〉, j ∈ ZN

For a periodic vector

|ψ〉 = TR|ψ〉 ⇒ ψj = 〈j|ψ〉 = 〈j|TR|ψ〉 = 〈j −R|ψ〉 = ψj−R

Eq. 15.2 implies that
FTR = SRF

Hence for a periodic vector∣∣∣ψ̃〉 = F |ψ〉 = SRF |ψ〉 = SR
∣∣∣ψ̃〉

The amplitudes of the Fourier transform then satisfy

ψ̃j = 〈j|F |ψ〉 = 〈j|SRF |ψ〉 = ω−jR〈j|F |ψ〉 = ω−jRψ̃j

which can be written as
(1− ω−jR)ψ̃j = 0

It follows that all non-zero amplitudes ψ̃j 6= 0 are for j that satisfy

ωjR = 1 =⇒ jR = 0 mod N
2Here N need not be 2n.
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Example 15.7. Suppose N = 2n with n large, say 50, and R = 2m with m
large too, say m = 20. The non-zero Fourier components are necessarily of the
form

j2m = k2n =⇒ j = k2n−m

with k an integer. This is a very small fraction of all the integers 0, . . . , N − 1.

If you feed into a Fourier circuit a periodic vector

F|ψ〉 =
∑
ψj |j〉 F |ψ〉 =

∑
ψ̃j |j〉

then measuring the output qubits (always in the computational basis) will select
for you only those basis vector |j〉 for which ψ̃j 6= 0. This will form a comb of
integers:

j = k

(
N

R

)
︸ ︷︷ ︸
integer

Since, by assumption, R divides N , k must divide j. In particular, k ≤ j. Write
this as

R = k
N

j︸︷︷︸
known

, k ∈ 1, . . . , j − 1

The period is a multiple of a known integer. If j ≥ 2, you have learned something
useful about the period.

The quantum punch is that you you do not try to compute the O(N) number
of amplitudes ψ̃j . Instead, you collapses the superposition to |j〉 associated to
the large amplitudes. To find this j you only make n on the n qubits. This avoids
the classical cost of computing all the components of the Fourier transform which
is necessarily larger than N .

15.5.1 What if R does not divide N

In general you do not expect N , a machine property, to be a multiple of R, a
problem property. This means that |ψ〉 is not strictly periodic and N/j need
not be an integer, but will be close to an integer if N is large enough.

If you think about this like a physicist then the question is the same as what
is the effect of a crystal boundaries on Bragg peaks: They will acquire width.
One can make the analysis quantitative, but I would not.

15.6 Quantum Period algorithm

You are given the gate G that computes a periodic function with period R

g(x) = g(x+R), x ∈ ZN
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Figure 15.3: This shows the (power spectrum of the) Fourier transform of ax

mod pq for p = 19, q = 13 and a = 84. The period is R = 12. The Fourier
transform is taken with n = 10 bits where N = 1024 is not a multiple of R = 12.
The largest peak (for j > 1) is for j = 86 and the ratio N/j = 11.907 gives a
good approximation to the period.

We want to find the period R (a divisor of N).
The standard construction of a function gate is

G|x〉 ⊗ |0〉 = |x〉 ⊗ |g(x)〉

Note that the first factor takes N values while the second factor takes only N/R
values. Pictorially

|x〉 /
G

|x〉
|0〉 / |g(x)〉

Now suppose you feed the gate with the democratic superposition in the first
factor

|D〉 =
1√
N

N−1∑
x=0

|x〉

The gate outputs

G|D〉 ⊗ |0〉 =
1√
N

N−1∑
x=0

|x〉 ⊗ |g(x)〉

Now, insert the output of the first factor into Fourier gate. This gives

1√
N

N−1∑
x=0

F |x〉 ⊗ |g(x)〉 =
1

N

N−1∑
x,y=0

|y〉 ⊗ |g(x)〉ωyx
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In picture:
|D〉 /

G
F

|0〉 /

Decompose x into a unit cell and cell number, i.e.

x = z + kR, z ∈ 0, . . . , R− 1, k = 0, . . . , bN/Rc − 1

We can rearrange the summation accordingly

N−1∑
x,y=0

|y〉 ⊗ |g(x)〉ωyx =

N−1∑
y=0

R−1∑
z=0

|y〉 ⊗ |g(z)〉

N/R−1∑
k=0

ω−(z+kR)


=

N−1∑
y=0

R−1∑
z=0

ω−y|y〉 ⊗ |g(z)〉

N/R−1∑
k=0

ωkyR



It follows that if you measure the output qubits, the probability to find |y〉 ⊗
|g(z)〉 is

Prob(y) =
1

N2

∣∣∣∣∣∣
N/R−1∑
k=0

ωkyR

∣∣∣∣∣∣
2

(The right hand side is aka power spectrum). The geometric series can be
summed explicitly

bN/Rc−1∑
k=0

ωkyR =
1− ωyRbN/R]c

1− ωyR
=

sin(πyR/NbN/Rc)
sin(πyR/N)︸ ︷︷ ︸
Interference

The situation is particularly simple if R is a divisor of N . Then the numerator
is sinπy = 0 for all integer y . A non-zero amplitude for y occurs when also the
denominator vanishes, i.e.

ωyR = 1 =⇒ yR = 0 mod N

It follows that N/y is either the period or a factor of the period:

R = k
N

y

Applying this algorithm to the function ax mod PQ, we have an oracle that
allows to find the period Ra and we can therefore break RSA.
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Chapter 16

The Quantum Fourier
circuit

We have seen that with a quantum circuit that performs Fourier transform we
can effectively find periods. The question now arises can we make the Fourier
circuit efficiently? Does the number of gates we need to construct Fourier circuit
scale polynomially with n? As we shall see we need n2 gates. The Fouri is
efficient indeed.

