Shor's algorithm

The magic of the Quantum Fourier transform

J Avron

March 2, 2022

What classical computers cant do

Factoring

- Factoring: $35=\underbrace{5 \times 7}$ primes
- Try $35 / 2=$?, $35 / 3=$?...
- \# trials: \sqrt{N}
- Best known: $O\left(e^{n^{1 / 3} \ldots}\right), n=\log N$

$$
\begin{aligned}
& \text { \# with } 230 \text { digits } \\
& 2000 \text { years on } 2.2 \mathrm{GHz} \text { processor }
\end{aligned}
$$

RSA cryptosystem

It's not a bug, it's a feature

- $\underbrace{N}_{\text {public }}=\underbrace{p \times q}_{\text {secret }}$
- Cipher $=f($ Message, $N)$
- Message $=g($ Cipher, $p, q)$

RSA security

- f, g are known functions
- Cipher $=(\text { Message })^{e}$ Mod N, Message $=(\text { Cipher })^{d}$ Mod N
- $e \times d=\operatorname{Mod}(p-1)(q-1), \quad e=p u b l i c, d=$ private
- Security rests on the presumed difficulty of factoring

Everybody uses RSA

All the time

The quantum threat

Shor algorithm

- Peter Shor 1994
- Fast factoring
- Time $=O\left((\# \text { digits })^{2}\right)$
- Needs a quantum computer

Quantum computer Allows for fast factoring

The potential disaster/benefits

If a fast factoring algorithm is found

Bad	Good
The bastards read your email	You read the mail of the bastard
Internet insecure	Dark-net is insecure
Financial transaction insecure	Money laundering more difficult
State records exposed	State records exposed
\ldots	\ldots

Factoring Oracle

Weak and unreliable is good enough

$\operatorname{Oracle}(N)= \begin{cases}\text { Error } & \text { Probability }=1 / 2 \\ 1, N & \text { Porbability }=3 / 10 \\ 42 & \text { Porbability }=1 / 5 \\ p & \text { Probability }=1 / 10\end{cases}$
Verify answer on a classical computer

- If incorrect, query again
- 10 trials will give p w.h.p.

Math Preliminaries

Facts from number theory

- $\quad a^{k} \bmod N:$ A periodic function of k, assuming $\operatorname{gcd}(a, N)=1$
- Example: $a=2, N=15$ the period=4

k	1	2	3	4	5	\ldots	15
$2^{k} \operatorname{Mod} 15$	2	4	8	$16=1$	2	\ldots	8

- Euler-Fermat: $a^{(p-1)(q-1)}=1 \bmod N, \quad \operatorname{gcd}(a, N)=1$

Factoring reduces to finding the period of $a^{k} \bmod N$

- $p q=N$
- $(p-1)(q-1)=$ Integer \times period
- Period gives information on the private key

More math preliminaries

Fourier transform and its Discrete cousin

- $\quad \tilde{F}(f)=\frac{1}{\sqrt{2 \pi}} \int e^{i f t} F(t) d t$
- $\widetilde{e^{i \omega t}} \Longrightarrow \delta(f-\omega)$

$$
\begin{aligned}
& \text { Discrete Fourier: } \underbrace{\omega=e^{2 \pi i / L}}_{\text {root of unity }} \\
& \tilde{F}(m)=\sum_{k=1}^{L} \mathcal{F}_{m k} F(k), \quad \mathcal{F}_{k m}=\frac{\omega^{k m}}{\sqrt{L}} \\
& \mathcal{F}_{L=2}=H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

Periodic functions

Fourier transform is sparse

$$
\tilde{F}(m)=\frac{1}{\sqrt{L}} \sum_{k=1}^{L} \omega^{k m} F(k)
$$

$$
F(k+\text { period })=F(k) \Longleftrightarrow \tilde{F}(m)=\underbrace{\omega^{m \text { period }}}_{?=1} \tilde{F}(m)
$$

- $\tilde{F}(m) \neq 0 \Longrightarrow m \times$ period $=$ (Integer) $\times L$
- period $=($ integer $) L / m$

k	0	1	2	3	4	5	\ldots
2^{k} Mod 15	1	2	4	8	$16=1$	2	\ldots
Fourier	X	0	0	0	X	\ldots	0

Functions contain exponential amount of information

How many bits to store a function with $N=2^{n}$ arguments?

Storing $\{F\}$ needs $O(N \log N)$ bits

- n bits for each argument k
- N possible values for k

$\{F\}$ can be stored in $2 n$ qubits

The superposition advantage

- n bits encode one k
- n bits encode $F(k)$
- n qubits for 2^{n} bits in superposition
- $(|0\rangle+|1\rangle) \otimes(|0\rangle+|1\rangle) \cdots \otimes(|0\rangle+|1\rangle)$
- $2 n$ qubits encode $\{k, F(k)\}$

Parallel processing

$$
\frac{|0\rangle+|1\rangle}{\sqrt{2}}|0\rangle \xrightarrow{\text { Function gate }} \frac{|0\rangle|F(0)\rangle+|1\rangle|F(1)\rangle}{\sqrt{2}}
$$

No free-lunch principle

The massive superposition is only in the belly of the beast

Measurement reveals

- one, random, entry k and the corresponding $F(k)$

Shor algorithm

Quantum Fourier: Exponential improvement on FFT

- Under the hood: massive superposition

$$
\underbrace{|0 \ldots 0\rangle}_{\text {argument }} \underbrace{\left|a^{0}\right\rangle}_{\text {function }}+\cdots+|1 \ldots 1\rangle\left|a^{L-1}\right\rangle
$$

- Measure function register $\left|a^{k}\right\rangle$
- Get: Random outcome, e.g. $\left|a^{k}\right\rangle=|2\rangle$
- Argument register: superposition of pre-images of $|2\rangle$

$$
\underbrace{(|1\rangle+|1+4\rangle+|1+2 \times 4\rangle+|1+3 \times 4\rangle)}_{\text {periodic sequence }} \otimes|2\rangle, \quad 2^{1+4 n}=2 \bmod
$$

If you look twice the cat is dead

Don't query the argument: Interfere

Preimages of 2

$$
\underbrace{|1\rangle+|5\rangle+\ldots|1+4 n\rangle}
$$

periodic input

You also need to be lucky

You may not get enough information on the period

- Bad luck: Measure |0〉
- Learn nothing:
$0 \times$ period $=$ integer $\times L$

2^{k} Mod 15	1	2	4	8	1	2	\ldots
m	0	1	2	3	4	5	\ldots
\mid Fourier $\left.\right\|^{2}$	1	0	0	0	1	\ldots	0

Moral: Information in basis states exposed in one shot

 Information in amplitudes is inaccessible in one shotFourier= Interference

- Computational States: Revealed in single shot
- Amplitudes: Revealed in statistics

Amplitudes: The roulette of the quantum casino

