Photo-detection in Lindblad

Dictionary from photons to dot observables

N. Tur, Y. Avron, A. Auerbach, D. Gershoni

11 September 2022

Light emission from a quantum dot

Light: A proxy for measurement of quantum dot

Measure: Photon Color and Polarization
 Simulate: Lindblad for the dot

Conditional photo-events

Photon events: $E=$ (Color, Polarization)

- Conditional probability

Standard problem in Lindblad theory Rediscovering forgotten insights?

Non-standard setting in open systems

Bath NOT measured

Photo-detection: A measurement of the bath

- How does the dot know about the measurement?
- Dictionary: Photon-observables \mapsto qdot-observables

Unitary evolution: Conceptual simplicity

Computational nightmare

Measurement=Preparation

A measurement does not reveal $|\psi\rangle$, it determines a new $|\psi\rangle$

φ and φ^{\prime} : States after the measurement

Lindblad evolutions: Computational simplicity

Conceptually confusing

phonon bath

Lindblad: Finite dimensional (Markovian) model

- $\operatorname{dim} \mathcal{H}_{\text {dot }}=$ Finite, e.g. 4
- $\operatorname{dim} \mathcal{H}_{\text {radiation }}=\operatorname{dim} \mathcal{H}_{\text {e-h bath }}=\operatorname{dim} \mathcal{H}_{\text {phonons }}=\infty$

Preparation and detection

Translating bath to system observables

Detecting H prepares |2>

Detecting V prepares |0〉

Born rule does not work

$$
\left.P\left(V_{\varphi}, t \mid H, 0\right) \neq\left|\langle 0| e^{t L}\right| 2\right\rangle\left.\right|^{2}
$$

A rule that works

$$
\begin{gathered}
\left.P(V \varphi, t \mid H, 0) \propto\left|\langle 1| e^{t L}\right| 2\right\rangle\left.\right|^{2} \\
\text { WHY THIS RULE? }
\end{gathered}
$$

Dictionary: Photon detection \mapsto qdot observables

 Photonic state: φ, Qdot state ψFirst photo-detection prepares the dot at $\left|\psi^{\prime}\right\rangle$:

$$
P\left(\varphi, t \mid \varphi^{\prime}, 0\right)=\operatorname{Tr}\left(E_{\varphi} e^{t L}\left(\left|\psi^{\prime}\right\rangle\left\langle\psi^{\prime}\right|\right)\right)
$$

How to pick E_{φ}

- Physical meaning?
- How to find it?

E_{φ} : filling rate of the prepared qdot state

Rates in Lindblad evolutions

Schrödinger: $\quad \frac{d \rho}{d t}=L(\rho)$

$$
L(\rho)=-i[H, \rho]+\sum_{\alpha} \underbrace{D_{\alpha}}_{j u m p}(\rho)
$$

Heisenberg: $\quad \frac{d A}{d t}=L^{*}(A)$
$L^{*}(A)=+i[H, A]+\sum_{\alpha} D_{\alpha}^{*}(A)$

Schrödinger=Heisenberg

$$
\operatorname{Tr}\left(A \frac{d \rho}{d t}\right)=\operatorname{Tr}(A L(\rho))=\operatorname{Tr}\left(L^{*}(A) \rho\right)=\operatorname{Tr}\left(\frac{d A}{d t} \rho\right)
$$

Photon current=Rate of prepared dot state

Conservation of quanta

Dot observable for photo-current

$$
E_{j k}=L^{*}(|k\rangle\langle k|)=D_{j k}^{*}(|k\rangle\langle k|)=\gamma_{j k}|j\rangle\langle j|
$$

Born rule:

$$
P(\text { photocurrent }, t \mid \rho, t=0)=\operatorname{Tr}(\underbrace{D^{*}(|k\rangle\langle k|}_{\text {rate }}) e^{t L} \rho)
$$

Preparation and Detection of polarized light

Photon preparation and detection: Different recipes

$$
P(V \varphi, t \mid H, 0)=\left.\operatorname{Tr}\left(D^{*}\left(|0\rangle\langle 0| e^{t L}|2\rangle\langle 2|\right)=\gamma\left|\langle 1| e^{t L}\right| 2\right\rangle\right|^{2}
$$