16.1 The quantum Fourier circuit

To build the quantum Fourier circuit let start by first building a circuit that
will take the input |0〉 and output Fω|0〉:

|0〉 7→ Fω|0〉 =
1√
N

N−1∑
j=0

|j〉

F |0〉 is the democratic superposition

Fω|0〉 = |+〉 ⊗ |+〉 · · · ⊗ |+〉

=
1√
N

(
|0〉+ |1〉

)
⊗
(
|0〉+ |1〉

)
· · · ⊗

(
|0〉+ |1〉

)
This is implement with n single qubits Hadamards

|0〉 H
|0〉+|1〉√

2
. . .. . .

|0〉 H
|0〉+|1〉√

2

To figure out how Fω acts on any basis vectors use the relation between shifts
and Fourier transform:

Fω|j〉 = FωT
j |0〉 = SjFω|0〉 (16.1)

149
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S is a diagonal matrix in the computational basis

S|j〉 = ωj |j〉

S factors to action on individual qubits. To see this write the binary represen-
tation of j

j = jn−12n−1 + . . . j0 = jn−1 . . . j0︸ ︷︷ ︸
binary rep

, jk ∈ 0, 1

and
|j〉 = |jn−1〉 ⊗ · · · ⊗ |j0〉,

The action of S factors to actions on qubits:

S|j〉 = ωjn−12n−1

|jn−1〉 ⊗ . . . ωj0 |j0〉

We may summarize this by

Theorem 16.1 (Quantum Fourier factorization formula).

Fω|j〉 =
1√
N

|0〉+

ω2n−1︸ ︷︷ ︸
−1

j

|1〉

⊗ · · · ⊗ (|0〉+ ωj |1〉
)

(16.2)

and more explicitly:

Fω|jn−1 . . . j0〉 =
1√
N

(
|0〉+ (−1)j0 |1〉

)
︸ ︷︷ ︸

affected only by j0

⊗ · · · ⊗
(
|0〉+ ωjn−1...j0 |1〉

)
︸ ︷︷ ︸
affected by all jk

(16.3)

We have succeeded in factoring the Fourier transform so that it acts on
the qubits. This formula give exponential gain in complexity since we reduced
Fourier to bitwise action.

In some way factorization appears to be too good to be true: We know
that just to write down the column vector with the N Fourier coefficient is
O(N). The superposition in Eq. 16.3 has only O(logN) terms. Where have we
cheated? The point is that most of the information is lost when you measure:
The superposition collapses to one of the computations basis vectors (with the
probability determined by the amplitude).

From Eq. 16.3 we see that if we add to the Hadamard control gates that
float up, the circuit below will still work for |0〉.

|jn−1〉︸ ︷︷ ︸
most sig

H
|+〉︸︷︷︸

least sig

|j1〉 • H |+〉

|j0〉 • • H |+〉

For the input |0〉 it does not matter what you put in the (blank) controlled gates
since none is operational.
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It is clear from Eq. 16.3 that the unitaries will be phase gates related to
powers of ω. In the next section we shall see how.

The top line is affected by all qubits, while the bottom is only affected by
itself. This reflects the structure of Eq. 16.3.

Note the reorder of the input bits relative to the output bits.

16.2 Filling the blank controls

For j = 0, N/2 we have ωj = ±1. From the factorization formula Eq. 16.2 we
see that

Fω

{
|0〉
|N/2〉

=
1√
N

(
|0〉+ |1〉

)
⊗ · · · ⊗

(
|0〉 ± |1〉︸ ︷︷ ︸

least sig bit

)

The action differs just on the last bit.
The circuit below reproduces the equation above:

|a〉︸︷︷︸
most sig

H
|(−)a〉︸ ︷︷ ︸
least sig

|0〉 • H |+〉

|0〉 • • H |+〉

Now that we have the skeleton of the circuit, lets fill in the gates. We can
determine the blank conditional gates one by one by feeding in inputs that would
switch them one at a time. Let us look at n = 3 where ω =

√
i and the circuit

below.
To determine the first gate, marked R2, on the left, feed in the state |010〉 =

|2〉 which makes only this gate operate. From the factorization formula

√
8F |010〉 =

(
|0〉+ i4|1〉

)
⊗
(
|0〉+ i2|1〉

)
⊗
(
|0〉+ i|1〉

)
=
(
|0〉+ |1〉

)
⊗
(
|0〉 − |1〉

)
⊗
(
|0〉+ i|1〉

)
The quibit in the middle line is not affected by the gate on the top line and
indeed transforms correctly (to |−〉). The top-right qubit should get a relative
phase i and this fixes R2

|0〉 H R2 |0〉+ i|1〉

|1〉 • H |−〉

|0〉 • • H |+〉

where we introduce the notation

Rj =

(
1 0
0 ωj

)
, ω = e2πi/N
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For this part it does not matter what the blank controlled gates are.
The remaining two blank gates are determined by considering an input states

that activates them, namely |001〉. The bottom line is automatically satisfied.
The top two lines give two equations for two unknowns gates (marekd red).

|0〉 H R2 R1 |0〉+ ω1|1〉

|0〉 • H R2 |0〉+ ω2|1〉

|1〉 • • H |0〉 − |1〉

Remark 16.2 (Ordering and anti-ordering). Note that the order of bits by
significance is opposite on the two sides.

16.3 Computational cost

When you generalize the construction above to n qubits you see that there are
n − 1 different gates Rj on the top line, n − 2 on the second etc. In total
there are n(n − 1)/2 gates Rj and n Hadamard. The resources are therefore
O(n2) = O(log2N) gates. The quantum Fourier transform is efficient. It is an
exponential improvement on the fast Fourier transform whose cost is N logN
which is itself much better than the simple minded Fourier transform whose
cost is N2. However, as we discussed the QFT is not really useful to determine
amplitudes but rather as a a spectral analyzer.

16.4 Phase estimation

QM comes with simple rules how to measure eigenvalues of Hermitian operators.
Measuring eigenvalues of unitary operators is measuring phases. It is more
complicated and we need to measure interference. Let us see how to do that.

For simplicity, let me assume I have a two qubit, n = 2 so I can count
integers from 0, . . . , 3, and fractions that are multiples of 1/4. With the fraction
ϕ = 0.ϕ1ϕ2 we associate the integer

4ϕ = ϕ1ϕ2︸ ︷︷ ︸
binary rep

The phases I can count are then

ei2πϕ = (eiπ/2)4ϕ = (i)ϕ1ϕ2

Let |ψ〉 be an eigenvector of U with eigenvalue ϕ

U |ψ〉 = ei2πϕ|ψ〉

Task: Given the function gates U,U2, the Fourier gate, and |ψ〉 construct a gate
whose outcome gives ϕ.
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The circuit
|0〉 H • |0〉+ (−1)ϕ1ϕ2 |1〉

|0〉 H • |0〉+ iϕ1ϕ2 |1〉

|ψ〉 U U2 |ψ〉

Now, if you feed the output to the (inverse) Fourier you will get

|0〉+ (−)ϕ1ϕ2 |1〉
F∗

|ϕ2〉

|0〉+ iϕ1ϕ2 |1〉 |ϕ1〉

A single query of the output gives the binary digits of the phase ϕ.

16.5 Order finding

You have a gate with n qubits, so you can count up to N = 2n. I also give you
a function gate Ua for a modular multiplication

Ua|j〉 = |aj ModN〉

We are interested in finding the period r be the period, i.e. ar = 1 Mod N . Of
course, we need gcd(a,N) = 1 for the period to exist. Assume this is the case.
We also assume that r is a divisor of N , so Fourier works cleanly. Clearly

Spect(Ua) ⊂ {r-th roots of unity}

Now, with n registers, we can hope to identify periods that are shorter than
N/2. This means that each eigenvalue will be at least two-fold degenerate. The
shorter the period, the larger the degeneracy.

16.5.1 Bloch states

Let Ua be a modular multiplication with a ∈ 1, . . . , N − 1 with gcd(a,N) = 1

Ua|j〉 = |aj ModN〉

and let r be the period, i.e. ar = 1 Mod N , with r a divisor of N , then for
k ∈ 0, . . . , r − 1

|ψk〉 =
1√
r

N−1∑
j=0

ei2πkj/rU ja |1〉

are eigenstate of Ua with eigenvalues e−2πik/r. Conversely

1√
r

r−1∑
k=0

|ψk〉 = |1〉
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Proof: The first part follows from

√
rUa|ψk〉 =

N−1∑
j=0

ei2πkj/rU j+1
a |1〉

=

N∑
j=1

ei2πk(j−1)/rU ja |1〉

= e−2πik/r
N∑
j=1

ei2πkj/rU ja |1〉

=
√
re−2πik/r|ψk〉

The converse part follows from the fact about sums of roots of the identity.

16.5.2 Circuit

It follows that if I give you Ua and its powers (Ua)2, (Ua)4 etc and I also give
you |ψk〉 and a Fourier gate, phase estimation gives the for a measurement in
the computational basis the fraction k/r.

Now. because of the converse piece, I do not even need to give you |ψk〉.
You just construct for yourself |1〉. This gives you a superposition of |ψk〉 and
the outcome of the circuit will be a superposition of r basis vectors in the
computational basis so that each vector points at the fraction k/r:

1√
r

∑
k

|k/r〉

and by |k/r〉 we mean a basis vector in the computational basis corresponding
to the phase k/r. A measurement will collapse the superposition on the com-
putational basis. It is a collapse on one of the terms k. The result of a query of
the circuit will be one of the phases k/r. This gives information on the period
r.

|0〉 H •
F

|0〉 H • 1√
r

∑
k |k/r〉

|1〉 U U2 |1〉



Chapter 17

Entropy and information

17.1 Shannon

In 1948 Claude Shannon launched the information age in a ground breaking
paper “A Mathematical Theory of Communication”. He formulated precise
notions that allow to describe information quantitatively. This allowed him to
solve two big issues in information theory:

• Recovery from errors

• Data compression.

To do that we need to quantifying the notion of information content of strings
of n bits.

17.2 Kolmogorov Complexity

Kolmogorv gave a conceptually satisfactory definition of the information content
of a list x, now known as Kolmogorov Complexity, K(x)

K(x) = Length of the shortest algorithm that generates x

For example, the complexity of an integer N is

K(N) =

{
O(log n) N = 2n

O(logN) otherwise

The algorithm gives the binary digits of N (or n in the first case).

The problem with Kolmogorov complexity is that there is no algorithm to
compute the complexity for a given list.

155

http://en.wikipedia.org/wiki/Claude_Shannon


156 CHAPTER 17. ENTROPY AND INFORMATION

17.3 Shannon entropy

Suppose we get a list x from a bank of possible lists {x}. How much information
do we gain when we get x? The information we gain reflects our ignorance before
receiving x. The larger the bank, the larger our ignorance the more information
the message transmitted. The ignorance is a property of the bank of lists, and
the probability distribution P that assigns the probability p(x) to the event x,
and Shannon called it entropy:

Definition 17.1 (Shanon entropy). The entropy

H
(
P
)

= −
∑
x

p(x) log p(x) ≥ 0, 1 ≥ (x) ≥ 0, 0 log 0 = 0 (17.1)

We follow the tradition in communication theory and take log in base 2. ln
stands for the natural log.

There is a story that when Shannon was developing these ideas he was
in a search for a good name for the information content and consulted with
von Neumann who suggested the entropy for two reasons, first because of the
similarity to entropy in statistical mechanics and second because, so said von
Neumann, nobody really understands what entropy really means, so Shannon
would have the upper hand in an argument.

p

H2(p)

1

.5 1

Figure 17.1: H2(p)

Example 17.2. The pool has N lists.

• Suppose the probability of receiving the list x is the same p(x) = 1
N . The

entropy is

H = −N × 1

N
log

1

N
= logN

The information you got with a list is the number of bits needed to encode
all the lists.
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• Suppose

p(x) =

{
1 x = x0

0 otherwise

Now, the entropy vanishes

H = 1 log 1 + 0 log 0 = 0

You have learned nothing when you received the message.

Entropy captures your initial ignorance and the gained knowledge when the
event happened.

Definition 17.3. For a binary random variable with PX = {p, 1− p} we define
H2(p) for 0 ≤ p ≤ 1 by

H2(p) = −p log p− (1− p) log(1− p)

Proposition 17.4. H2(p) is a concave function of p, symmetric about p = 1/2
and H2(1/2) = 1.

Example 17.5. Prof. X flunks every student and Prof. Y passes every one.
In either case, if you know which prof gave the grade, there is no information in
the grade itself. At least not about the student. But, if you do not know which
Professor gave the grade then there is information in the grade, if not about the
student, but about the professor.

The entropy of two isolated glasses of water is the sum of their entropies. The
corresponding fact in Shannon is: If x and y are independent random variables,
i.e.

p(x, y) = p(x)q(y)

then Shannon entropy is additive

H
(
Px,y

)
= H(P ) +H(Q)

17.3.1 Typical sequences

There are 2n different lists obtained by n coin tosses. Now consider the list
made from biased coin tosses, with probability p for head and q = 1 − p for
tail. There are still 2n different lists, however, many of these are extremely
rare. When n is large, a typical long list will have m heads near the expected
number, namely

m ≈ np
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The ingenious idea of Shannon was to focus on typical lists. The number of
typical is (

n

m

)
=

n!

m!(n−m)!
≈︸︷︷︸

Stirling

nn

mm(n−m)n−m

=
( n
m

)m( n

n−m

)n−m
≈ 1√

2πn p q
p−npq−nq

The set of typical lists is exponentially large with n and the rate of growth
is H2(p). Since H2(p) ≤ H2(1/2) = 1 an unbiased coin gives the set with
exponentially (in n) more members than any other set.

This says that there is more information in a list of n bits that comes from
an unbiased coin than from a list that comes from a biased coin.

The Shannon entropy counts the size of the pool of lists. To see this let us
compute H. The probability p(x) for list x with m heads is

p(x) = pmqn−m. m = #heads ∈ x

and there are
(
n
m

)
such lists.

The Shannon entropy is

H = −
∑
x

p(x) log p(x)

= −
∑
x

pmqn−m(m log p+ (n−m) log q)

= − log p

(∑
x

mpmqn−m

)
− log q

(∑
`

(n−m)pmqn−m

)

= − log p

(∑
m

mpmqn−m
(
n

m

))
︸ ︷︷ ︸

Expectation of m=np

− log q

(∑
m

(n−m)pmqn−m
(
n

m

))
︸ ︷︷ ︸

expectation of n−m=nq

The sums in the brackets can be evaluate explicitly

H = −〈m〉 log p− 〈n−m〉 log q

= −n
(
p log p+ q log q

)
= nH2(p)

We see that Shanon entropy measures the logarithm of the set of typical se-
quences.

The rate of information gain with any additional bit depends on p and is
given by H2(p) ≤ 1. Since the information per bit is H2(p) ≤ 1, a message of
length n bits can, at least in principle, be compressed to a message whose length
is shorter n × H2(p). The compressed list always looks like a list from a fair
coin. This is basically Shanon compression theorem.
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17.4 Relative entropy

Relative entropy is a notion of distance between probability distributions. It
is always non-negative, and vanishes when two distributions coincide. Unfortu-
nately, it is not a bona-fide distance wince it is a-symmetric:

Definition 17.6. H(P ||Q), the relative entropy of two probability distributions,
P and Q, defined on the same set of events labeled by x, is defined by

H
(
P ||Q

)
=
∑
x

p(x) log

(
p(x)

q(x)

)
(17.2)

The basic property of the relative entropy is

H
(
P ||Q

)
≥ 0

To prove this we need the elementary inequality

Figure 17.2: lnx and x− 1

lnx ≤ x− 1 =⇒ log2 x ≤ (log2 e)(x− 1) (17.3)
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The positivity of the relative entropy now follows easily:

−H
(
P ||Q

)
= −

∑
x

p(x) log

(
p(x)

q(x)

)
=
∑

p(x) log

(
q(x)

p(x)

)
≤ log e

∑
p(x)

(
−1 +

q(x)

p(x)

)
= log e

∑(
p(x)− q(x)

)
= 0

Example 17.7. What is the probability that a long sequence of length n � 1
will appear as if it was taken as if the unbiased coin if the coin is actually biased
with {p, 1− p}?

The probability of finding m = n/2 in a sequence taken from an biased coin
is (

n

n/2

)
pn/2qn/2 ≈ 2n2(n/2)(log p+log q)

= 2n(1+ 1
2 log p+ 1

2 log q)

= 2−nH(1/2||p)

where we have used

H(1/2||p) = −1

2
log

1

2p
− 1

2
log

1

2(1− p)
= 1 +

1

2
log p+

1

2
log(1− p)

You see that making such an error has an exponentially small probability, and
the rate is the relative entropy.

17.5 Convexity

Perhaps the most important property of the entropy is that it is a concave
function.

A function h(x) is concave if for 0 ≤ λ ≤ 1

h
(
λx+ (1− λ)y

)
≥ λh(x) + (1− λ)h(y)

This is also called Jensen inequality. In particular, −x log x is a concave func-
tions (see figure).

Theorem 17.8. The Shannon entropy H
(
P
)

is a concave function of the prob-
ability distribution p(x). This means that the entropy of a mixture of two prob-
abilities distributions P and Q (on the same set of events) is larger than the
mixture of entropies:

H
(
λP + (1− λ)Q

)
≥ λH(P ) + (1− λ)H(Q)
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f

x

Figure 17.3: A convex function f(x): The weighted sum of the values (at the
intersections) lie above the value of the weighted sum.

This is a consequence of the concavity of −x log x and the fact that the sum
of concave functions is a concave function.

1
p

Figure 17.4: The graph of −x log2 x for 0 ≤ x ≤ 1. The graph is not symmetric
and its maximum is at 1/e.

Remark 17.9. In thermodynamics the concavity of the entropy is related to
irreversibility. When you mix 1/2 a glass of cold water with 1/2 glass of hot
water, you get a glass of tepid water, whose entropy is larger than the entropy
of the two half glasses. The second law says that the entropy of isolated systems
can only increase. This makes mixing irreversible.

Theorem 17.10. Suppose the sample space has N events then

0 ≤ H ≤ logN (17.4)

The lhs is obvious. The rhs can be seen as follows. Let Pπ be the probability
distribution obtained from P by permuting the the points in the sample space,
i.e.

p(x) = p (π(x))
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Clearly
H(P ) = H(Pπ)

There are N ! such permutations. Consider mixing them all. This gives the
uniform distribution pj = 1/N with entropy logN . By Jensen

logN = H (i.i.d) ≥
∑
π

1

N !
H(Pπ) = H(P )

17.5.1 Monotonicity and Sub-additivity

We have seen that the Shannon entropy of independent random variables is
additive. Since correlations decrease entropy we expect Shannon entropy to be
sub-additive

H(Px,y) ≤ H(Px) +H(Py) (17.5)

To see this use 17.3

H(Px,y)−H(Px)−H(Py) =
∑

p(x, y) log
px(x)py(y)

p(x, y)

≤ log2 e
∑

p(x, y)

(
px(x)py(y

p(x, y)
− 1

)
= 0 (17.6)

Entropy is monotonic in the sense that

H(Px,y) ≥ H(Px) (17.7)

This follows from

H(Px,y)−H(Px) = −
∑
xy

p(x, y) log p(x, y) +
∑
x

p(x) log p(x)

= −
∑
xy

p(x, y) log p(x, y)− p(x, y) log p(x)

= −
∑
xy

p(x, y) log

(
p(x, y)

p(x)

)
= −

∑
xy

p(x, y) log (p(y|x)) ≥ 0

17.6 Mutual information

Definition 17.11. Mutual information is defined by

H(X : Y ) = H(X) +H(Y )−H(X,Y ) (17.8)

By sub-additivity
H(X : Y ) ≥ 0

To see what this means consider
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• Encryption with a fixed key: X is an n bit message, taken from an ensem-
ble which is uniformly distributed over all n-bit messages. The encryption
of X is

Y = E(X) = X ⊕ k

with a fixed n bit key k. Then, since a message x and the fixed key k fix
a unique y = x⊕ k we have

H(X) = H(Y ) = n, H(X,Y ) = n, H(X : Y ) = n

The encryption with a fixed key has as much information as the unen-
crypted message.

• Encryption with a random uniformly distributed key: Now

H(X) = H(Y ) = n, H(X,Y ) = 2n, H(X : Y ) = 0

There is no mutual information between the encryption and the original
message.
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Chapter 18

von Neuman entropy

A quantum state ρ can be viewed as the non-commutative analog of a probability
distribution

ρ⇐⇒ P

In particular, since ρ is positive with unit trace its eigenvalues ρj may be inter-
preted as probabilities.

Definition 18.1 (von Neumann entropy). The von Neumann entropy of a quan-
tum state ρ is the Shannon entropy of its eigenvalues:

S(ρ) = −Tr(ρ log ρ) = −
∑

ρj log ρj = H(ρj)

where the ρj are the eigenvalues of ρ.

A pure state is a one dimensional projection ρj ∈ (0, 1) and hence has zero
entropy

S
(
|ψ〉〈ψ|

)
= 0

The zero entropy expresses the fact that we have complete knowledge of the
quantum state.

The entropy of a single qubit in the state ρ = 1+n·σ
2 is

S(ρ) = H2

(
1 + |n|

2

)
is a monotonically decreasing, concave function of |n|. The fully mixed state
has maximal entropy, 1.

Exercise 18.2. Show that mixing two qubits always increases the entropy.

The upper and lower bound on the Shannon entropy transfer to von Neu-
mann

0︸︷︷︸
pure

≤ S(ρ) ≤ log dimH︸ ︷︷ ︸
max mixed

(18.1)

165
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The fully mixed state maximizes the entropy and saturates the upper bound.
We have talked about the fact that Hilbert space is big. You do not see this

in the entropy. n qubits do not have more entropy as n bits:
The von Neumann entropy of a state of n qubits is bounded by n.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 18.1: The von Neuman entropy of a qubit S(ρ), drawn as function of |n|,
the distance from the center of the Bloch ball.

The state ρA ⊗ ρB is the quantum analog of independent random variables.
In particular

Spec(ρA ⊗ ρB) = {(ρA)j(ρB)j}

The additivity of Shannon implies that the entropy of a tensor product is addi-
tive:

S(ρA ⊗ ρB) = S(ρA) + S(ρB)

18.1 Convexity

The notions of relative entropy and mutual information and the properties such
as convexity and sub-additivity have natural generalization to von Neumann,
but the proofs are more difficult.

Theorem 18.3 (Löwener Heinze). The von Neuman entropy is a concave func-
tion of ρ

S
(
pρ1 + (1− p)ρ2

)
≥ pS(ρ1) + (1− p)S(ρ2), 0 ≤ p ≤ 1

18.1.1 Klein inequality

The relative entropy is positive

S(ρ‖σ) = Trρ log ρ− Trρ log σ ≥ 0

To prove this we need something more fancy than Eq. 17.3. It is still true
that

ln ρ ≤ ρ− 1

http://en.wikipedia.org/wiki/Trace_inequalities
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but the inquality that hold in the comutative case

ρ(lnσ − ln ρ)︸ ︷︷ ︸
non−hermitian

≥ ρ− σ

does not even make sense in the non-commutative case: the left hand side is
not even hermitian.

Theorem 18.4 (Klein). Suppose f(x) is convex and A,B Hermitian matrices.
Then

Tr
(
f(B)− f(A)

)
≥ Tr

(
(B −A)f ′(A)

)
A short proof is in Wikipedia.
Let us use Klein to prove positivity of relative entropy. Take f(x) = x lnx,

which is convex.
f ′(x) = 1 + lnx

and then

Trρ ln ρ− Trσ lnσ ≥ Tr(ρ− σ)(1 + lnσ) = tr(ρ− σ) lnσ

which is the result we wanted.

A B

Figure 18.2: Klein

18.2 Quantum statistical mechanics

von Neumann definition of entropy coincides with the entropy of Gibbs states
in equilibrium statistical mechanics. The quantum version of Gibbs principle
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fixes the density matrix at thermal equilibrium

ρ(β) =
e−βH

Z(β)
, Z(β) = Tr e−βH︸ ︷︷ ︸

quantum partition function

, β = 1/kBT, kB = 1

H is the quantum Hamiltonian1 A cool name for β is coolness.

From von-Neumann

S(ρ) = −Tr
(
e−βH

Z
log

(
e−βH

Z

))
= βTr

(
H
e−βH

Z

)
+ Tr

(
e−βH

Z

)
logZ

= β 〈E〉+ logZ

This can be rearranged as

F = −T logZ︸ ︷︷ ︸
free energy

= 〈E〉 − TS

which is one of the possible definitions of entropy in thermodynamics.

Exercise 18.5. Show the thermodynamic identity

S = −∂F
∂T

F is a concave function of T .

Exercise 18.6. Show that

d2F

dT 2
= −β3

(〈
E2
〉
− 〈E〉2

)
≤ 0,

〈
Ek
〉

=
TrHke−βH

Z(β)

Example 18.7. The density matrix for the Harmonic oscillator in thermal
equilibrium with γ = βω is

ρ = pn|n〉〈n|, pn = (1− e−γ)e−γn n = 0, . . . ,∞

The von Neumann entropy can be computed explicitly by summing geometric
series and one finds

S(ρ) = −
∑

pn log pn = (q + 1) log(q + 1)− q log q, q =
1

eγ − 1

1H needed to be bounded below for the trace to make sense.
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18.3 The growth of entropy

The second law of thermodynamics says that the entropy of an isolated system
will evolve towards a maximum. It grows. This is what happens when you let
cold and hot water mix.

In quantum mechanics the evolution of an isolated system is unitary. The
von Neumann entropy is unitary invariant:

S(ρ) = S(UρU†)

The entropy is a constant of motion.
Moreover, from the definition it is clear that the relative entropy is unitary

invariant
S(ρ‖σ) = S(UρU†‖UσU†) (18.2)

In particular, if ρ = ρTh ⊗ ρTc represents two isolated teacups at different tem-
peratures at σ the thermal equilibrium of the two teacups after they are allowed
to interact, then

UσU†σ

and we expect approach to equilibrium, i.e.

S(ρ‖σ) ≥ S(UρU†‖σ)

But, this is not what Eq. 18.2 says.
It seems as though we can prove results that are in conflict with common

experience. Or alternatively that the notion of entropy in thermodynamics and
von Neuman entropy are not quite the same.

This problem is not unique to QM. The same problem arises in the SM
description of entropy. In SM entropy measures the volume in phase space
of thin energy shell. If the system evolves with a classical Hamiltonian, then
Liouville theorem says that the volume is conserved. So, in classical SM entropy
does not seem to grow either. In fact, if we wait long enough any finite system
will come back close to its initial state.

Entropy grows if we allow for course graining. For example, the state ρt =
UtρU

†
t can be rapidly change in time. If we do not resolve time accurately, a

candidate for a course grained state is a time average, say

ρ̄ =
1

N

N∑
j=1

UjρU
†
j

By concavity of the entropy

S(ρ̄) ≥
∑ 1

N
S(UjρU

†
j ) = S(ρ)

Similar ideas can be used to show approach to equilibrium. Forgetting a
subsystems decreases the relative entropy:
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S(ρA⊗B‖σA⊗B) ≥ S(ρA‖σA)

For a proof see e.g. Nielsen and Chuang. It is a difficult result as it depends on
strong sub-additivity.

18.4 Entanglement entropy

Suppose that the system and its bath are in a pure state |ψ〉. By Schmidt

|ψ〉SB =
∑√

pj |j〉S ⊗ |j〉B
and

ρS =
∑

pj |j〉S〈j|, ρB =
∑

pj |j〉B〈j|

The entropy of the system and the bath are equal and are given by the Shannon
entropy of the Schmidt coefficients:

S(ρSB) = 0, S(ρA) = S(ρB) = −
∑

pj log pj

The entropy is non-zero, if and only if, the system and the bath are entangled.
This is the entanglement entropy. In a quantum system the whole may have
less entropy than its parts.

Exercise 18.8. Suppose the system is made of n qubits and the bath with m > n
qubits. Show that the entanglement entropy is bounded above by n.

Quantum information is peculiar in that we may know everything about the
entire system, say the state of a Bell pair, so the entropy vanishes. But, yet
we may know very little about its subsystems: The entropy of Alice qubit is
maximal. A theorem I shll not prove says that

S(ρA) + S(ρB) ≥ S(ρAB) ≥ |S(ρA)− S(ρB)|

18.5 Area law

For a system of n qubits we have

S(ρ) ≤ n

It can be shown that for treasonable Hamiltonians the entropy of thermal syayes
is extensive:

S(ρ(β)) = ns(T, V )

In contrast, in the theory of Black holes a fundamental discovery of Bekenstein
is that

Sbh =
A

4
where A is the area of the horizon.

This raises the intriguing possibility that Black hole entropy may be identi-
fied as some kind of entanglement entropy.
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18.6 Entanglement entropy of a one dimensional
chain

Consider a chain where of n+ 2 qubits labeled by j = 0, . . . , n+ 1. Let

Hj = Zj−1 ⊗Xj ⊗ Zj+1, j ∈ 1, . . . , n

It is easy to see that all the H+j commute. Clearly

[Hj , Hk] = 0

if |j − k| ≥ 2 and if j = k. In the case j − k = ±1

[Hj , Hj+1] = [Zj−1XjZj+1, ZjXj+1Zj+2] = Zj−1 [XjZj+1, ZjXj+1]︸ ︷︷ ︸
=0

Zj+2

For the sake of concreteness let us impose boundary conditions so the edges 0

XjZj−1 Zj+1

and n+ 1 are at |0〉 and consider the Hamiltonian

H =

n∑
j=1

Hj

Since
Spect(Hj) = ±1

the ground state has energy −n and the top state n.
Let us find the ground state. Denote

|j〉 = |a0 . . . an+1〉, aj ∈ 0, 1

a basis vector in the computational basis. The

Hj |a0 . . . aj . . . an+1〉 = (−)aj−1+aj+1 |a0 . . . aj ⊕ 1 . . . an+1〉

Let us look at a picture. There are two cases shown in the two pictures below.
Here the number of jumps in the configuration increased by two, and the overall
sign remains. In the second case shown below the number of jumps stays the
same but the overall phase changes This means that an eigenvector of Hj with
eigenvalue −1 is

|Ψ〉 =
1

2n/2

∑
(−)k(j)|j〉

where k(j) is the number of up jumps in the configuration j.
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18.6.1 Schmidt decomposition

We can now make the Schmidt decomposition by hand. The bi-bipartite de-
compositions of the ground state has 16 terms

|Ψ〉 =
1

22

∑
a,b,c,d∈01

± |L〉 ⊗ |ab〉︸ ︷︷ ︸
bi−partite

⊗ |cd〉 ⊗ |R〉︸ ︷︷ ︸
bi−partite

The Schmidt decomposition minimizes the number of terms so that there are
only 4 terms.

0−1 1

For example, tracking the signs due to jumps we see that the four terms

|0〉|0〉 − |0〉|1〉 − |1〉|0〉+ |1〉|1〉 = 2|+〉|−〉

There are four such terms. It follows that the Schmidt coefficients are all equal,
and there are 4 of them. The entanglement entropy is 2 independent of the size
of the chain. This is an example of the area law.



Chapter 19

Introduction to error
correction

19.1 Shannon and error correction

Error correction works on redundancy. Suppose a classical communication chan-
nel introduces errors at rate p small so the input bit a ∈ 0, 1 exits as mixture

a 7→

{
a with probability q

1⊕ a with probability p = 1− p

The probability for getting the wrong answer is proportional to p.
You can try and improve the odds be representing the logical a ∈ 0, 1 by,

say, 3 copies. Then

a3 7→


a3 with probability q3(
(1⊕ a)a2

)
∨
(
a(1⊕ a)a

)
∨
(
a2(1⊕ a)

)
with probability 3pq2(

(1⊕ a)2a
)
∨
(
a(1⊕ a)2

)
∨
(
(1⊕ a)a(1⊕ a)

)
with probability 3p2q

(1⊕ a)3 with probability p3

If you use the majority rule to correct the output you see that

a3 7→

{
a3 with probability q2(1 + 2p)

(1⊕ a)3 with probability p2(1 + 2q)

The probability of getting the wrong answer is proportional to p2. If p < 1/2
you are doing better.

This method is not good if you want to correct a long string. If you send m
such triplets, the probability that the majority rule fixes all the errors is:

Prob(majority fixes all errors) =
(
q2(1 + 2p)

)m
173
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The term in the bracket, being a probability, is bounded by one, and takes
the value 1 for p = 0. So for p > 0 he probability to fix all errors decays
exponentially with the length of the chain. This method is, therefore not good
enough for communication.

It is one of the great discoveries of Shannon that provided the mutual infor-
mation between the source and the output of the channel is positive, then, then
one can find an encoding (which will appropriately inflate the message from n
bits to const × n bits ) so that with probability close to 1, for chains that are
arbitrarily long, all errors can be recovered.

19.1.1 Shannon noisy channel coding theorem

I will not do justice to Shannon theory but rather sketch the basic idea.
A message of n bits can be identified with a corner of the n-dimensional unit

cube. The origin
(0 . . . 0)

has n neighbors all at (Hamming) distance 1:

(10 . . . 0), (01 . . . 0), . . . , (0 . . . 01)

It has
(
n
2

)
neighbors at distance 2 and

(
n
m

)
neighbors at distance m. Most of

the neighbors are at a distance n/2.
Consider the neighbors that are at distances m ≤ n/3. There are about

2nH2(1/3) of these. Remove all these points from the cube. This removes
2nH2(1/3) out of 2n, a small fraction.

Now pick any of the remaining vertexes and repeat the procedure by remov-
ing all vertexes that are at a distance less than n/3. This will removes at most
2nH2(1/3) additional vertexes.

You can proceed in this manner 2n(1−H2(1/3) times pruning the 2n vertexes
of the unit cube until you are left with

2n(1−H2(1/3))

vertexes that are all at a distance at least n/3 from each other. This is you code
space.

The different messages in the code space can be encoded in m < n bits where

m = n(1−H2(1/3))

The encoding of the m bits in n > m bits gives protection. Indeed all the points
in the coding space messages are separated one from the other by a distance of
at least n/3. If the error rate per bit is p < 1/3 then a long message m will,
on the average, acquire pn errors. With pn < n/3 the error can not mode from
one code word to another. You can then identify what is the original message
uniquely.
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Figure 19.1: The red dots are all 2n messages. The blue circles represent the
the np neighborhoods of the code space. Since the blue circles do not overlap,
you can encode an n(1−H2(1/3)) bit sequence in the codes space in such a way
that you can correct np errors.

19.2 Quantum error correction

Suppose we have a quantum channel that introduces errors. A bit flip error is

|a〉 7→

{
|a〉 with probability q

X|a〉 with probability p = 1− p

A phase flip error is

|a〉 7→

{
|a〉 with probability q

Z|a〉 with probability p = 1− p

and a general error may be

|a〉 7→

{
|a〉 with probability q

U |a〉 with probability p = 1− p

with an arbitrary unitary. Recall that (up to an overall phase) any unitary
acting on a qubit can be written as

U = a01 + ia1X + ia2 Y︸︷︷︸
iXZ

+ia3Z,
∑

a2
µ = 1, aµ ∈ R

This suggests that if we can get rid of X and Z errors we are done.



176 CHAPTER 19. INTRODUCTION TO ERROR CORRECTION

In a picture:
ρin E ρout

and in a formula

ρin = |ψ〉〈ψ| E−−−−→
corrupt

qρin + pUρinU
†

If the error can occur on any qubit the picture is:

|ψ〉 • • E

|0〉 E

|0〉 E

The task is to identify and correct the error without destroying the interfer-
ence.

19.3 Bit flip

QM does not allow cloning but allows for cloning in the computational basis.
We can encode the logical bits 0L and 1L by multiple identical qubits

0L 7→ |0〉⊗3
, 1L 7→ |1〉⊗3

The encoding can be accomplished by

|ψ〉 • •
|0〉
|0〉

The circuit encoded |ψ〉 = α|0〉+ β|1〉 as

|ψ〉 ⊗ |0〉 ⊗ |0〉 7→ α |000〉︸ ︷︷ ︸
|0L〉

+β |111〉︸ ︷︷ ︸
|1L〉

The uncorrupted Hilbert space where the qubit is encoded is

H0 = Span{|000〉, |111〉} (19.1)

We need H0 to be a Hilbert space because we need to protect superpositions.
Suppose for example that a bit flip-error occurred in the j-th qubit. This is

represented by a unitary map acting on the uncorrupted space

H0 7→ XjH0

Each one of these 4 two dimensional spaces is a linear space. The choice of H0

implies that all these spaces are mutually orthogonal:

H0 ⊥ XjH0 ⊥ XkH0, j 6= k
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Together, they span the 8 dimensional Hilbert space of 3 qubits.
Now, if we know that an error Xj occurred we can easily correct for it

H0
Xj−−−−→

corrupt
H0

Xj−−−−→
correct

H0

without corrupting the superposition. For example:

α|000〉+ β|111〉 X1−−−−→
corrupt

α|100〉+ β|011〉 X1−−−−→
correct

α|000〉+ β|111〉

We shall assume that at most one error occurred.
More generally, if the error U can occur in any one of the qubits

ρin = |ψ〉〈ψ| E−−−−→
corrupt

(1− p)ρin + p

3∑
j=1

UjρinU
†
j

19.4 Non demolition and error syndromes

We need a measurement that would allow us to determine if and what error
occurred in such a way that it does not cause a collapse in H0.

Now
Z1Z2, Z2Z3, Z1Z3

is a stabilizer for H0: Every vector in H0 is an eigenvector of ZjZk with eigen-
value 1:

ZjZk|ψ〉 = |ψ〉, |ψ〉 = α|000〉+ β|111〉

This means that if we measure ZjZk the measurement is non-demolition in H0.
The three measurements are mutually commuting and so can be performed

in any order.
Since

ZjZkX` =

{
X`ZjZk if ` 6= j, k

−X`ZjZk otherwise

A measurement of ZjZk of any vector in the corrupted spaces X`H0 is also a
non-demolition measurement, only that now some of the eigenvalues are −1.

For example with |ψ〉 = α|000〉+ β|111〉

Z1Z2X1|ψ〉 = Z3Z1X1|ψ〉 = −Z2Z3X1|ψ〉 = −X1|ψ〉

ZjZk are called the error syndrome.

19.5 Recovery from continuous errors

One reason for the success of digital computers is error corrections. No one
knows how to error correct analog (classical) computers: You can not use the
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majority rule because every computer drift independently and the N computers
will give you N different results. The best you can do is average.

Since qubits live in the Broch sphere, you may worry that they may drift
independently and you will not be able to error correct. But at the same time
we know that a von Neumann measurement of a qubit yields only yes and no.
In this respect a qubit behaves like a discrete bit. As we shall now see it is
indeed the collapse of the wave function that allows to correct for a continuum
of errors.

Suppose any one of the 3 qubits can be affected by an error of a continuous
rotation about the X axis:

|a〉 7→

{
|a〉 with probability q

(1 cos θ + iX sin θ)|a〉 with probability p = 1− q

For the sake of concreteness suppose the mistake occurred on the first qubit.
This means that |ψ〉 = α|000〉+ β|111〉 is mapped to

|ψ〉 7→

{
|ψ〉 with probability q

(11 cos θ + iX1 sin θ)|ψ〉 with probability p = 1− q

I could write this also as a map of density matrices:

|ψ〉〈ψ| U1−−−−→
corrupt

q|ψ〉〈ψ|+ p(11 cos θ + iX1 sin θ)|ψ〉〈ψ|(11 cos θ + iX1 sin θ)

Now, suppose you measure the syndrome Z1Z2. This projects the state on
the spectral subspaces of Z1Z2. In particular,

(11 cos θ + iX1 sin θ)|ψ〉 Z1Z2−−−−−→
measure

{
|ψ〉 if Z1Z2 = 1

X1|ψ〉 if Z1Z2 = −1

In the first case, Z1Z2 = 1, we recovered from the error. In the second case,
Z1Z2 = −1, we identified the error exactly and can recover by the unitary gate
X1.

19.6 Phase flip error

Suppose now that we know that the channel does not bit flip, but it may phase
flip, with small probability. For example

α|000〉+ β|111〉 Z1−−−−→
corrupt

α|000〉 − β|111〉 Z1−−−−−→
recovery

α|000〉+ β|111〉

Let us first address the question how to identify which qubit suffered a flip.
Recall that H unitarily interchanges X and Z

HZ = XH
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It follows that the bif-flip error syndromes are

H⊗3(Z1Z2)H⊗3 = X1X2, X2X3, X1X3

The syndromes act as the identity on H0, and therefore do not demolish the
state.

We can translate all the results about bit-flips to phase flips with the dictio-
nary X ↔ Z.

19.7 5 qubits suffice

We are now faced with the bigger task: We want to identify and correct in a
non-demolition fashion, bit-flips or phase flips one any qubit.

To do that we need more qubits than 3. Let us see how many. Let H0 be
the 2-dimensional Hilbert space of the logical qubits. Suppose this is encoded
with n qubits.

There are n bit flip and n phase flip errors

Xj , Zj j ∈ 1, . . . , n

If we want to have a syndrome that would uniquely identify the error we need
the spaces

XjH0, ZjH0

to be mutually orthogonal. They also need to fit in the big Hilbert space, i.e

2(1 + 2n) ≤ 2n

The smallest n that satisfies this is n = 5.
In fact, with 5 qubits you can correct three errors, Xj , Yj , Zj , since

2(1 + 3n) = 2n
∣∣∣
n=5

= 32

This is, indeed, the minimal number of qubits needed to give a full protection
to a single logical qubit.

19.8 The Shor code

The Shor code uses 9 qubits to encode a single logical qubit. The space H0 is
spanned by

|0L〉 =
(
|000〉+ |111〉

)
⊗
(
|000〉+ |111〉

)
⊗
(
|000〉+ |111〉

)
and

|1L〉 =
(
|000〉 − |111〉

)
⊗
(
|000〉 − |111〉

)
⊗
(
|000〉 − |111〉

)
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The syndrome for bit flips are organized by triplets. There are nine of them

S3 = Z1Z2, S1 = Z2Z3, S2 = Z3Z1,

S6 = Z4Z5, S4 = Z5Z6, S5 = Z6Z4,

S9 = Z7Z8, S7 = Z8Z9, S8 = Z7Z9,

Clearly they commute and leave the logical qubits invariant.
We need additonal 3 syndromes to detect a phase flip in the first bracket, or

the second bracket, or the third. This has the syndromes1

S′3 = (X1X2X3)(X4X5X6)

S′1 = (X4X5X6)(X7X8X9),

S′2 = (X1X2X3)(X7X8X9)

The two sets of syndromes commute as you can see by looking at e.g.

[Z1Z2, X1X2X3] = 0

The price for error correction is that we are storing the two logical bits in a
29 dimensional Hilbert space. The eigenspaces of the syndromes allow us to
decompose the space into orthogonal pieces where the possible errors lie.

The logical bits sit in the “error free” subspace, which is the range of

P0 =

9∏
j=1

1 + Sj
2

3∏
k=1

1 + S′k
2

We can now repeat the arguments we had in the case of single bit-flip error,
to show that we can recover from any error in the qubit.

1This does not identify which of the qubits in the triplet flipped. But it is also no important.
Pick one.
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